Как найти плотность пара в воздухе формула

Определение плотности пара по воздуху

Определение плотности пара по воздуху
проводится по формуле:

Дв=М/29, (4)

где: М – молярная масса горючего вещества.

В случае, если плотность пара больше 1,
пар будет скапливаться в нижней части
помещения, если меньше 1, будет находиться
в верхней части помещения.

Пример. Дать заключение о расположении
по высоте воздухозаборников в помещении,
где применяется ацетон.

Решение:

Для определения плотности пара по
воздуху ацетона необходимо рассчитать
его молярную массу:

М(СН3СОСН3) = 123+1
6+16=48 кг.

Подставляя найденную молярную массу
в формулу (4):

Дв=48/29=1,6.

Плотность пара получилось больше 1,
поэтому пар будет скапливаться в нижней
части помещения.

2. Расчёт температуры вспышки и температуры воспламенения

Температура вспышки – самая низкая
температура вещества, при которой над
поверхностью его образуются пары и
газы, способные вспыхивать в воздухе
от источника зажигания, но скорость
образования паров ещё недостаточна для
возникновения устойчивого горения.

Если повысить·температуру жидкости и
тем самым увеличить скорость образования
горючих паров над ее поверхностью, можно
добиться, что кратковременное воздействие
источника зажигания вызовет не только
вспышку паров, но и их последующее
устойчивое горение.

Наименьшая температура вещества, при
которой оно выделяет горючие пары и
газы в таком количестве, что после их
зажигания и удаления источника
воспламенения устанавливается устойчивое
пламенное горение. называется температурой
воспламенения.

Температура воспламенения не намного
больше температуры вспышки. Для ЛВЖ это
различие составляет 1-5 К, для ГЖ — 30-35 К.

Температуры вспышки и воспламенения
являются основными показателями пожарной
опасности жидкостей. Их значения для
некоторых жидкостей приведены в таблице
V приложения.

Метод расчета указанных показателей
по формуле В.И. Блинова основывается на
предположении, что концентрации паров
жидкости и кислорода в потоке, направленном
к поверхности горения, отвечают
стехиометрическому составу, пар к
пламени подводится благодаря молекулярной
диффузии, а давление пара над жидкостью
связано с температурой самой жидкости.

Формула Блинова имеет вид:


. (5)

где А — постоянная прибора, зависящая
от условий опыта;

До — коэффициент диффузии,
м2/с;

n — число молей кислорода,
необходимое для полного сгорания одного
моля пара жидкости;

Рнп — давление насыщенного
пара жидкости при Твсп, Па.

При определении Твсп по формуле
(5) имеем два неизвестных — Твсп и
Рнп, т.к. последняя величина должна
быть взята именно при Твсп. В таком
случае поступают следующим образом,
находят произведение:


.

В дальнейшем задача сводится: к тому,
чтобы по известной зависимости давления
насыщенных паров от температуры жидкости
найти такую температуру, при которой
произведение ТР будет равняться найденной
величине ТвспРнп. Для этого
можно воспользоваться таблицей 1
приложения или уравнением Антуана:


, (6)

для которого :коэффициенты А, В, С
приведены в табл. 2 приложения.

Формула В.И. Блинова является универсальной,
по ней можно рассчитывать температуру
вспышки в открытом и закрытом тигле, а
также температуру воспламенения. Для
этого в формуле (50) меняется только
параметр А.

При определении:

температуры вспышки в закрытом тигле
А = 28 (КПа.м2)/с;

температуры вспышки в открытом тигле
А = 45,3 (КПа.м2)/с;

температуры воспламенения А = 53,3
(КПа.м2)/с.

Для расчета температуры вспышки
индивидуальных жидкостей может
применяться формула Элея:

, (7)

где
tкип. — температура
кипения жидкости,С
(определяется по справочнику); К —
коэффициент горючести, определяемый
по формуле:

К = 4nС + 4nS
+ nN +
nН — 2n0
— 2nCl
— 3nF
— 5nBr,

где nx
— число атомов входящих в молекулу
горючей жидкости.

Температуру вспышки можно определить,
зная нижний температурный предел
распространения пламени (НТПР) по
следующей формуле:


,
(8)

где tн – нижний
температурный предел распространения
пламени.

На практике часто приходится рассматривать
различные смеси жидкостей. Температуру
вспышки смесей нефтепродуктов и
органических жидкостей можно определить
по формуле:


,
(9)

где А — концентрация компонента в смеси
с наибольшей температурой вспышки, %;

В — концентрация компонента в смеси с
наименьшей температурой вспышки, %;

tа — температура
вспышки компонента А, С;

tв — температура
вспышки компонента В, С;

f — эмпирический коэффициент,
зависящий от состава смеси (табл. 2).

