Как найти плоские углы при вершине пирамиды

§ 14. Пирамида

14.1. Определение пирамиды и её элементов

Определение. Пирамидой называется многогранник, у которого одна грань — многоугольник, а остальные грани — треугольники с общей вершиной (рис. 95, 96).

Рис. 95

Рис. 96

Многоугольник называется основанием пирамиды, остальные грани — боковыми гранями пирамиды, их общая вершина — вершиной пирамиды. Отрезки, соединяющие вершину пирамиды с вершинами её основания, называются боковыми рёбрами пирамиды.

Пирамиду с основанием АВСDЕ и вершиной Р обозначают PABCDE.

Перпендикуляр, опущенный из вершины пирамиды на плоскость её основания, называется высотой пирамиды. Длину этого перпендикуляра также называют высотой пирамиды.

Пирамида называется n-угольной, если её основанием является n-угольник.

На рисунке 96 изображена четырёхугольная пирамида PABCD, у которой: четырёхугольник ABCD — основание пирамиды; точка Р — вершина пирамиды; отрезки РA, РВ, PC, PD — боковые рёбра пирамиды; отрезки АВ, ВС, CD, DA — стороны (рёбра) основания пирамиды; отрезок РО — высота пирамиды; треугольники РАВ, РВС, PCD, PDA — боковые грани пирамиды.

Рис. 97

У n-угольной пирамиды имеется (n + 1) вершин, 2n рёбер и (n + 1) граней. Диагоналей пирамида не имеет. В пирамиде различают плоские углы при её вершине и двугранные углы при её рёбрах. Двугранным углом при ребре пирамиды называют содержащий пирамиду двугранный угол, образованный плоскостями граней, проходящими через данное ребро.

Треугольную пирамиду (рис. 97) называют также тетраэдром («тетраэдр» по-гречески означает «четырёхгранник»). Тетраэдр — это многогранник с наименьшим числом граней. Любая грань тетраэдра может быть принята за его основание; это отличает тетраэдр от всех остальных пирамид.

Любую пирамиду можно разбить на некоторое число тетраэдров, а любой выпуклый многогранник — на некоторое число пирамид. Для этого достаточно, например, взять любую точку внутри данного многогранника и соединить её отрезками со всеми его вершинами. Такое разбиение часто используется при нахождении объёмов многогранников.

14.2. Некоторые виды пирамид

Если все боковые рёбра пирамиды составляют с плоскостью основания равные углы, то: а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды; б) все боковые рёбра пирамиды равны между собой.

Рис. 98

Доказательство. а) Пусть отрезок РО — высота пирамиды PABCDEF, все рёбра которой составляют с плоскостью основания угол ϕ (рис. 98). Тогда прямоугольные треугольники РОА, POB, POC, POD, РОЕ и POF, имея общий катет РО, равны между собой (по катету и острому углу ϕ). Из равенства этих треугольников следует: ОА =  = ОС = OD  = OE = OF, т. е. вершины основания пирамиды равноудалены от основания О её высоты РО. Это означает, что точка О — центр окружности, описанной около основания ABCDEF данной пирамиды.

б) Из ОА =  = ОС = OD = ОЕ = OF следует, что боковые рёбра РА, РВ, PC, PD, РЕ, PF пирамиды равны, как наклонные, имеющие равные проекции, т. е. РА = РВ = PC = PD  = РЕ = PF. Что и требовалось доказать.

Вы самостоятельно можете доказать обратные утверждения.

1. Если основание высоты пирамиды совпадает с центром окружности, описанной около её основания, то: а) все боковые рёбра пирамиды образуют с плоскостью основания равные углы; б) все боковые рёбра пирамиды равны между собой.

2. Если все боковые рёбра пирамиды равны, то: а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды; б) все боковые рёбра пирамиды составляют с плоскостью её основания равные между собой углы.

Также имеет место следующее утверждение.

Если высота пирамиды пересекает её основание и все боковые грани пирамиды образуют с плоскостью основания равные двугранные углы, то основание высоты пирамиды совпадает с центром окружности, вписанной в её основание.

Доказательство. Пусть РО — высота пирамиды PABCDE, боковые грани которой образуют с плоскостью основания пирамиды двугранные углы, равные ϕ (рис. 99).

Рис. 99

Проведём высоты РН1, РH2, РН3, PH4, РH5 боковых граней.

Тогда по теореме о трёх перпендикулярах получаем OH1  AB, OH2  BC, OH3  CD, OH4  DE, OH5  EA, следовательно, OH1P  = ∠ OH2P = ∠ OH3P = ∠ OH4P  = ∠ OH5P = ϕ. Поэтому  OH1P  =  OH2P =  OH3P =  OH4P  =  OH5P (как прямоугольные с общим катетом OP и острым углом ϕ). Из равенства этих треугольников следует ОН1  = OH2 = OH3 = ОН4 = ОН5, т. е. точка О — основание высоты РО пирамиды — равноудалена от всех сторон многоугольника ABCDE. Это означает, что точка O является центром окружности, вписанной в основание ABCDE данной пирамиды. Теорема доказана.

Самостоятельно докажите обратное утверждение.

Если вершина пирамиды проектируется в центр окружности, вписанной в основание пирамиды, то боковые грани пирамиды образуют с плоскостью основания равные двугранные углы.

