Как найти площади фигур заданных координатами

Площадь по заданным координатам.

Как найти (вычислить) площадь фигуры (треугольник, четырехугольник, трапеция, многоугольник и др.) по координатам?

Какие есть формулы и методы, позволяющие находить площадь через координаты?

бонус за лучший ответ (выдан): 5 кредитов

Для вычисления площади простого многоугольника с любым количеством вершин, представленных в виде списка координат, при последовательном обходе которых, не образуются пересекающиеся линии, применяется формула Гаусса, иначе называемая «формулой землемера», «формулой геодезиста», «формулой шнурования», «алгоритмом шнурования», а так же «методом треугольников».

Суть метода заключается в построении треугольников, состоящих из сторон многоугольника и лучей проведённых из начала координат к вершинам многоугольника, и сложении площадей треугольников, включающих внутреннюю часть многоугольника с вычитанием площадей треугольников, расположенных снаружи.

Площадь, вычисленная по приведенной формуле, будет иметь отрицательное значение при обходе фигуры по часовой стрелке и положительное при обходе против часовой стрелки.

Фигура многоугольника может иметь произвольную геометрию. Например:

Список координат многоугольника представлен в виде массива: (x1, y1), (x2, y2), (x3, y3),…(xn, yn).

Для многоугольника на первом рисунке он задан точками: (3,4), (5,11), (12,8), (9,5), (5,6). Его площадь будет равна:

Существует также метод трапеций, основанный на сложении и вычитании площадей трапеций, образованных каждой из сторон многоугольника, её проекцией на ось абсциссы и перпендикулярами, опущенных из вершин на абсциссу. При обходе вершин по часовой стрелке учитывается величина координаты вершин. Если первая вершина меньше второй, то площадь трапеции прибавляется, если нет, то отнимается.

Для многоугольника ABCDE на левом нижнем рисунке существует 5 трапеций : ABJH, CBJF, CDIF, EDIG и EAHG.

Так как X1<X2, X3<X4 и X5<X1, то площади трапеций ABJH, CDIF и EAHG складываются, а X3>X4 и X4<X5, следовательно, площади трапеций CBJF и EDIG вычитаются:

S = S(ABJH) – S(CBJF) + S(CDIF) – S(EDIG) + S(EAHG)

Площади трапеций рассчитываются по формуле;

Sтрапеции = 1/2 *((a+b))*h,

где a, b – основания трапеции,

h – высота трапеции.

Значения a, b и h вычисляются по координатам.

В декартовых координатах круг может быть представлен двумя точками: центр А и любая точка В, лежащая на окружности. Для расчета площади круга необходимо вычислить его радиус по формуле:

автор вопроса выбрал этот ответ лучшим

Ксарф­акс
[156K]

5 лет назад 

Площадь фигуры по координатам вершин

Если известны координаты всех вершин, то площадь заданной геометрической фигуры (треугольника, прямоугольника, трапеции, ромба и т.д) можно найти по стандартным формулам. Но предварительно нужно найти длину сторон, диагоналей и т.п. (всё зависит от фигуры) с помощью формулы нахождения длины отрезка по заданным координатам.

Эта формула выглядит следующим образом:

Здесь:

AB — отрезок,

точка A имеет координаты (x1, y1),

точка B имеет координаты (x2, y2).


Рассмотрим несколько примеров.

1) Треугольник ABC имеет координаты A(2,3); B(6,7); C(5,0). Его площадь можно найти по формуле Герона:

Здесь:

S — площадь треугольника,

a, b, c — стороны,

p — полупериметр, который равен половине суммы сторон a, b и c.

Найдём, чему равны стороны треугольника по формуле нахождения длины отрезка по координатам:

AB = √(4² + 4²) = √32 ≈ 5,66.

AC = √(3² + (-3)²) = √18 ≈ 4,24.

BC = √((-1)² + (-7)²) = √50 ≈ 7,07.

Полупериметр треугольника будет равен (5,66 + 4,24 + 7,07) / 2 ≈ 16,97 / 2 ≈ 8,49.

Отсюда площадь треугольника ABC ≈ √(8,49 * 2,83 * 4,25 * 1,42) ≈ √145 ≈ 12,04.

2) Ромб ABCD имеет координаты A(1,2); B(3,4); C(5,2); D(3,0). Площадь можно найти через диагонали:

Здесь:

S — площадь ромба,

d1 и d2 — диагонали.

Таким образом, нам нужно найти диагонали AC и BD.

AC = √(4² + 0) = √16 = 4.

BD = √(0 + (-4)²) = √16 = 4.

Отсюда площадь ромба ABCD = 0,5 * 4 * 4 = 8.

3) Трапеция ABCD имеет координаты A(1,1); B(3,4); C(5,4); D(6,1). Стандартная формула площади трапеции такая:

Здесь:

S — площадь трапеции,

a и b — основания,

h — высота.

Высота трапеции (пусть это будет BE) — это перпендикуляр, который был опущен из вершины трапеции (из точки B) на её основание (в нашем случае это AD).

Определим координаты её отрезка:

  • координаты первой точки совпадают с точкой B, это (3,4).
  • координаты 2 точки (точка E) будут (3,1) — так как абсцисса совпадает с абсциссой точки B, а ордината совпадает с ординатой точек A и D.

Высота трапеции BE = √(0 + (-3)²) = √9 = 3.

Теперь посчитаем длину оснований:

BC = √(2² + 0) = √4 = 2.

AD = √(5² + 0) = √25 = 5.

Таким образом, площадь трапеции ABCD = 3 * 0,5 * (2 + 5) = 10,5.

Степа­н-16
[34.5K]

6 лет назад 

Первоначально нужно вычислить длины сторон. В этом здесь будет основная задача. Получив стороны, вычисляем площади по стандартным формулам.

Самый простой случай — для прямоугольника, когда его стороны параллельны осям координат. Тогда одна сторона будет равна разнице абсцисс, вторая ординат.

Треугольник. Допустим, основание параллельно оси абсцисс. Вычисляем его длину, как разницу абсцисс. Далее нужно найти высоту. Она будет равна разнице ординат третьей вершины и ординаты любой из вершин основания. Затем — площадь по формуле: половина произведения основания на высоту.

И т.д.

Если же стороны фигуры не параллельны осям, то находить длины сторон придется уже более сложными расчетами. Допустим, прямоугольник. Первую сторону будем искать, как если бы она была гипотенузой в составе прямоугольного треугольника. Каждая сторона будет равна квадратному корню из суммы квадратов абсцисс и ординат концов отрезков стороны.