Таблица 2

Значение
эмпирического коэффициента f

в
зависимости от состава смеси

А%

В%

f

А%

В%

f

0

5

10

15

20

25

30

35

40

45

50

100

95

90

85

80

75

70

65

60

55

50

0

3.3

6.5

9.2

11.9

14.5

17.0

19.4

21.7

23.9

25.9

55

60

65

70

75

80

85

90

95

100

45

40

35

30

25

20

15

10

5

0

27.6

29.0

30.0

30.3

30.4

29.2

26.0

20.0

12.0

0

Пример. Вычислить
температуру вспышки метилового спирта
по формуле В.И. Блинова для закрытого
тигля, если коэффициент диффузии паров
спирта 16,2.10-6 м2/с.
Результаты сравнить с экспериментальным
значением температуры вспышки, равным
279 К.

Решение:

1. Для решения задачи по формуле В.И.
Блинова необходимо иметь значение
коэффициента n, для
чего записываем уравнение реакции
горения этилового спирта:

CH3OH + 1,5(О2+
3,76N
2) = СО2
+ 2Н
2О + 1,5·3,76N2,

откуда n = 1,5.

2. Вычислим произведение:
.

При определении Твсп в
закрытом тигле параметр А = 28
(КПа.м2)/с,
поэтому:


3.
Найдем такую температуру, при которой
произведение РТ будет равно 576 кПа·К.
Тогда найденное значение температуры
будет соответствовать температуре
вспышки.

Воспользуемся для этого зависимостью
давления насыщенного пара от температуры
жидкости, приведенной в таблице XI
приложения. Для этилового спирта при
Т1 = 256,8 К давление паров
составляет Р1 = 1,33 кПа,
а Р1Т1 =·342
кПаK. Это меньше,
чем РвспТвсп.
При Т2 = 267 К давление паров
Р2 = 2,666 кПа, а Р2Т2
= 711 кПаК. Это уже
больше, чем РвспТвсп.
Значит, Твсп имеет значение
между Т1 и Т2.
Найдём его методом интерполяции:

Сравнение полученного значения с
экспериментальным (279 К) показывает, что
погрешность расчета по формуле В. И.
Блинова составляет всего 2,7 К.

Ответ: температура вспышки
метилового спирта 276,3 К.

Пример. Определить температуру
вспышки ацетона по формуле Элея и через
НТПР.

Дано: С3Н6О

Найти: tвсп. = ?

Решение:

  1. По справочнику находим температуру
    кипения ацетона:

tкип.3Н6О)
= 56,5 С.

2. Рассчитываем коэффициент горючести:

К = 4nС + 4nS
+ nN +
nН — 2n0
— 2nCl
— 3nF
— 5nBr
= 4  3 + 6 — 2 
1 = 16.

3. Определяем температуру вспышки
ацетона. по формуле Элея:


.

4. Находим температуру вспышки ацетона
через НТПР.

По справочнику определяем, что НТПР
ацетона = -20С


.

Ответ: Температура вспышки ацетона,
рассчитанная по формуле Элея равна
-15,5С, рассчитанная
через НТПР составляет -20,6С.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #

    30.04.2022489.47 Кб017.doc

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как определить плотность насыщенного пара

Для насыщенного пара над жидкостью справедливо уравнение Менделеева-Клапейрона. Поэтому, зная температуру, можно рассчитать плотность насыщенного пара. Она увеличивается с повышением температуры и не зависит от объема жидкости.

Как определить плотность насыщенного пара

Вам понадобится

  • — бумага;
  • — калькулятор;
  • — ручка;
  • — давление газа (из условия задачи или в таблице);
  • — температура, при которой нужно определить плотность
  • — периодическая таблица Менделеева.

Инструкция

Запишите на бумаге уравнение Менделеева-Клапейрона для идеальных газов: PV=(m/M)RT . Его можно использовать и для насыщенного пара, но как только плотность газа становится сравнимой с плотностью насыщенного пара, данное уравнение нельзя использовать в расчете – оно покажет неверный результат. Другим газовым законам насыщенный пар не подчиняется.

Из записанного уравнения выведите плотность насыщенного пара. Она равна массе, деленной на объем. Поэтому уравнение преобразуется: P= (p нас. пара/M)RT. Отсюда можно записать формулу для нахождения плотности насыщенного пара: p= PM/RT . Здесь P – это давление газа. Его табличное значение обычно дается в условии задачи и зависит от температуры. Если не дано, то найдите в таблице для вашей температуры. R – это универсальная газовая постоянная, равна 8,31 Дж/(К*моль).