Перечислим ещё несколько часто встречающихся в задачах видов пирамид.

Рис. 100

Рис. 101

Рис. 102

 Пирамида, ровно одна боковая грань которой перпендикулярна плоскости основания. Высота такой пирамиды лежит в этой, перпендикулярной основанию, грани (рис. 100).

 Пирамида, две соседние боковые грани которой перпендикулярны плоскости основания. Высотой такой пирамиды служит боковое ребро, общее для этих граней (рис. 101).

 Пирамида, две не соседние боковые грани которой перпендикулярны плоскости основания. Высота такой пирамиды лежит на прямой пересечения плоскостей этих граней (рис. 102).

14.3. Правильная пирамида

Определение. Пирамида называется правильной, если её основание — правильный многоугольник и вершина пирамиды проектируется в центр этого основания.

Рис. 103

Из определения следует алгоритм построения изображения правильных пирамид, что, в свою очередь, доказывает существование таких пирамид.

Для построения изображения правильной пирамиды достаточно построить изображение соответствующего правильного многоугольника (основания пирамиды) и его центра. Затем из построенного центра провести перпендикуляр к плоскости многоугольника и выбрать на этом перпендикуляре (в качестве вершины пирамиды) любую точку, отличную от центра многоугольника. Соединив отрезками прямых эту точку со всеми вершинами многоугольника, получим изображение правильной пирамиды.

На рисунке 103, а, б, в построены изображения правильных пирамид: а) треугольной; б) четырёхугольной; в) шестиугольной.

Правильные пирамиды обладают замечательным свойством.

В правильной пирамиде все боковые рёбра равны, а все боковые грани — равные равнобедренные треугольники.

Рис. 104

Доказательство. Рассмотрим правильную n-угольную пирамиду РА1А2An. Пусть точка O — центр n-угольника A1A2A3An; отрезок РО — перпендикуляр к плоскости основания пирамиды (рис. 104).

Так как центр правильного многоугольника является центром окружности, описанной около этого многоугольника, то ОА1 = OA2 = OA3 = … = OAn (как радиусы описанной окружности). Тогда равны боковые рёбра пирамиды, как наклонные к плоскости её основания, имеющие равные проекции, т. е. PA1 = PA2 = PA3 = … = PAn.

Таким образом, имеем:

РА1 = РA2 = … = PAn (как боковые рёбра);

A1A2 = A2A3 = … = AnA1 (как стороны правильного n-угольника).

Следовательно, треугольники PA1A2, РA2A3, …, PAnA1 являются равнобедренными и по третьему признаку равенства треугольников равны между собой.

Это свойство правильной пирамиды можно доказать при помощи поворота пирамиды вокруг оси, содержащей её высоту.

Так как точка О — центр правильного n-угольника A1A2A3An, лежащего в основании правильной пирамиды PA1A2An, РО — перпендикуляр к плоскости её основания, то при вращении данной пирамиды вокруг оси ОР на угол, равный (где k = 1, 2, 3, …, n), происходит самосовмещение этой пирамиды: вершины основания пирамиды отображаются на его же вершины (основание совмещается с самим собой); вершина Р (как точка оси вращения) отображается на себя. Следовательно, боковые рёбра пирамиды отображаются на боковые рёбра, а боковые грани пирамиды — на её боковые грани. А так как вращение вокруг прямой — движение, то все боковые рёбра правильной пирамиды равны между собой, а грани являются равными равнобедренными (почему?) треугольниками. Утверждение доказано.

Следствием доказанного выше является утверждение.

Все боковые рёбра правильной пирамиды образуют с плоскостью основания равные углы, а все боковые грани — равные двугранные углы.

Докажите это предложение самостоятельно.

Высота боковой грани правильной пирамиды, проведённая к ребру её основания, называется апофемой пирамиды. На рисунке 104 отрезок РН — одна из апофем пирамиды.

Все апофемы правильной пирамиды равны вследствие равенства всех её боковых граней.

Имеют место признаки правильной пирамиды:

Пирамида, в основании которой лежит правильный многоугольник, является правильной, если: а) все её боковые рёбра равны; б) все её боковые рёбра образуют с плоскостью основания равные углы; в) все её боковые грани — равные равнобедренные треугольники.

Докажите это самостоятельно.

ЗАДАЧА (2.245). Высота правильной четырёхугольной пирамиды равна h и образует с боковой гранью угол α. Через сторону основания пирамиды проведена плоскость, перпендикулярная противоположной грани и пересекающая её. Найти площадь сечения.

Дано: PABCD — правильная пирамида (рис. 105); РО — высота пирамиды, РО = h; ∠ OPF = α.

Найти: SADKM.

Решение. Первый способ. Пусть отрезок EF — средняя линия основания пирамиды. Тогда AD  EF, AD  PF ⇒ АD  (РEF) (PEF)  (ADP) (по признаку перпендикулярности двух плоскостей). Поэтому прямая PF является ортогональной проекцией прямой РO на плоскость ADP. Значит, ∠ OPF — угол между высотой PO и боковой гранью ADP пирамиды: ∠ OPF = α.