Так и для любой фигуры. Вначале определяем длины сторон как гипотенузу треугольника. После чего применяем стандартные формулы площадей.

Элени­я
[445K]

3 года назад 

Рассчитать площадь какой угодно геометрической фигуры, зная координаты, не составляет сложности. Каждая из точек, соответствующая вершинам искомой фигуры, будь это треугольник, четырех- или многоугольник, имеет определенную координату, а значит у нее есть значение, через которое можно рассчитать площадь.

Координаты, как найти на графике, чтобы узнать площадь фигуры? Проецируем на оси абсцисс и ординат прямые, проведя перпендикуляр из каждой точки. Полученные значения будут исходной величиной. Каждая из сторон фигуры — это разница двух точек на горизонтальную и вертикальную оси. Разница между значениями означает длину стороны фигуры. А зная все стороны и их значение, по формуле находим площадь.

найти площадь фигуры на графике

Пример 1. Ищем площадь треугольника.

найти площадь фигуры на графике

Мы видим два отрезка зеленого цвета AB и BC, которые образуют стороны равнобедренного треугольника, а основание есть отрезок на оси абсцисс AC.

Даны значения: AC основание в промежутке от «-4» до «+4», то есть длина основания равна восьми.

Будет лучше, если посчитать площадь этого треугольника, как сумму из образовавших его двух треугольников, которые являются прямыми, ABO и BOC, совпадающие прямым углом с координатой «0» на графике.

Известна длина каждй из сторон, образующих прямой угол (AO или OC) х = 4 — 0 = 4 и y = 2 — 0 = 2 (BO).

Зная длину двух сторон, образующих прямой угол (AO и BO), находим длину основания (AB или BC). Тогда уже знаем все длины каждой из сторон обоих прямых треугольников. Остается только найти площадь по формуле:

площадь фигуры на графике

Зная площадь каждого из прямых треугольников, умножаем на два, получаем сумму заштрихованного треугольника на графике ABC.

И еще математически можно записать решение следующим образом, исходя из того, что имеем изначально следующую систему неравенств:

найти площадь фигуры на графике

площадь фигуры на графике

Пример 2.

площадь фигуры на графике

Пример 3. Есть парабола, ищем площадь фигуры, ограниченную кривой параболы. Чтобы посчитать, используем интеграл.

площадь фигуры на графике через интеграл

Бекки Шарп
[71.2K]

3 года назад 

Рассмотрим простой случай, где буквально на пальцах можно посчитать площадь через обычную формулу, а затем применим к этой задаче формулу Гаусса.

У нас есть трапеция, у которой известны координаты вершин. (3:2) (5:2) (9:6) (6:6). Мы знаем, что площадь трапеции равна сумме оснований, деленной на 2 и умноженной на высоту.

S = (a+b)/2 х h Считаем площадь: S = (3+2):2х4 = 10. Ответ — 10.

А теперь по теореме Гаусса.

Не смотря на страшный вид, формула очень простая. В квадратных скобках мы перемножаем абсциссу первой точки с ординатой второй, прибавляем абсциссу второй, умноженную на ординату третьей и так идем по кругу фигуры. Далее вычитаем ординату первой умноженную на абсциссу второй и т.д. В квадратных скобках у нас может получиться отрицательное число.

S= 0,5 х [3х6+6х6+9х2+5х2 — 2х6-6х9-6х5-2х3] = 10

Таким образом можно найти площадь любой сложной фигуры, зная ее координаты.

dydyS­acha
[10.8K]

6 лет назад 

Можно взять милиметровку и нанести точки с заданными координатами, согласно осей абсцис и ординат. Соединить эти точки между собой и замерить длины образовавшихся сторон, а с помощью формулы по определению площади образовавшейся фигуры узнать её значение подставив данные в эту формулу.

Алиса в Стран­е
[364K]

3 года назад 

Существует специальная формула, называемая формулой Гаусса, она и позволит нам определить искомую площадь по координатам. Вот как эта формула выглядит:

Формула выглядит немного устрашающе, но давайте попробуем в ней разобраться. У нас есть многоугольник и есть его координаты, подсчитать n — количество сторон многоугольника несложно, а дальше просто нужно подставлять значения в эту формулу, нужно только быть внимательным и не перепутать какие координаты куда надо писать.

Давайте теперь приведем пример нахождения такой площади через формулу Гаусса. Допустим, у нас есть вот такой пятиугольник:

Координаты его пяти вершин, как мы видим: (3, 4), (5, 11), (12, 8), (9, 5), (5, 6).

Теперь нам остается только очень внимательно подставить эти координаты в нашу формулу, n = 5, координаты известны, вот что у нас получится:

Когда разбираешься в этой формуле, понимаешь, насколько она проста и даже легко запоминается, несмотря на то, что сначала кажется очень сложной.

dusel­ldorf
[4.3K]

5 лет назад 

Для вычисления площади геометрической фигуры по координатам ее вершин, нужно воспользоваться формулой Гаусса, иногда ее называют формулой землемера или формулой геодезиста, так как она применяется геодезистами для определения площади земельного участка, например, при межевании:

где

А — площадь многоугольника с заданными координатам его вершин,

n — количество сторон многоугольника,

(xi, yi) — координаты вершин многоугольника,

i = 1, 2,…, n — номер вершины многоугольника.

Барха­тные лапки
[382K]

3 года назад 

Находим площадь вот такого несложного четырехугольника. Координаты его вершин нам известны. Применяем формулу Гаусса, которая выглядит так:

S (площадь) = 0,5 [6х4 +9х7 + 10х6 + 7х3 — 3х9 — 4х10 — 7х7 — 6х6] = 8 (квадратных единиц)

Как видим если применять при решении формулу Гаусса то решить такую задачку несложно.

Не вижу здесь серьезных проблем. Мы, как я понял, имеем готовые точки координат, которые нужно проставить на координатной плоскости. Далее, соединяя эти точки, получаем фигуру, как в примере вопроса — квадрат, треугольник и т.п.

Теперь вычисляем площадь любой из полученных фигур по формуле ей соответствующей.

Знаете ответ?

Вычисление площадей фигур в различных системах координат

Площадь плоской фигуры в декартовых координатах

Напомним, что мы назвали криволинейной трапецией фигуру, ограниченную осью абсцисс, прямыми x=a и x=b и графиком функции y=f(x). В этом пункте выведем формулу для вычисления площади криволинейной трапеции.