Если вам известна температура в градусах Цельсия, то переведите ее в градусы Кельвина (обозначается К). Для этого прибавьте 273 к известной температуре, так как -273 – это абсолютный ноль по шкале Кельвина.

Найдите молярную массу жидкости M. Ее можно рассчитать с помощью периодической таблицы Менделеева. Молярная масса вещества численно равна молекулярной. Найдите в таблице значения атомных масс всех элементов, содержащихся в веществе, и умножьте на количество соответствующих атомов в молекуле. Сумма полученных значений даст молекулярную массу вещества.

Подставьте в последнее выражение все известные значения. Давление P нужно подставлять в Па. Если по условию дано в кПа, то умножьте его на 1000. Молярную массу при подстановке переведите в кг/моль (разделите на 1000), так как в периодической таблице она дана в г/моль. С помощью калькулятора рассчитайте значение плотности насыщенного пара. Результат получается в кг/м3.

Источники:

  • плотность пара

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Плотность – физическая характеристика, присущая твердым, жидким и газообразным веществам.

В статье рассказывается о том, что такое плотность насыщенного пара, ее зависимость от различных условий среды. Дополнительно приведена таблица плотности по температуре, формула и примеры расчета этого параметра.

Содержание

  • Что это за параметр, в чем измеряется, как обозначается?
  • От чего зависит?
  • Как изменяется при изменении температуры?
  • Таблица зависимости
  • Как определить?
    • Формула и правила расчета
    • Несколько примеров
  • Где используют знания в жизни?
  • Заключение

Что это за параметр, в чем измеряется, как обозначается?

Плотностью вещества называют физическую величину, которая указывает на отношение массы к занимаемому объему. Для насыщенного пара, простыми словами, это общее количество газа на единицу занимаемого им объема.

Единицей измерения плотности является кг/м3- килограмм на кубический метр (по системе СИ) или г/см3-грамм на кубический сантиметр (по системе СГС). Обозначается данная величина буквой «p».

Плотность насыщенного пара всегда приравнивается к уровню абсолютной влажности. Связано это с тем, что для данного вида пара свойственно насыщение молекулами воды, которые и повышают плотность.

От чего зависит?

Значение плотности насыщенных паров зависит от нескольких факторов:

  1. foto48076-2Температура. С ее повышением увеличивается плотность пара, так как прослеживается рост числа молекул насыщения.
  2. Атмосферное давление. Чем оно выше, тем плотность меньше. Связано это с уменьшением числа свободных молекул, покидающих поверхность воды.

    Также стоит учесть, что при снижении давления, плотность растет, так как снижается температура кипения, увеличивается парообразование и уровень насыщения.

  3. Температура внешней стенки (сосуда). Увеличивает конденсацию, снижает общую температуру жидкости, приводит к дисбалансу динамического равновесия. В следствии этих факторов, снижается плотность пара.

Также стоит учесть, что плотность насыщенного пара зависит от примесей других газов и твердых частиц в нем. Примеси снижают плотность самого пара, так как увеличивают конденсацию при сниженном уровне насыщения.

Как изменяется при изменении температуры?

Плотность насыщенного пара прямо зависит от температуры:

  1. При понижении температуры прослеживается уменьшение плотности. Связано это с тем, что замедляется процесс парообразования и насыщения пара. Молекулы воды теряют энергию и скорость выхода с поверхности воды, а значит перестают насыщать пар.
  2. При увеличении температуры плотность растет прямо пропорционально. Связано это с увеличением скорости насыщения среды до уровня 100%. При достижении этого уровня, наступает фазовый переход из газообразного состояния в жидкое (конденсация). Фазовый переход обусловлен термодинамическим равновесием между паром и водой. При таком условии, плотность стабилизируется без дальнейшего роста.

Рост и стабилизация плотности с увеличением температуры возможна только до температуры кипения воды. Дальнейший нагрев снижает плотность, так как выпаривает молекулы воды из пара, делая его перегретым.

Таблица зависимости

Зависимость плотности от температуры легко проследить по приведенной таблице:

Температура °С Плотность г/м3
-30 0,3
-20 0,8
-10 2,1
-5 3,6
0 4,8
3 6
4 6,4
5 6,8
10 9,4
11 10
12 10,6
13 11,3
14 12
15 12,8
16 13,6
17 14,4
18 15,3
19 16,3
20 17,3
21 18,3
22 19,4
23 20
24 21,7
25 23
30 30,4
35 39,6
40 51,2
45 65,4
50 82,8
55 104
60 129
65 160
70 196,4
75 239,3
80 289,7
85 348,7
90 417,3
95 496,4
при 100 градусах Цельсия 588,5

По таблице можно проследить рост плотности от отрицательной к положительной температуре.