Рис. 105

Далее имеем: AD  (PEF), ВС || AD ВC  (PEF) прямая ВС перпендикулярна любой прямой плоскости PEF. Поэтому если FL  РЕ (в плоскости PEF), то BС  FL. Тогда FL  ВС, FL  PE FL  (BCP) (ADL)   (ВCР) (по признаку перпендикулярности двух плоскостей); при этом (ADL)  (ВСР) = МK, МK || AD, так как плоскости ВСР и АDL проходят через параллельные прямые ВС и AD. Значит, сечение ADKM — трапеция, у которой FL — высота (почему?), откуда

Sсеч = FL.

Найдём AD, МK и FL.

В  OPF (∠ POF = 90°):

OF = OPtg α = htg α; PF =  =  = PE.

Поэтому

EF = 2FO = 2htg α = ВС.

В плоскости PEF получаем:

FL  РЕ, РО  EF ⇒ ∠ EFL = ∠ OPE = α.

Тогда в  ЕFL: FL = ЕFcos α = 2htg αcos α = 2hsin α;

в  PLF (∠ PLF = 90°, ∠ PFL = 90° – 2α):

PL = PFsin (90° – 2α) = PFcos 2α = .

Так как MK | | BC, то  МKР  ВСР, откуда

 = MK =  = =

= 2htg αcos 2α.

Таким образом,

AD = EF = 2htg α, FL = 2hsin α, MK = 2htg αcos 2α.

Тогда

Sсеч = FL = 2hsin α =

=  = 4h2sin2 αcos α.

Замечание. Отрезок MK можно найти следующим образом. Сечением данной пирамиды плоскостью, проходящей через прямую MK параллельно основанию пирамиды, является квадрат MKD1A1 (см. рис. 105). F1 = A1D1 PF. У этого квадрата LF1 = MK. Найдём F1L.

В треугольнике LFF1 имеем ∠ FLF1 = α (LF|| EF),

∠ F1FL = ∠ OFP∠ OFL = (90°α) – α = 90° – 2α;

∠ FF1L = 180°∠ OFF1 = 90° + α. Тогда по теореме синусов

Рис. 106

Значит, MK = LF1 = 2htg αcos 2α.

Второй способ Пусть точки M1, K1, L1 — ортогональные проекции на плоскость основания соответственно точек М, K, L (рис. 105, 106). Так как плоскости АСР, BDP и EFP перпендикулярны плоскости основания пирамиды, то ортогональными проекциями прямых PC, РВ и РЕ на эту плоскость являются соответственно прямые АС, BD и EF. Следовательно, M1  BD, K1  AC, L1  EF, причём четырёхугольник ADK1M1 — равнобедренная трапеция.

Таким образом, трапеция ADK1M1 — ортогональная проекция сечения ADKM. Это означает, что SADKM = . Найдём . Так как диагонали квадрата взаимно перпендикулярны и M1K1 || AD, то OL1 = L1K1, OF = FD. Значит,

 = L1F = FL1 = .

Тогда

SADKM =  =  = 4h2sin2 αcos α.

Ответ: 4h2sin2 αcos α.

14.4.Площади боковой и полной поверхностей пирамиды

Поверхность пирамиды состоит из основания и боковых граней. В этой связи различают боковую и полную поверхности пирамиды, а также их площади.

Площадью боковой поверхности пирамиды (обозначают Sбок) называется сумма площадей всех её боковых граней: Sбок = S1 + S2 + … + Sn, где S1, S2, …, Sn — площади боковых граней пирамиды.

Площадью полной поверхности пирамиды (обозначают Sполн) называется сумма площадей всех её граней, т. е. сумма площади основания пирамиды и площади её боковой поверхности.

Из определения следует: Sполн = Sбок + Sосн.

О площади боковой поверхности правильной пирамиды имеет место следующая теорема.

Теорема 18. Площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему пирамиды.

Рис. 107

Доказательство. PA1A2An — правильная пирамида, a — длина её апофемы (рис. 107).

Боковые грани правильной пирамиды — равные равнобедренные треугольники, у которых основаниями являются стороны правильного n-угольника A1A2An, а высоты равны апофеме пирамиды, т. е.

РE1 = РE2 = PE3 = … = PEn = a.

Тогда

Sбок = SPA1A2 + SPA2A3 + … +  SPAnA1 =

A1A2PE1 + A2A3PE2 + … + AA1PEn =

a(A1A2 + A2A3 + … + AnA1) = Pa,

где Р — периметр основания пирамиды. Теорема доказана.

Теорема 19. Если все боковые грани пирамиды наклонены к плоскости основания под углом ϕ и высота пересекает основание, то Sбок = .

Рис. 108

Доказательство. Пусть отрезок PO — высота пирамиды РA1A2A3An, все боковые грани которой образуют с плоскостью основания углы, равные ϕ (рис. 108); отрезки PH1, PH2, …, PHn — высоты боковых граней. Тогда (по теореме о трёх перпендикулярах) OH1  A1A2, OH2  A2A3, …, OHn  AnA1. Значит,

∠ OH1P = ∠ OH2P = ∠ OH3P = …

… = ∠ OHnP = ϕ.