Теорема 3. Если функция y=f(x) неотрицательна на отрезке [a;b] и непрерывна на нем, то соответствующая ей криволинейная трапеция квадрируема, причем ее площадь S выражается формулой

{ S= intlimits_{a}^{b} f(x),dx,.}

(4)

Доказательство. Криволинейная трапеция ограничена тремя отрезками и графиком непрерывной функции y=f(x). Как было показано в пункте 2 такая фигура квадрируема. Чтобы вычислить площадь этой трапеции, построим для нее внешние и внутренние ступенчатые фигуры (см. рис. 26).

Тогда, с одной стороны, имеем:

sum_{k=0}^{n-1}m_kDelta x_kleqslant Sleqslant sum_{k=0}^{n-1} M_kDelta x_k,,

где sum_{k=0}^{n-1}m_kDelta x_k — площадь внутренней ступенчатой фигуры, sum_{k=0}^{n-1}M_kDelta x_k —площадь внешней ступенчатой фигуры, m_k=min_{xin [x_k;x_{k+1}]}f(x) и M_k=max_{xin[x_k;x_{k+1}]}f(x). С другой стороны, по определению интеграла можно записать:

sum_{k=0}^{n-1}m_kDelta x_kleqslant intlimits_{a}^{b} f(x),dxleqslant sum_{k=0}^{n-1}M_kDelta x_k,.

Таким образом, числа S и intlimits_{a}^{b} f(x),dx разделяют одни и те же числовые множества: Biggl{,sum_{k=0}^{n-1}m_kDelta x_k,Biggr}, Biggl{,sum_{k=0}^{n-1}M_kDelta x_k,Biggr}. Но, как было показано при изучении определенного интеграла, эти множества разделяются лишь одним числом, и потому S=intlimits_{a}^{b} f(x),dx. Теорема доказана.

Аналогично доказывается, что если фигура ограничена снизу графиком функции y=f_1(x), сверху графиком функции y=f_2(x), а слева и справа прямыми x=a,~x=b (рис. 30), то ее площадь выражается формулой

S= intlimits_{a}^{b}bigl[f_2(x)-f_1(x)bigr]dx,.

Наглядный смысл формулы (4) состоит в том, что криволинейную трапецию можно рассматривать как объединение «бесконечно тонких полосок» с основаниями dx и высотами f(x).

Площадь фигуры между двумя графиками функций

Пусть теперь функция y=f(x) непрерывна на отрезке [a;b] и принимает на нем только неположительные значения. Выразим с помощью определенного интеграла площадь соответствующей криволинейной трапеции F.

Рассмотрим фигуру Phi, симметричную фигуре F относительно оси Ox. Эта фигура (рис. 31) представляет собой криволинейную трапецию, ограниченную сверху графиком непрерывной на отрезке [a;b] функции y=f(x), которая на [a;b] принимает только неотрицательные значения. По доказанному выше

Интегрирование знакопеременной функции

S(Phi)= intlimits_{a}^{b} bigl(-f(x)bigr)dx. Но S(Phi)=S(F).

Значит,

S(F)= intlimits_{a}^{b} bigl(-f(x)bigr)dx= -intlimits_{a}^{b} f(x),dx,.

Как мы видим, в рассматриваемом случае интеграл intlimits_{a}^{b} f(x),dx дает значение площади криволинейной трапеции F с точностью до знака. Если же функция f меняет знак на отрезке [a;b] в конечном числе точек, то значение интеграла intlimits_{a}^{b} f(x),dx дает алгебраическую сумму площадей соответствующих криволинейных трапеций, ограниченных частями графика функции y=f(x), отрезками оси Ox и, быть может, отрезками, параллельными оси Oy (рис. 32).


Пример 1. Найти площадь фигуры, ограниченной кривой y=e^x, осью абсцисс и прямыми x=1,~x=2 (рис. 33).

Решение. Имеем: S= intlimits_{1}^{2} e^x,dx= Bigl.{e^x}Bigr|_{1}^{2}= e^2-e= e(e-1) (кв. ед.).

Пример 2. Вычислить площадь фигуры, ограниченной дугой параболы y^2=4x и отрезком прямой x=2 (рис. 34).

Решение. Из рисунка видно, что трапеция, площадь которой нужно найти, расположена симметрично относительно оси абсцисс и, следовательно, искомая площадь равна

S= 2int_{0}^{2}2sqrt{x},dx= left.{frac{4x^{3/2}}{3/2}}right|_{0}^{2}= frac{8}{3}cdot 2^{3/2}= frac{16}{3}sqrt{2},.

Пример 3. Найти площадь фигуры, ограниченной графиками функций y^2=9x,~ y=3x (рис. 35).

Решение. Искомая площадь равна разности площадей криволинейного треугольника OAB и прямоугольного треугольника OAB:

S= intlimits_{0}^{1} sqrt{9x},dx- intlimits_{0}^{1} 3x,dx= left.{3cdot frac{x^{3/2}}{3/2}}right|_{0}^{1}- left.{3cdot frac{x^2}{2} }right|_{0}^{1}= 2-frac{3}{2}= frac{1}{2},.

Площадь фигуры, ограниченной кривой, осью абсцисс и двумя прямыми


Пример 4. Вычислить площадь фигуры, ограниченной петлей кривой a(y^2-x^2)+x^3=0.

Решение. Из уравнения кривой видно, что она расположена симметрично относительно оси Ox. Следовательно, можно сначала вычислить половину искомой площади (рис. 36). Рекомендуем читателю подробно исследовать и построить данную кривую.

Площадь фигуры, ограниченной петлёй кривой

Записав уравнение кривой в виде y^2=frac{x^2}{a}(a-x), найдем точки пересечения ее с осью Ox, положив y=0colon, x_1=0,~ x_2=a. Учитывая сказанное, найдем площадь половины петли:

frac{1}{2}S= frac{1}{sqrt{a}} intlimits_{0}^{a} xsqrt{a-x},dx,.

Воспользовавшись формулой из таблицы при a=-1,~ b=a, получим:

intlimits_{0}^{a} xsqrt{a-x},dx= left.{frac{2(-3x-2a)sqrt{(a-x)^3}}{15}}right|_{0}^{a}= frac{4}{15},a^{5/2},.

Значит, окончательно имеем:

frac{1}{2}S= frac{1}{sqrt{a}}cdot frac{4}{15},a^{5/2}= frac{4}{15},a^2quad Leftrightarrowquad S=frac{8}{15},a^2,.