Увеличение связано с ростом количества свободных молекул воды, насыщающих пар. При отрицательной температуре низкая плотность связана с кристаллизацией молекул воды и отсутствием конденсации.

Как определить?

Рассмотрим, как рассчитать параметр.

Формула и правила расчета

Для вычисления плотности вещества используется формула:

foto48076-3

Выражение состоит из следующих значений:

  • «p» — плотность вещества;
  • «F» — абсолютная влажность воздуха (г/м3);
  • «m» — его масса (грамм-килограмм);
  • «V» — занимаемый объем (см3-м3).

Так как у насыщенного пара плотность связана с уровнем влажности, то данный параметр может быть рассчитан с использованием выражения:

foto48076-4

Уравнение состоит из:

  • «ф» — абсолютная влажность;
  • «p» — плотность пара;
  • «pо» — плотность насыщения;
  • «100%» — относительная влажность.

При использовании формулы стоит учитывать зависимость плотности от температуры и использовать табличные значения этого параметра.

Несколько примеров

Формулу расчета плотности очень просто использовать для решения задач.

Задача:

  1. Масса водяного пара 250 г.
  2. Объем пара 300 м3.
  3. Плотность неизвестна.

Решение:

  1. P=m/v=грамм/м3.
  2. P=250/300=0,83 г/м3.

Ответ: плотность насыщенного пара, массой 250 г и объемом 300 м3 составляет 0,83 г/м3.

Задача:

  1. Масса водяного пара 700 г.
  2. Объем пара 150 м3.
  3. Плотность пара в кг/м3 неизвестна.

Решение:

  1. P=m/v=грамм/м3.
  2. P=700/150=4,66 г/м3 или 0,0046 кг/м3.

Ответ: плотность насыщенного пара массой 700 г и объемом 150 м3 составляет 0,0046 кг/м3

Где используют знания в жизни?

foto48076-5Знания о плотности насыщенного пара используются в метеорологии и инженерии.

Метеорологи применяют расчет плотности для установления уровня насыщения атмосферы влагой.

Также расчет помогает контролировать испарения естественных источников в разные периоды года и устанавливать скорость испарения при различных температурах.

Инженеры применяют данные знания при проектировании:

  • отопительных и охладительных систем,
  • вентиляции,
  • очистительного оборудования.

Плотность помогает рассчитать оптимальный уровень насыщения системы влагой.

Заключение

Плотность насыщенного пара имеет прямую зависимость от температуры, давления и наличия термодинамического равновесия с исходной водой.

Такая зависимость позволяет рассчитать климатические изменения в разный период, а также решить множество задач при проектировании климатических систем.

Насыщенный пар

  • Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

  • Испарение и конденсация

  • Динамическое равновесие

  • Свойства насыщенного пара

  • Влажность воздуха

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: насыщенные и ненасыщенные пары, влажность воздуха.

Если открытый стакан с водой оставить на долгое время, то в конце концов вода полностью улетучится. Точнее — испарится. Что такое испарение и почему оно происходит?

Испарение и конденсация

При данной температуре молекулы жидкости обладают разными скоростями. Скорости большинства молекул находятся вблизи некоторого среднего значения (характерного для этой температуры). Но попадаются молекулы, скорости которых значительно отличаются от средней как в меньшую, так и большую сторону.

На рис. 1 изображён примерный график распределения молекул жидкости по скоростям. Голубым фоном показано то самое большинство молекул, скорости которых группируются около среднего значения. Красный «хвост» графика — это небольшое число «быстрых» молекул, скорости которых существенно превышают среднюю скорость основной массы молекул жидкости.

Рис. 1. Распределение молекул по скоростям

Когда такая весьма быстрая молекула окажется на свободной поверхности жидкости (т.е. на границе раздела жидкости и воздуха), кинетической энергии этой молекулы может хватить на то, чтобы преодолеть силы притяжения остальных молекул и вылететь из жидкости. Данный процесс и есть испарение, а молекулы, покинувшие жидкость, образуют пар.

Итак, испарение — это процесс превращения жидкости в пар, происходящий на свободной поверхности жидкости (при особых условиях превращение жидкости в пар может происходить по всему объёму жидкости. Данный процесс вам хорошо известен — это кипение).

Может случиться, что через некоторое время молекула пара вернётся обратно в жидкость.