Так как точка О является центром круга, вписанного в основание пирамиды (почему?), то эта точка лежит внутри n-угольника A1A2A3An. Поэтому n-угольник A1A2An является объединением непересекающихся треугольников A1OA2, A2OA3, …, AnOA1. Эти треугольники являются ортогональными проекциями на плоскость основания пирамиды её соответствующих боковых граней. По теореме о площади ортогональной проекции многоугольника имеем:

S△ A1OA2 = S△ A1PA2cos ϕ,

S△ A2OA3 = S△ A2PA3cos ϕ,

…………………………….

S△ AnOA1 = S△ AnPA1cos ϕ.

Сложив почленно эти равенства, получим Sосн = Sбокcos ϕ, откуда Sбок = . Теорема доказана.

Так как все боковые грани правильной пирамиды образуют с плоскостью основания равные двугранные углы (пусть величина этих углов равна ϕ, см. рис. 107), то для площади боковой поверхности и площади основания правильной пирамиды также справедлива формула

Sбок = .

14.5. Свойства параллельных сечений пирамиды

Если плоскость α параллельна основанию пирамиды и пересекает её, то в сечении пирамиды получается некоторый многоугольник (рис. 109).

Теорема 20. Если пирамида пересечена плоскостью, параллельной основанию, то: 1) боковые рёбра и высота делятся этой плоскостью на пропорциональные части; 2) в сечении получается многоугольник, подобный основанию; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Доказательство. 1) Пусть сечением пирамиды PABCD плоскостью α, параллельной плоскости β её основания, является четырёхугольник A1B1C1D1 (см. рис. 109).

Рис. 109

Проведём высоту РО данной пирамиды и обозначим O1 = РО α.

Рассмотрим гомотетию с центром Р, при которой плоскость основания данной пирамиды отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).

Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия отображает основание ABCD пирамиды на её параллельное сечение — многоугольник А1В1С1D1, при этом вершины А, В, С, D основания пирамиды — на вершины соответственно A1, B1, C1, D1, а точку O — на точку O1 (почему?).

Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:

 =  =  =  =  = k, (*)

где k — коэффициент гомотетии . Это означает, что параллельное сечение пирамиды делит её рёбра и высоту на пропорциональные части. А поскольку гомотетия является подобием, то многоугольник A1B1C1D1, являющийся параллельным сечением пирамиды, подобен её основанию ABCD.

Вследствие того, что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии, а k = РO1 : РО, где РO1 и РО — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то

SA1B1C1D1 : SABCD = k2 = : PO2.

Теорема доказана.

Следствие. Плоскость, параллельная основанию пирамиды и пересекающая её, отсекает пирамиду, подобную данной.

14.6. Усечённая пирамида

Плоскость α, параллельная основанию пирамиды PABCD и пересекающая её, делит эту пирамиду на два многогранника: пирамиду РA1B1C1D1 и многогранник ABCDA1B1C1D1 (см. рис. 109).

Рис. 110

Многогранник ABCDA1B1C1D1 (рис. 110) называют усечённой пирамидой. Грани ABCD и A1B1C1D1, лежащие в параллельных плоскостях, называются соответственно нижним и верхним основаниями усечённой пирамиды, остальные грани — её боковыми гранями. Так как нижнее и верхнее основания усечённой пирамиды гомотетичны (т. 20), то все её боковые грани — трапеции.

Таким образом, усечённой пирамидой называется часть полной пирамиды, заключённая между её основанием и параллельным ему сечением.

У n-угольной усечённой пирамиды 2n вершин, 3n рёбер, (+ 2) грани и n(n – 3) диагоналей.

Высотой усечённой пирамиды называется перпендикуляр, проведённый из какой-нибудь точки одного основания к плоскости другого. Длину этого перпендикуляра также называют высотой усечённой пирамиды. На рисунке 110 отрезки О1О, B1K — высоты усечённой пирамиды.

Рис. 111

Усечённая пирамида называется правильной, если она получена из правильной пирамиды (рис. 111).

Из теоремы 20 следует, что основания правильной усечённой пирамиды — подобные правильные многоугольники, а боковые грани — равные равнобедренные трапеции.

Высоты этих трапеций, соединяющие середины их оснований, называются апофемами усечённой пирамиды. Все её апофемы равны между собой.

Отрезок OO1, соединяющий центры оснований правильной усечённой пирамиды, является её высотой.

Площадью боковой поверхности усечённой пирамиды называется сумма площадей всех её боковых граней.

Для правильной усечённой пирамиды имеет место

Теорема 21. Площадь боковой поверхности правильной усечённой пирамиды равна произведению полусуммы периметров её оснований на апофему.

Для доказательства теоремы достаточно площадь одной из боковых граней пирамиды умножить на их число. В результате получим формулу Sбок = h, где Р1, P2 — периметры нижнего и верхнего оснований усечённой пирамиды, h — её апофема.

Проведите доказательство теоремы самостоятельно.

Полная поверхность усечённой пирамиды — это объединение её оснований и боковой поверхности, поэтому для усечённой пирамиды

Sполн = Sбок + S1 + S2,

где S1 и S2 — площади большего и меньшего оснований этой пирамиды.

Для усечённой пирамиды, у которой все двугранные углы при рёбрах большего основания равны ϕ, справедливо: Sбок = . (Для вывода этой формулы достаточно учесть следующий факт: если R и r — радиусы окружностей, вписанных соответственно в большее и меньшее основания данной пирамиды, то S1 = 0,5P1R, S2 = 0,5P2r, cos ϕ = , где h — высота боковой грани этой пирамиды.)