Площадь фигуры, ограниченной кривой, заданной параметрически

Пусть кривая y=f(x),~ f(x)geqslant0,~ aleqslant xleqslant b задана в параметрической форме

begin{cases}x=varphi(t),\ y=psi(t),end{cases} alpha leqslant tleqslant b,,

где функция x=varphi(t) монотонна на отрезке [alpha;beta], причем varphi(alpha)=a, varphi(beta)=b, и имеет на этом отрезке непрерывную производную. Так как y=f(x)= fbigl(varphi(t)bigr)= psi(t), то по формуле замены переменной под знаком определенного интеграла получаем:

S= intlimits_{a}^{b} f(x),dx= intlimits_{alpha}^{beta} fbigl(varphi(t)bigr) varphi'(t),dt= intlimits_{alpha}^{beta} psi(t) varphi'(t),dt,.

Итак, площадь фигуры, ограниченной кривой, заданной параметрически, вычисляется по формуле:

S= intlimits_{alpha}^{beta} psi(t)varphi'(t),dt,.

(5)


Пример 5. Вычислить площадь эллипса, заданного параметрически begin{cases} x=acos{t},,\ y=bsin{t},,end{cases} 0leqslant tleqslant 2pi,.

Площадь фигуры, ограниченной эллипсом

Решение. Выберем ту часть эллипса (рис. 37), которая расположена в первом квадранте. Точке A(a;0) соответствует значение t=0, а точке B(0;b) — значение t=frac{pi}{2}. Поэтому

begin{aligned} S&= 4intlimits_{0}^{a}y,dx= -4intlimits_{0}^{pi/2}bsin{t}cdot(-asin{t}),dt= 4abintlimits_{0}^{pi/2} sin^2t,dt=\ &= 2abintlimits_{0}^{pi/2} bigl(1-cos2tbigr),dt= left.{2ab!left(t- frac{1}{2}sin2t right)}right|_{0}^{pi/2}= pi,ab,. end{aligned}


Площадь фигуры, заданной в полярных координатах

Вычислить площадь сектора, ограниченного лучами ell и m, выходящими из точки O, и непрерывной кривой Gamma (рис. 38). Выберем полярную систему координат, полюсом которой является точка O. Пусть rho=rho(varphi) — полярное уравнение кривой Gamma, а varphi_0 и Phi — углы между полярной осью и лучами ell и m соответственно. При этом пусть функция rho(varphi) непрерывна на [varphi_0;Phi].

Разобьем данный сектор на n частей лучами

varphi_0&lt; varphi_1&lt; varphi_2&lt; ldots&lt; varphi_k&lt; varphi_{k+1}&lt; ldots&lt; varphi_n= Phi

и рассмотрим k-й частичный сектор [varphi_k; varphi_{k+1}] (рис. 39). Пусть r_k — наименьшее значение функции rho(varphi) в [varphi_k; varphi_{k+1}], a R_k — наибольшее значение функции в этом отрезке.

Площадь в полярных координатах и разбиение сектора на n частей

Построим два круговых сектора с радиусами r_k и R_k. Обозначим через Deltavarphi_k величину угла рассматриваемого частичного сектора. Тогда площадь частичного криволинейного сектора будет заключена между площадями вписанного и описанного частичных круговых секторов

frac{1}{2}cdot r_k^2cdot Deltavarphi_k leqslant S_kleqslant frac{1}{2}cdot R_k^2cdot Deltavarphi_k,.

Построим аналогичным образом внутренние и внешние круговые секторы для всех частичных криволинейных секторов. Объединяя их, получим внутреннюю и внешнюю фигуры.

Площадь внутренней фигуры, состоящей из круговых секторов, равна frac{1}{2} sum_{k=0}^{n-1} r_k^2 Deltavarphi_k, а площадь внешней фигуры равна — frac{1}{2} sum_{k=0}^{n-1} R_k^2 Deltavarphi_k. Эти выражения являются нижней и верхней суммами Дарбу s_P и S_P для интеграла frac{1}{2} intlimits_{varphi_0}^{Phi} rho^2(varphi),dvarphi. Так как функция rho(varphi) непрерывна, то непрерывна, а потому и интегрируема функция rho^2(varphi). Поэтому для любого varepsilon найдется такое разбиение P отрезка [varphi_0,Phi], что S_P-s_P&lt;varepsilon. Из теоремы 2 пункта 2 следует, что заданный криволинейный сектор квадрируем. При этом для его площади S выполняются неравенства

Площадь, ограниченная одним лепестком полярной розы

frac{1}{2} sum_{k=0}^{n-1} r_k^2 Deltavarphi_kleqslant Sleqslant frac{1}{2} sum_{k=0}^{n-1} R_k^2 Deltavarphi_k,.

(6)

В то же время по определению определенного интеграла

frac{1}{2} sum_{k=0}^{n-1} r_k^2 Deltavarphi_kleqslant frac{1}{2} intlimits_{varphi_0}^{Phi} rho^2(varphi),dvarphi leqslant frac{1}{2} sum_{k=0}^{n-1} R_k^2 Deltavarphi_k,.

(7)

В силу единственности разделяющего числа из неравенств (6) и (7) следует, что

S= frac{1}{2} intlimits_{varphi_0}^{Phi} rho^2(varphi),dvarphi,.

(8)


Пример 6. Вычислить площадь, ограниченную одним лепестком розы rho=asin2varphi (рис. 40).

Решение. Значениям varphi=0 и varphi=frac{pi}{2} соответствует rho=0 Поэтому

S= frac{1}{2} intlimits_{0}^{pi/2} a^2sin^22varphi,dvarphi= frac{a^2}{2} intlimits_{0}^{pi/2} frac{1-cos4varphi}{2},dvarphi= left.{frac{a^2}{4}! left(varphi- frac{1}{4}sin4varphiright)}right|_{0}^{pi/2}= frac{a^2}{4}cdot frac{pi}{2}= frac{pi}{2},a^2,.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Треугольник

Самый простой многоугольник и вектор

Чтобы найти площадь треугольника через векторы и известные координаты его вершин, необходимо подробнее познакомиться с этими геометрическими объектами. Знание их свойств позволяет легко вычислять разные характеристики изучаемой фигуры, включая периметр, высоту, углы при вершинах и другие. При этом используются универсальные математические операции, которые можно применять с успехом не только для треугольника, но и для других многоугольников.

Фигура на плоскости

Треугольник в геометрии представляет собой самый простой многоугольник, который лежит всегда в одной плоскости, даже если фигура рассматривается в трехмерном пространстве. Состоит он из сторон и вершины.

Сторон и вершин у фигуры по три. Сторона является отрезком, а вершина — это точка пересечения этих отрезков. Для нее характерен определенный угол. Все углы треугольника являются разными в общем случае, их сумма всегда соответствует 180°. Однако, существуют специальные типы фигуры, для которых либо два угла равны друг другу (равнобедренный), либо все три (равносторонний). В задачах называют треугольники по имени их трех вершин, обозначенных латинскими буквами, например, ABC или NPQ.

Нахождение площади треугольника по координатам вершин

Для треугольника важное значение имеют следующие отрезки:

  • делящий противоположную углу сторону пополам — медиана;
  • разделяющий угол при вершине на два равных — биссектриса;
  • падающий под прямым углом на противоположную углу сторону — высота.

Высота, например, используется для расчета площади фигуры. Для равностороннего треугольника все эти отрезки совпадают друг с другом для любой вершины, а для равнобедренного они одинаковы лишь для угла, образованного равными сторонами.

Направленный отрезок

Отрезки треугольника

Вектором называют линейный элемент, который имеет начало и конец. Для его определения удобнее всего использовать координатную плоскость. Она представляет собой две направленные оси, имеющие шкалу и пересекающиеся под углом 90°. Точка пересечения является началом координат и обозначается буквой O (0; 0). Здесь каждая из цифр указывает точку пересечение перпендикуляра, опущенного из рассматриваемого объекта к каждой из двух осей.

Если начало A (x0; y0) и конец B (x1; y1) вектора известны, тогда легко можно вычислить его собственные координаты. Делается это так:

AB- = B-A = (x1-x0; y1-y0).

Иными словами, чтобы получить вектор AB-, следует из соответствующих координат его конца вычесть его начало. Эта операция эквивалентна параллельному перемещению AB- в начало координатной плоскости, что говорит о существовании бесконечного количества одинаковых AB-векторов.

Направленные отрезки можно складывать, вычитать и умножать. Для каждой из операций существуют определенные правила. Если для сложения и вычитания речь идет о геометрических особенностях, то в случае умножения применяются исключительно алгебраические выражения. Вектор a- можно умножить на b- двумя принципиально разными способами:

Геометрия

  1. Скалярно: (a-*b-). В этом случае мы получаем число. Правило умножения записывается следующим образом: (a-*b-) = |a-|*|b-|*cos (ab)=x1*x2+y1*y2. Здесь знаком модуля (||) обозначены длины соответствующих отрезков, cos (ab) — это косинус угла между a- и b-, при этом a-(x1; y1), b-(x2; y2). Этот тип произведения можно использовать для вычисления углов между направленными отрезками, а также для определения объема фигур в пространстве.
  2. Векторно: [a-*b-]. Результатом этой операции является вектор, который перпендикулярен исходным, его направление (вверх или вниз) принято определять по правилу правой руки: четыре пальца должны быть направлены от конца a- к концу b-, тогда оттопыренный большой палец укажет направление их векторного произведения. Длина этого перпендикулярного вектора определяется так: [a-*b-] = |a-|*|b-|*sin (ab) = x1*y2-x2*y1. Векторное произведение используют для вычисления площадей фигур.

Методы вычисления площади по координатам

Задачи на вычисление площадей, периметров или объемов фигур по известным координатам их вершин являются типичными для школьного курса геометрии. В связи с развитием современных технологий школьники часто ищут в интернете, как решить треугольник онлайн по координатам. Тем не менее, существует ряд простых способов, которые позволяют быстро найти площадь фигуры, если известно расположение трех его вершин на координатной плоскости.

Универсальный подход

Этот метод можно применять всегда, независимо от того, какой тип треугольника рассматривается. Известно, что площадь фигуры вычисляется, как произведение половины стороны на опущенную на нее высоту: S = ½*a*h.

Пусть имеются координаты вершин заданного треугольника ABC:

  • A (x1; y1);
  • B (x2; y2);
  • C (x3; y3).

Тогда координаты его векторов AB- и AC- выразятся так:

  • AB- = (x2-x1; y2-y1);
  • AC- = (x3-x1; y3-y1).

Урок математики

Если провести высоту h треугольника ABC к любой из этих сторон, например, к AC, то ее длина может быть рассчитана с использованием тригонометрической функции синуса:

h = AB*sin (α).

Здесь α является углом между векторами-сторонами AB- и AC-. Тогда формулу площади можно переписать в следующем виде: S = ½*a*h = ½*AC* AB*sin (α).

Можно заметить, что записанное выражение является не чем иным, как векторным произведением для AB- и AC-, поэтому можно переписать формулу для S так:

S = ½*[ AB-* AC- ] = ½*((x2-x1)*(y3-y1) — (y2-y1)*(x3-x1)).

Можно аналогично показать, что подобные выражения получаются для пар векторов AC-, BC- и AB-, BC-.

Рекомендуется не запоминать конечные выражения для площади треугольника, поскольку они являются несколько громоздкими, и при их использовании ученики могут запутаться. Для решения подобного рода задач достаточно понять свойства векторов и единственную универсальную формулу для S для любого типа треугольников.

Любопытно отметить, что векторное произведение при вычислении площади можно применять не только для треугольников, но и для любых четырехугольников. Так, в случае параллелограмма рассматриваемая характеристика будет точно равна векторному произведению любых смежных (непараллельных) его сторон.

Использование формулы Герона

Этот способ также может считаться универсальным, поскольку он применим к любым типам треугольников. В работе Герона Александрийского, которая называется «Метрика» и относится к I веку нашей эры, впервые было обнаружено выражение, позволяющее по длинам сторон рассматриваемой фигуры определить ее площадь. Формула имеет следующий вид:

S = (p*(p-a)*(p-b)*(p-c))^0,5.

Здесь p — полупериметр, a, b, c — длины сторон.

Последовательность этапов решения задачи можно выразить таким образом:

Урок геометрии

  1. Необходимо определить координаты векторов, образующих стороны треугольника.
  2. Затем, следует вычислить длины их сторон.
  3. Посчитать полупериметр фигуры.
  4. Применить формулу Герона.

Ключевым этапом является определение длины вектора. Пусть AB- имеет координаты (x1; y1), тогда его длина вычисляется так:

|AB-| = (x1 2 + y1 2 )^0,5.

Длина любого вектора как на плоскости, так и в пространстве, вычисляется, как сумма квадратов всех его координат, взятых под корень.

Очевидно, что можно записать общее выражение для площади треугольника через координаты с использованием формулы Герона, но оно будет слишком громоздким, поэтому нет никакого смысла запоминать его.