14.7. Объём пирамиды

Лемма. Две треугольные пирамиды с равновеликими основаниями и равными высотами равновелики.

Доказательство. Пусть пирамиды РАВС и P1A1B1C1 имеют высоты, равные H, и равновеликие основания с площадью S; их объёмы — соответственно V1 и V2. Докажем, что V1 = V2.

Расположим пирамиды РАВС и P1A1B1C1 так, чтобы их основания лежали в одной плоскости, а сами пирамиды были расположены по одну сторону от этой плоскости (рис. 112). Тогда любая плоскость, параллельная плоскости оснований и пересекающая первую пирамиду, пересекает и вторую, причём по теореме о параллельных сечениях пирамиды площади этих сечений равны. Следовательно, на основании принципа Кавальери равны и объёмы этих пирамид. Лемма доказана.

Рис. 112

Теорема 22. Объём любой треугольной пирамиды равен одной трети произведения площади основания на высоту.

Рис. 113

Доказательство. Пусть А1AВC — данная треугольная пирамида с вершиной A1 и основанием ABC (рис. 113). Дополним эту пирамиду до треугольной призмы ABCA1B1C1 с тем же основанием, одним из боковых рёбер которой является боковое ребро АA1 данной пирамиды. Это означает, что высота призмы равна высоте данной пирамиды.

Призма АВCA1B1C1 является объединением трёх треугольных пирамид с общей вершиной A1: A1ABC, A1BB1C1 и A1BCC1. Основания BB1C1 и BCC1 пирамид A1BB1C1 и A1BCC1 равны, а высота у них общая. Значит, по лемме эти пирамиды имеют равные объёмы.

Будем считать точку В вершиной пирамиды A1BB1C1,A1B1C1 — её основанием. Тогда эта пирамида равновелика пирамиде А1AВС, так как у них общая высота, а основания АВС и A1B1C1 равновелики (как основания призмы). Таким образом, призма ABCA1B1C1 является объединением трёх равновеликих пирамид, одной из которых является данная пирамида A1ABC. Это означает, что объём V пирамиды A1АВС составляет одну треть объёма призмы ABCA1B1C1, т. е. V =  SocнН, где Н — длина высоты призмы. Но построенная призма и данная пирамида имеют общую высоту, длина которой равна Н, следовательно, объём треугольной пирамиды вычисляется по формуле

= SоснH,

где Н — длина высоты данной пирамиды. Теорема доказана. 

Рис. 114

На рисунке 114 изображены треугольная призма ABCDEF и составляющие её три равновеликие треугольные пирамиды ABDF, ABCF и BDEF.

Рис. 115

Для вычисления объёма n-угольной пирамиды PA1A2An (рис. 115) разобьём её основание A1A2An диагоналями A1A3, A1A4, …, A1An1 на треугольники с общей вершиной A1. Тогда данная пирамида разбивается в объединение пирамид PA1A2A3, PA1A3A4, …, PA1An1An с общей вершиной Р и общей высотой, которая равна высоте данной пирамиды. Основаниями этих пирамид являются треугольники разбиения основания данной пирамиды. Это означает (свойство 2 объёмов), что объём V пирамиды PA1A2An равен сумме объёмов V1, V2, …, Vn2 треугольных пирамид соответственно PA1A2A3, PA1A3A4, …, PA1An1An.

Пусть длина высоты пирамиды равна Н, площадь её основания — S, а площади треугольников разбиения этого основания равны S1, S2, …, Sn  2. Это означает, что S1 + S2 + … + Sn  2 = S. Тогда получаем:

V = V1 + V2 + … + Vn  2 = H(S1 + S2 + … + Sn  2) = SH.

Таким образом, объём любой пирамиды вычисляется по формуле

V = SоснH,

где Sосн — площадь основания, Н — длина высоты пирамиды.

Итак, доказана теорема.

Теорема 23. Объём любой пирамиды равен одной трети произведения площади основания на высоту.

14.8. Об объёме тетраэдра

У тетраэдра за основание можно принять любую его грань, на каждую из которых можно провести высоту тетраэдра из вершины, противоположной этой грани. Поэтому для объёма V одного и того же тетраэдра имеют место соотношения

V = S1h1 = S2h2 = S3h3 = S4h4,

где Sk и hk (k = 1, 2, 3, 4) — площадь грани и длина опущенной на неё высоты. Эти соотношения часто используют при решении задач.

Заметим, что не в любом тетраэдре все четыре высоты пересекаются в одной точке (для сравнения — все три высоты любого треугольника пересекаются в одной точке). Тетраэдр, все высоты которого пересекаются в одной точке, называется ортоцентрическим.

Интересен также тетраэдр (рис. 116, а), все грани которого равны. Такой тетраэдр называется равногранным. Его развёрткой является остроугольный треугольник (рис. 116, б).

Докажите самостоятельно, что в равногранном тетраэдре:

скрещивающиеся рёбра попарно равны;

все высоты равны;

сумма плоских углов трёхгранного угла при каждой вершине тетраэдра равна 180°;

двугранные углы при скрещивающихся рёбрах тетраэдра равны.