Другие способы

Существуют эмпирические правила, которые можно запомнить и легко решать задачи на определение площади треугольника. Пусть координаты его вершин задаются так: A (x1; y1), B (x2; y2), C (x3; y3). Предположим, что порядок вершин A, B, C расположен против часовой стрелки, тогда существуют следующие правила определения площади ABC:

Площадь треугольника

  1. Можно воспользоваться формулой: S = ½*(x1*(y2-y3) + x2*(y3-y1) + x3*(y1-y2)). То есть выбирается первая координата вершины и умножается на разность вторых координат двух других вершин, возникающих против хода стрелки часов от первой. Затем, все три члена складываются и делятся на 2.
  2. Матричный способ. Необходимо выписать в столбик пары координат каждой вершины против часовой стрелки и завершить координатами исходной. После этого следует сложить три попарных произведения первой и второй координат двух соседних вершин, а затем, вычесть три попарных произведений второй и первой координат тех же вершин. Результат поделить пополам. Например: (x1; y1) (x2; y2) (x3; y3) (x1; y1). S = ½*(x1*y2 + x2*y3 + x3*y1 — y1*x2 — y2*x3 — y3*x1).

Решение задачи

Дана фигура АВС. Найдите площадь треугольника, вершины которого имеют координаты A (1; -3), B (2; 5), C (-2; -2).

Для нахождения решения следует обратиться за помощью к универсальному способу. Сначала необходимо выбрать два вектора, образующих стороны треугольника. Пусть это будут AB- и BC-. Теперь нужно знать их координаты. Они равны:

  • AB- = (2−1; 5-(-3)) = (1; 8);
  • BC- = (-2−2; -2−5) = (-4; -7).

Чтобы рассчитать площадь, достаточно вычислить полупроизведение векторное для выбранных направленных отрезков: S = ½*[AB-*BC-] = ½*(1*(-7)-8*(-4)) = 12,5 квадратных единиц.

Таким образом, существует несколько методик вычисления площади треугольника, если известны координаты его вершин. Все они сводятся к использованию свойств векторов и известных формул. Существуют также выражения, которые следует запомнить, чтобы решать подобные задачи.

Площадь S криволинейного сектора, ограниченного непрерывной кривой r=r(f) и двумя лучами f=f1 и f=f2, где f1<f2 равняется половине определенного интегралу от квадрата радиуса кривой, проинтегрированного в пределах изменения угла
Задачи взяты из программы практикума для студентов мех-мата Львовского национального университета имени Ивана Франко. Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. «Практикум из математического анализа» (рядом стоит номер из сборника Б. П. Демидовича). 

Для запоминания основных моментов схема интегрирования и нахождения площадей из примера в пример будет повторяться. Сами ррешеня по возможности  будут проиллюстрированы графиками исследуемых кривых.

Найти площади фигур, ограниченных кривыми, заданными в полярных координатах

Пример 2.106 (2418) Вычислить площадь фигуры, ограниченной кривыми r2=a2*cos(2f) (лемниската Бернулли).
Вычисление: Лемниската Бернулли — геометрическое место точек, произведение расстояний от которых до двух фиксированных точек (фокусов) остается постоянным и равняется квадрату половины расстояния между фокусами.
Запишем подинтегральную функцию: r2=a2*cos(2f) (известна за условием).
Найдем пределы интегрирования:
задана кривая замкнутая, симметричная относительно прямых r*cos(f)=0 и r*sin(f)=0.
Наведем график лемнискаты Бернулли
лемниската Бернуллі
Поскольку заданная функция осями координат делится на четыре равных части и достигает своих критических значений при f1=0 (r=a) и f2=p/4 (r=0), то площадь фигуры вычислим для одной части лемнискаты, а результат умножим на 4.
Найдем площадь фигуры интегрированиям по углу

Площадь измеряется в единицах квадратных, однако в этом и следующих примерах размерности наводить не будем, хотя о них помним.

Пример 2.107 (2419) Найти площадь фигуры, ограниченной кривыми r=a* (1+cos(f)) — кардиоида.
Вычисление: Кардиоида — плоская линия, которая описывается фиксированной точкой круга, который катится по неподвижному кругу с таким же радиусом a.
Записываем подинтегральную функцию: r2=a2*(1+cos(f))2.
Находим пределы интегрирования: кривая замкнутая, симметричная относительно прямой r*sin(f) =0.
Поскольку заданная функция осями координат делится на две равных части и достигает своих критических значений при f1=0 (r=2a) и f2=p (r=0), то площадь фигуры вычислим для половины кардиоиды, а результат умножим на 2.
График кардиоиды имеет вид

Графики кардиоиды
Вычислим площадь фигуры, которая ограничена заданной кривой, интегрированием:

Пример 2.108 (2420) Найти площадь фигуры, ограниченной кривой r=a*sin(f) -трилисник.
Вычисление: Подносим функцию к квадрату, чтобы получить подинтегральную функцию:
r2=a2*sin2(f).
График трилистника в полярной системе координат
трилистник
Установим пределы интегрирования:
Поскольку заданный график функции делится на шесть равных частей (полупелюсток) и достигает своих критических значений при f1=0 (r=0) и f2=p/6 (r=a/2) то площадь фигуры вычислим для одной его части, а результат умножим на 6.
Находим площадь фигуры интегрированием по углу

Получили простую для вычислений формулу площади трилистника S=Pi*a2/4.

Пример 2.109 ( 2421) Вычислить площадь фигуры, ограниченной кривой (парабола), f1=p/4, f2=p/2.
Вычисление: Подносим к квадрату уравнения кривой в полярной системе коринат (СК).

Пределы интегрирования известны f1=p/4, f2=p/2 за условием.
График фигуры, площадь которой нужно найти имеет вид
парабола
Интегрированием вычисляем площадь фигуры, которая ограничена параболой:

Для вычисления интеграла следует выполнить замену переменных, не забывая при этом , что изменяются пределы интегрирования.

Пример 2.110 ( 2422) Найти площадь фигуры, ограниченной кривой (эллипс)
Вычисление:
Запишем подинтегральную функцию:

Пределы интегрирования: f1=0, f2=2p (начало и конец кривой эллипса).
График эллипса имеет вид
эллипс
Находим площадь елипса, воспользовавшись следующей формулой интегрирования

При выведении этой формулы пользовались методом интегрирования частями!

Напоследок превращаем конечную формула с помощью известных формул.
Как видим, ответы задач 2.110 и 2.87 совпадают, то есть площадь эллипса S=Pi*a*b вычислена правильно.