Рис. 116

Рис. 117

Не менее интересен следующий факт. Пусть дан тетраэдр A1C1BD. Проведём через каждое его ребро плоскость, параллельную скрещивающемуся с ним ребру. Проведённые шесть плоскостей при пересечении образуют некоторый параллелепипед АВСDA1В1C1D1 (рис. 117), параллельные грани ABCD и A1B1C1D1 которого содержат скрещивающиеся рёбра А1C1 и BD данного тетраэдра. Тогда расстояние между основаниями АВСD и А1В1С1D1 полученного параллелепипеда равно длине его высоты и равно расстоянию между скрещивающимися рёбрами А1C1 и BD данного тетраэдра.

Этот параллелепипед можно разбить на пять тетраэдров — данный тетраэдр A1С1ВD и ещё четыре тетраэдра: A1ABD; ВВ1A1C1; C1CBD; DD1A1C1. Объём каждого из четырёх последних тетраэдров равен одной трети высоты h параллелепипеда, умноженной на половину площади его основания ABCD, т. е. шестой части объёма V полученного параллелепипеда.

Таким образом,

где ϕ — угол между диагоналями АС и BD параллелограмма ABCD. А так как AC || A1C1, то величина угла между скрещивающимися диагоналями A1С1 и BD тетраэдра А1С1BD также равна ϕ.

Мы получили: объём тетраэдра равен одной шестой произведения длин любых двух его скрещивающихся рёбер, расстояния между ними и синуса угла между скрещивающимися прямыми, содержащими эти рёбра.

Отметим ещё несколько очевидных и менее очевидных свойств тетраэдров, связанных с их объёмами.

1. Объёмы тетраэдров с равными основаниями относятся как их высоты, опущенные на эти основания.

Рис. 118

2. Объёмы тетраэдров с равными высотами относятся как площади их оснований.

3. Объёмы тетраэдров, имеющих равные трёхгранные углы, относятся, как произведения длин рёбер, образующих эти углы.

Используя рисунок 118, вы сможете легко доказать третье утверждение.

14.9. Объём усечённой пирамиды

Теорема 24. Объём усечённой пирамиды, у которой площади оснований равны S1 и S2, а высота — Н, вычисляется по формуле

V = H(S1 +  + S2).

Рис. 119

Доказательство. Пусть дана усечённая пирамида (рис. 119), у которой S1 > S2, а высота OO1 = H. Дополним эту пирамиду до полной пирамиды с вершиной Р. Объём V данной усечённой пирамиды равен разности объёмов полной и дополнительной пирамид.

Если длина высоты PO1 дополнительной пирамиды равна x, то высота PO полной пирамиды равна H + x.

Выразим х через S1, S2 и Н. По теореме 20 (o площадях параллельных сечений пирамиды) имеем

S1 : S2 = (H + x)2 : x2 :  = (H + x) : x

= .

Поэтому для объёма V усечённой пирамиды находим

что и требовалось доказать.

Пускай $%a$% — боковое ребро, $%2ϕ$% — плоский угол при вершине. Тогда $%2asinϕ$% — сторона основания, $%asqrt3sinϕ$% — высота основания, $%acosϕ$% — высота боковой грани.

Проведём сечение, проходящее через выбранную вершину и перпендикулярное данному сечению. У нас получится треугольник со сторонами $%a$%, $%asqrt3sinϕ$% и $%acosϕ$%. Угол, противоположный стороне $%a$%, равен $%pi/2-α$%. запишем теорему косинусов для этого угла:
$$sinα=frac{(asqrt3sinϕ)^2+(acosϕ)^2-a^2}{2asqrt3sinϕcdot acosϕ}=frac{3sin^2ϕ+cos^2ϕ-1}{2sqrt3sinϕcdotcosϕ}=frac{2sin^2ϕ}{2sqrt3sinϕcdotcosϕ}=frac{tanϕ}{sqrt3}.$$
Отсюда находим $%ϕ$%.

Геометрия 10-11 класс

50 баллов

Найдите плоский угол при вершине правильной треугольной пирамиды, если этот угол равен углу между боковым ребром и плоскостью основания пирамиды.

В учебнике дан следующий план решения:

Обозначим: AB=BC=AC=a, SA=SB=SC=l. Проведем: SO ⟂ABC и SM⟂AC. Из треугольника SAM выразите AM через SA: …………….(1). Из треугольника ABC выразите сначала AO через a: …………………. .
Используя полученное выражение, из треугольника AOS выразите AO через SA: …………….(2). Поделите почленно равенство (1) на равенство (2): …………………. Решите полученное тригонометрическое уравнение: ………………………………………

Пробовал сам решить, получается (1) — AM=SA*sin(b/2)
AO через a — AO=(корень_из_3/3)*a
(2) — AO=SA*cos(b)

Но вот если 2 на 1 поделить вообще ничего не выходит.

Ирина Каминкова

29.09.2020 23:30:24

Ответ эксперта

Ирина Каминкова

29.09.2020 23:30:48

Ответ эксперта

Все предметы

Рейтинг пользователей

    Пирамида. Формулы и свойства пирамиды

    Определение.

    Пирамида — это многогранная объемная фигура, ограниченная плоским многоугольником (основой) и треугольниками, имеющих общую вершину, не лежащую в плоскости основания.

    Изображение пирамиды с обозначениями
    Рис.1

    Определение. Боковая грань — это треугольник, у которого один угол лежит в вершине пирамиды, а противоположная ему сторона совпадает со стороной основания (многоугольника).

    Определение. Боковые ребра — это общие стороны боковых граней. У пирамиды столько ребер сколько углов у многоугольника.

    Определение. Высота пирамиды — это перпендикуляр, опущенный из вершины на основание пирамиды.

    Определение. Апофема — это перпендикуляр боковой грани пирамиды, опущенный из вершины пирамиды к стороне основания.

    Определение. Диагональное сечение — это сечение пирамиды плоскостью, проходящей через вершину пирамиды и диагональ основания.

    Определение. Правильная пирамида — это пирамида, в которой основой является правильный многоугольник, а высота опускается в центр основания.

    Объём и площадь поверхности пирамиды

    Формула. Объём пирамиды через площадь основы и высоту:

    Определение. Боковая поверхность пирамиды — это совокупная площадь всех боковых граней пирамиды.

    Определение. Полная поверхность пирамиды — это совокупность площадей боковой поверхности и площади основания пирамиды.

    Формула. Площадь боковой поверхности правильной пирамиды через периметр основания и апофему:

    Свойства пирамиды

    Если все боковые ребра равны, то вокруг основания пирамиды можно описать окружность, а центр основания совпадает с центром окружности. Также перпендикуляр, опущенный из вершины, проходит через центр основания (круга).

    Если все боковые ребра равны, то они наклонены к плоскости основания под одинаковыми углами.

    Боковые ребра равны тогда, когда они образуют с плоскостью основания равные углы или если вокруг основания пирамиды можно описать окружность.

    Если боковые грани наклонены к плоскости основания под одним углом, то в основание пирамиды можно вписать окружность, а вершина пирамиды проектируется в ее центр.

    Если боковые грани наклонены к плоскости основания под одним углом, то апофемы боковых граней равны.

    Свойства правильной пирамиды

    1. Вершина пирамиды равноудалена от всех углов основания.

    2. Все боковые ребра равны.

    3. Все боковые ребра наклонены под одинаковыми углами к основанию.

    4. Апофемы всех боковых граней равны.

    5. Площади всех боковых граней равны.

    6. Все грани имеют одинаковые двугранные (плоские) углы.

    7. Вокруг пирамиды можно описать сферу. Центром описанной сферы будет точка пересечения перпендикуляров, которые проходят через середину ребер.

    8. В пирамиду можно вписать сферу. Центром вписанной сферы будет точка пересечения биссектрис, исходящие из угла между ребром и основанием.

    9. Если центр вписанной сферы совпадает с центром описанной сферы, то сумма плоских углов при вершине равна π или наоборот, один угол равен π/n, где n — это количество углов в основании пирамиды.

    Связь пирамиды со сферой

    Пример вписанной пирамиды в сферу

    Вокруг пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многогранник вокруг которого можно описать окружность (необходимое и достаточное условие). Центром сферы будет точка пересечения плоскостей, проходящих перпендикулярно через середины боковых ребер пирамиды.

    Вокруг любой треугольной или правильной пирамиды всегда можно описать сферу.

    Пример описаной пирамиды вокруг сфери

    В пирамиду можно вписать сферу, если биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

    Связь пирамиды с конусом

    Конус называется вписанным в пирамиду, если их вершины совпадают, а основание конуса вписано в основание пирамиды.

    Конус можно вписать в пирамиду, если апофемы пирамиды равны между собой.

    Конус называется описанным вокруг пирамиды, если их вершины совпадают, а основание конуса описана вокруг основания пирамиды.

    Конус можно описать вокруг пирамиды если, все боковые ребра пирамиды равны между собой.

    Связь пирамиды с цилиндром

    Пирамида называется вписанной в цилиндр, если вершина пирамиды лежит на одной основе цилиндра, а основание пирамиды вписано в другую основу цилиндра.

    Цилиндр можно описать вокруг пирамиды если вокруг основания пирамиды можно описать окружность.

    Приклад зрізаної пирамиды

    Определение. Усеченная пирамида (пирамидальная призма) — это многогранник, который находится между основанием пирамиды и плоскостью сечения, параллельной основанию. Таким образом пирамида имеет большую основу и меньшую основу, которая подобна большей. Боковые грани представляют собой трапеции.

    Пример треугольной пирамиди

    Определение. Треугольная пирамида (четырехгранник) — это пирамида в которой три грани и основание являются произвольными треугольниками.

    В четырехгранник четыре грани и четыре вершины и шесть ребер, где любые два ребра не имеют общих вершин но не соприкасаются.

    Каждая вершина состоит из трех граней и ребер, которые образуют трехгранный угол.

    Отрезок, соединяющий вершину четырехгранника с центром противоположной грани называется медианой четырехгранника (GM).

    Бимедианой называется отрезок, соединяющий середины противоположных ребер, которые не соприкасаются (KL).

    Все бимедианы и медианы четырехгранника пересекаются в одной точке (S). При этом бимедианы делятся пополам, а медианы в отношении 3:1 начиная с вершины.