Пример 2.111 (2422.1) Найти площадь фигуры, ограниченной кривой заданной в полярных координатах r=3+2*cos(f).
Вычисление: Сначала находим подинтегральную функцию: r2=(3+2*cos(f))2.
Дальше пределы интегрирования: задана кривая замкнутая, симметричная относительно прямой r*sin(f)=0.
Ее график приведен на рисунку ниже

Поскольку задана кривая осями координат делится на две равных части и достигает своих критических значений при углах f1=0 (r=5) и f2=p (r=1), то вычислим половину площади фигуры, а результат умножим на 2.
Находим площадь фигуры через определенный интеграл

Интеграл в данном случае не тяжелый и, возведя в квадрат подинтегральную функцию и понизив квадрат косинуса, в результате вычислений получим, что площадь равна S=11*Pi.

Пример 2.112 (2424.1) Найти площадь фигуры, ограниченной кривой заданной в полярных координатах r2+f2=1.
Вычисление: Выражаемый подинтегральную функцию: r2=1-f2 .
Найдем пределы интегрирования.
, поэтому , откуда .

Построим график кривой в математическом пакете Maple17.
Кривая состоит из двух веток корневой функции, поэтому для корректного ее отображения используем следующий код:
> restart;
> with (plots) :
> q1:=plot(sqrt(1-phi^2),phi=-1.1, color=blue, thickness=2, coords=polar):
q2:=plot(-sqrt(1-phi^2),phi=-1.1, color=blue, thickness=2, coords=polar):
> display (q1, q2);
Фрагмент программы Maple приведен ниже
лемниската Бернуллі

Находим площадь фигуры, которая ограничена кривой:

Интеграл в этом задании простей всех, что рассматривались.

Пример 2.113 ( 2422.2) Вычислить площадь фигуры, ограниченной кривыми .
Вычисление: Выписываем подинтегральные функции:

Поскольку на промежутке интегрирования между кривыми выполняется неравенство, то для нахождения площади имеем r22-r12.
Найдем пределы интегрирования: f1=0 — особенная точка (функция направляется к безграничности) f1=p/2 (известны за условием).
Находим площадь фигуры через предел от интеграла:

Данный пример хорошо разберите, чтобы не иметь трудностей на экзамене или модуле с подобными.

Пример 2.114 ( 2424) Вычислить площадь фигуры, ограниченной кривой
Вычисление: Запишем подинтегральную функцию: r2.
Запишем пределы интегрирования:
(известны за условием).
График функций имеет вид

Вычислим площадь фигуры, что приведена на графике.
Для этого сначала находим дифференциал угла f и переходим к интегрированию по радиусу.
Для нахождения интеграла применяем интегрирование частями

Интеграл достаточно трудно находится, поэтому все что содержит формула внимательно проанализируйте.

Пример 2.116 (2424.4) Найти площадь фигуры, ограниченной полярными кривыми f=r-sin(r), f=p.
Вычисление: Подинтегральную функция следующая: r2.
Пределы интегрирования: f1=0, (r=0) начало; f1=p (известно за условием).
График функции имеет вид

Находим площадь фигуры, применяя дважды интегрирование частями

Интеграл не слишком сложен, все переходы просьба проанализировать самостоятельно.

Пример 2423 Вычислить площадь фигуры, ограниченной полярными кривыми r=a*cos(f), r=a(cos(f)+sin(f)), M (a/2;0)єS.
Вычисление: Для представления фигуры, площадь которой нужно найти предварительно выполняем построение графика заданных функций

Поскольку точка M (a/2;0)єS делит искомую площадь на две части, то имеем два интеграла

Записываем уравнение подинтегральных функций:

Определяем пределы интегрирования:
, где и где (точки пересечения линий).
Вычисляем площадь изображенной фигуры интегрированием

Здесь воспользовались известные тригонометрические формулы для понижения степени косинусов и синусов под интегралом. Все остальное сводятся к применению простых формул интегрирования, и нахождения их значений.

Пример 2424.2 Найти площадь фигуры, ограниченной полярными кривыми f=sin(p*r), r пренадлежит [0;1].
Вычисление: Запишем подинтегральную функцию: r2.
Запишем пределы интегрирования: При росте r от 0 к 1/2 угол f растет от 0 к 1, при росте r от 1/2 к 1 угол f спадает от 1 к 0, поэтому величина интеграла в пределах r пренадлежит [0;1] имеет знак «минус».

Находим площадь фигуры, предварительно перейдя к новой переменной под интегралом:

Перед интегралом (после замены переменных) поставили знак «минус», поскольку интеграл является отрицательным на этом промежутке, а площадь должна быть положительной.

Перейти к полярным координатам и найти площади фигур, ограниченных кривыми

Пример 2426 Перейти к полярным координатам и найти площадь фигуры x3+y3=3a*x*y (лист Декарта)
Вычисление: Перейдем от прямоугольной системы координат к полярной системе координат за формулами перехода:

При подстановке в уравнение получим

Поднесем к квадрату, чтобы получить подинтегральную функцию:

Выпишем пределы интегрирования:
, потому что при и при .
График функции имеет вид

Найдем площадь фигуры интегрированиям:

Для получения конечной формулы площади дважды применяли замену переменных под интегралом.
Внимательно разберите, как при этом изменяются пределы и эффективность методики.

Пример 2427 Перейти к полярным координатам и найти площадь фигуры x4+y4=3a2(x2+y2)
Вычисление: Переходим от прямоугольной к полярной системе координат:

Выражаемый подинтегральную функцию делением:

Запишем пределы интегрирования:
(функция парная).
Ее график изображен на рисунку

Оси прямоугольной системы координат являются осями симметрии для фигуры, которая ограничена заданной линией, поэтому площадь найдем для симметричной части и результат умножим на 4.
Находим площадь фигуры через интеграл:

Пример 2428 Перейти к полярным координатам и найти площадь фигуры (x2+y2)2=2a2*x*y (лемниската).
Вычисление: Выполняем переход от прямоугольной к полярной системе координат:

— подинтегральная функция.
График исследуемой кривой следующий
лемниската
Запишем пределы интегрирования: учитывая симметрию точек лемнискаты относительно прямой r*sin(f) =r*cos (f) и относительно начала координат, то площадь фигуры будем искать в пределах и результат умножим на 4 (смотри пример 2.106).
Находим площадь фигуры интегрированием:

Вычислений в этом задании минимум.
В следующих публикациях Вы найдете больше примеров на применение определенного интеграла при вычислении длины дуги, объемов фигур вращения и площадей поверхностей.