    Пример наклонной пирамиди

    Определение. Наклонная пирамида — это пирамида в которой одно из ребер образует тупой угол (β) с основанием.

    Пример прямоугольной пирамиды

    Определение. Прямоугольная пирамида — это пирамида в которой одна из боковых граней перпендикулярна к основанию.

    Определение. Остроугольная пирамида — это пирамида в которой апофема больше половины длины стороны основания.

    Определение. Тупоугольная пирамида — это пирамида в которой апофема меньше половины длины стороны основания.

    Определение. Правильный тетраэдр — четырехгранник у которого все четыре грани — равносторонние треугольники. Он является одним из пяти правильных многоугольников. В правильного тетраэдра все двугранные углы (между гранями) и трехгранные углы (при вершине) равны.

    Определение. Прямоугольный тетраэдр называется четырехгранник у которого прямой угол между тремя ребрами при вершине (ребра перпендикулярны). Три грани образуют прямоугольный трехгранный угол и грани являются прямоугольными треугольниками, а основа произвольным треугольником. Апофема любой грани равна половине стороны основы, на которую падает апофема.

    Определение. Равногранный тетраэдр называется четырехгранник у которого боковые грани равны между собой, а основание — правильный треугольник. У такого тетраэдра грани это равнобедренные треугольники.

    Определение. Ортоцентричный тетраэдр называется четырехгранник у которого все высоты (перпендикуляры), что опущены с вершины до противоположной грани, пересекаются в одной точке.

    Определение. Звездная пирамида называется многогранник у которого основой является звезда.

    Пример бипирамиды

    Определение. Бипирамида — многогранник, состоящий из двух различных пирамид (также могут быть срезаны пирамиды), имеющих общую основу, а вершины лежат по разные стороны от плоскости основания.

    Через середину бокового ребра правильной треугольной пирамиды проведена плоскость α, перпендикулярная этому ребру. Известно, что она пересекает остальные боковые рёбра и разбивает пирамиду на два многогранника, объёмы которых относятся как 1 к 3.

    а)  Докажите, что плоский угол при вершине пирамиды равен 45°.

    б)  Найдите площадь сечения пирамиды плоскостью α, если боковое ребро пирамиды равно 2.

    Решение.

    а)  Пусть P  — вершина, ABC  — основание пирамиды, M  — середина ребра PA  =  2a. Пусть секущая плоскость пересекает рёбра BP и CP в точках E и F соответственно. Прямоугольные треугольники MPE и MPF равны по катету и острому углу; обозначим их равные гипотенузы PE  =  PF  =  x. Объём тетраэдра PMEF составляет

     дробь: числитель: PM, знаменатель: PA конец дроби умножить на дробь: числитель: PE, знаменатель: PB конец дроби умножить на дробь: числитель: PF, знаменатель: PC конец дроби = дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: x, знаменатель: 2a конец дроби умножить на дробь: числитель: x, знаменатель: 2a конец дроби = дробь: числитель: x в квадрате , знаменатель: 8a в квадрате конец дроби

    объёма пирамиды, что по условию равно  дробь: числитель: 1, знаменатель: 4 конец дроби объёма пирамиды. Отсюда x=a корень из 2 , и косинус плоского угла MPE при вершине равен  дробь: числитель: MP, знаменатель: PE конец дроби = дробь: числитель: a, знаменатель: a корень из 2 конец дроби = дробь: числитель: 1, знаменатель: корень из 2 конец дроби , поэтому angleMPE=45 градусов.

    б)  Поскольку все плоские углы при вершине пирамиды равны 45°, получаем, что ME  =  MF  =  1. Из треугольника PEF по теореме косинусов

    EF= корень из: начало аргумента: 2 плюс 2 минус 2 умножить на корень из 2 умножить на корень из 2 умножить на дробь: числитель: 1, знаменатель: корень из 2 конец дроби конец аргумента = корень из: начало аргумента: 4 минус 2 корень из 2 конец аргумента .

    Высота MH равнобедренного треугольника MEF равна

    MH= корень из: начало аргумента: MF в квадрате минус дробь: числитель: EF в квадрате , знаменатель: 4 конец дроби конец аргумента = дробь: числитель: корень 4 степени из: начало аргумента: 8 конец аргумента , знаменатель: 2 конец дроби .

    Искомая площадь сечения равна  дробь: числитель: 1, знаменатель: 2 конец дроби умножить на дробь: числитель: корень 4 степени из: начало аргумента: 8 конец аргумента , знаменатель: 2 конец дроби умножить на корень из: начало аргумента: 4 минус 2 корень из 2 конец аргумента = дробь: числитель: корень 4 степени из: начало аргумента: 8 конец аргумента умножить на корень из: начало аргумента: 4 минус 2 корень из 2 конец аргумента , знаменатель: 4 конец дроби .

    Ответ: дробь: числитель: корень 4 степени из: начало аргумента: 8 конец аргумента умножить на корень из: начало аргумента: 4 минус 2 корень из 2 конец аргумента , знаменатель: 4 конец дроби .

    Понравилась статья? Поделить с друзьями:
  • Как найти производные первого порядка данных функций
  • Как составить грантовую программу
  • Как исправить перекошенный подрамник
  • Как найти наименьшее общее кратное нок чисел
  • Как найти площадь прямоугольника на клетчатой бумаге