Задачи на координатной сетке

Задачи на координатной сетке

Площадь фигур на координатной сетке или плоскости можно решить несколькими способами:

1. Достроить фигуру до прямоугольника или квадрата.

2. Найти площадь прямоугольника.

3. Найти площади всех дополнительных фигур (чаще всего это прямоугольные треугольники или трапеции).

4. Из площади прямоугольника вычесть все площади дополнительных фигур.

Найдите площадь четырёхугольника, вершины которого имеют координаты $(0;5), (4;7), (7;0), (11;2)$.

1. Достроим параллелограмм до прямоугольника

2. Найдем длину и ширину прямоугольника:

Чтобы найти длину стороны, параллельную какой либо оси, надо из большей координаты отнять меньшую координату.

Длина стороны $EF= 11$, стороны $FK= 7$. Подставим в формулу площади данные и сделаем вычисления: $S_= 11·7=77$.

3. Найдем площади дополнительных (ненужных) фигур:

4. Из площади прямоугольника вычтем все площади дополнительных фигур и таким образом получим площадь искомого параллелограмма.

  • Второй способ

1. Если линии фигуры идут ровно по клеточкам и можно посчитать длины сторон, высот и т.д., то считаем клеточки и определяем величины.

2. Подставляем известные значения в формулу площади.

  • Третий способ.

Площадь искомой фигуры можно найти по формуле Пика:

$S=<Г>/<2>+В-1$, где $Г$ — количество узлов на границе фигуры (на сторонах и вершинах);

$В$ — количество узлов внутри фигуры.

Узел – это уголок клетки или пересечение линий

Найдите площадь четырёхугольника, изображённого на клетчатой бумаге с размером клетки $1 см × 1$ см. Ответ дайте в квадратных сантиметрах.

Отметим красными точками узлы на границе фигуры (Г), а желтыми – узлы внутри фигуры (В).

Подставим данные в формулу Пика: $S=<7>/<2>+6-1=3.5+6-1=8.5$

Площади некоторых фигур

Площадь треугольника:

  1. $S=/<2>$, где $h_a$ — высота, проведенная к стороне $а$
  2. Для прямоугольного треугольника $S=/<2>$, где $а$ и $b$ — катеты прямоугольного треугольника.
  3. Для равностороннего треугольника $S=√3>/<4>$, где $а$ — длина стороны.

Площади четырехугольников:

  1. Прямоугольник $S=a·b$, где $а$ и $b$ — смежные стороны.
  2. Ромб $S=/<2>$, где $d_1$ и $d_2$ — диагонали ромба
  3. Трапеция $S=<(a+b)·h>/<2>$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
  4. Квадрат $S=a^2$, где $а$ — сторона квадрата.
  5. Параллелограмм $S=a·h_a$, где $h_a$ — высота, проведенная к стороне $а$.

Площадь круга:

$S=π·R^2$, где $π=3.14, R$ — радиус окружности.

Площадь сектора:

$S=n°>/<360>=<πR^2 n°>/<360>$, где $n°$ — это градусная мера центрального угла, отсекающего заданный сектор.

Площадь кольца:

В прямоугольнике и квадрате центр описанной окружности лежит в точке пересечения диагоналей, а радиус описанной окружности равен половине диагонали.

В прямоугольном треугольнике центр описанной окружности лежит на середине гипотенузы и радиус равен половине гипотенузы.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.

В прямоугольном треугольнике $АВС$ для острого угла $В$:

Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения.

$cos BOA= — cos BOC$;

$ctg BOA= — ctg BOC$.

Углы в окружности.

1. Угол, образованный двумя радиусами, называется центральным. Центральный угол равен градусной мере дуги, на которую он опирается.

2. Угол, вершина которого лежит на окружности, а стороны являются хордами, называется вписанным. Вписанный угол равен половине градусной меры дуги, на которую он опирается

Найдите величину угла MPK. Ответ дайте в градусах.

Угол $МРК$ равен половине градусной меры дуги $МК$, так как он вписанный. Чтобы отыскать градусную меру дуги, посмотрим, на сколько таких дуг мы можем разделить всю окружность, потом $360°$ разделим на полученное количество.

Дуга $МК$ отсекается хордой, занимающей две клетки. Разделим такими хордами всю окружность, получилось $8$ дуг.

$360:8=45°$, составляет градусная мера дуги $МК$.

Прямые на координатной плоскости

Координаты середины отрезка равны среднему арифметическому координат его концов.

Найдите абсциссу середины отрезка, соединяющего точки $В(2;8)$ и $A(6;4)$.

Пусть точка $М$ – середина отрезка $ВА$. Чтобы найти абсциссу данной точки, надо найти среднее арифметическое абсцисс концов отрезка:

Уравнение прямой, проходящей через две заданные точки на плоскости имеет вид $y=kx+b$, где $k$ и $b$ – это коэффициенты.

Уравнение можно задать с помощью формулы:

Точки пересечения прямой с осями координат:

Если прямая пересекает ось Ох, то в уравнении прямой координата $у = 0$, а если прямая пересекает ось Оу, то уравнении прямой координата $х = 0$.

Две прямые на координатной плоскости будут параллельны, если в уравнениях прямых будут равны коэффициенты k.

Если уравнение первой прямой: $y=k_<1>x+b_1$;

Уравнение второй прямой: $y= k_<2>x+b_2$, то при параллельности прямых, $k_1=k_2$.

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними

Формула для нахождения площади четырехугольников через диагонали и угол между ними:

Через стороны и противолежащие углы

Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

Площадь вписанного четырехугольника в окружность

Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

Площадь описанного четырехугольника около окружности через радиус

Формула для нахождения площади описанного четырехугольника около окружности через радиус:

Как найти площадь четырехугольника заданного координатами

Найдите площадь прямоугольника, вершины которого имеют координаты (8; 0), (9; 2), (1; 6), (0; 4).

Площадь четырехугольника равна разности площади прямоугольника и четырех прямоугольных треугольников. Поэтому

Приведем другое решение.

Пусть А(8; 0), В(9; 2), С(1; 6), D(0; 4). Найдем стороны четырехугольника:

Тогда площадь прямоугольника

источники:

http://www.mozgan.ru/Geometry/ArearQuadrangle

http://ege.sdamgia.ru/test?theme=181

Понравилась статья? Поделить с друзьями:
  • Как найти сервер для контр страйк
  • Как найти арнгейра в скайриме
  • Как найти папку стим на виндовс 10
  • Как найти обратную матрицу методом гаусса онлайн
  • В зачетке одна тройка как ее исправить