Процесс перехода молекул пара в жидкость называется конденсацией. Конденсация пара — процесс, обратный испарению жидкости.

к оглавлению ▴

Динамическое равновесие

А что будет, если сосуд с жидкостью герметично закрыть? Плотность пара над поверхностью жидкости начнёт увеличиваться; частицы пара будут всё сильнее мешать другим молекулам жидкости вылетать наружу, и скорость испарения станет уменьшаться. Одновременно начнёт увеличиваться скорость конденсации, так как с возрастанием концентрации пара число молекул, возвращающихся в жидкость, будет становиться всё больше.

Наконец, в какой-то момент скорость конденсации окажется равна скорости испарения. Наступит динамическое равновесие между жидкостью и паром: за единицу времени из жидкости будет вылетать столько же молекул, сколько возвращается в неё из пара. Начиная с этого момента количество жидкости перестанет убывать, а количество пара — увеличиваться; пар достигнет «насыщения».

Насыщенный пар — это пар, который находится в состоянии динамического равновесия со своей жидкостью. Пар, не достигший состояния динамического равновесия с жидкостью, называется ненасыщенным.

Давление и плотность насыщенного пара обозначаются p_H и rho_H. Очевидно, p_H и rho_H — это максимальные давление и плотность, которые может иметь пар при данной температуре. Иными словами, давление и плотность насыщенного пара всегда превышают давление и плотность ненасыщенного пара.

к оглавлению ▴

Свойства насыщенного пара

Оказывается, что состояние насыщенного пара (а ненасыщенного — тем более) можно приближённо описывать уравнением состояния идеального газа (уравнением Менделеева — Клапейрона). В частности, имеем приближённое соотношение между давлением насыщенного пара и его плотностью:

p_H=frac{displaystyle rho_H}{displaystyle mu vphantom{1^a}}RT. (1)

Это весьма удивительный факт, подтверждаемый экспериментом. Ведь по своим свойствам насыщенный пар существенно отличается от идеального газа. Перечислим важнейшие из этих отличий.

1. При неизменной температуре плотность насыщенного пара не зависит от его объёма.

Если, например, насыщенный пар изотермически сжимать, то его плотность в первый момент возрастёт, скорость конденсации превысит скорость испарения, и часть пара конденсируется в жидкость — до тех пор, пока вновь не наступит динамическое равновесие, в котором плотность пара вернётся к своему прежнему значению.

Аналогично, при изотермическом расширении насыщенного пара его плотность в первый момент уменьшится (пар станет ненасыщенным), скорость испарения превысит скорость конденсации, и жидкость будет дополнительно испаряться до тех пор, пока опять не установится динамическое равновесие — т.е. пока пар снова не станет насыщенным с прежним значением плотности.

2. Давление насыщенного пара не зависит от его объёма.

Это следует из того, что плотность насыщенного пара не зависит от объёма, а давление однозначно связано с плотностью уравнением (1).

Как видим, закон Бойля — Мариотта, справедливый для идеальных газов, для насыщенного пара не выполняется. Это и не удивительно — ведь он получен из уравнения Менделеева — Клапейрона в предположении, что масса газа остаётся постоянной.

3. При неизменном объёме плотность насыщенного пара растёт с повышением температуры и уменьшается с понижением температуры.

Действительно, при увеличении температуры возрастает скорость испарения жидкости.

Динамическое равновесие в первый момент нарушается, и происходит дополнительное испарение некоторой части жидкости. Пара будет прибавляться до тех пор, пока динамическое равновесие вновь не восстановится.

Точно так же при понижении температуры скорость испарения жидкости становится меньше, и часть пара конденсируется до тех пор, пока не восстановится динамическое равновесие — но уже с меньшим количеством пара.

Таким образом, при изохорном нагревании или охлаждении насыщенного пара его масса меняется, поэтому закон Шарля в данном случае не работает. Зависимость давления насыщенного пара от температуры уже не будет линейной функцией.

4. Давление насыщенного пара растёт с температурой быстрее, чем по линейному закону.

В самом деле, с увеличением температуры возрастает плотность насыщенного пара, а согласно уравнению (1) давление пропорционально произведению плотности на температуру.

Зависимость давления насыщенного пара от температуры является экспоненциальной (рис. 2). Она представлена участком 1–2 графика. Эту зависимость нельзя вывести из законов идеального газа.

Рис. 2. Зависимость давления пара от температуры

В точке 2 вся жидкость испаряется; при дальнейшем повышении температуры пар становится ненасыщенным, и его давление растёт линейно по закону Шарля (участок 2–3).

Вспомним, что линейный рост давления идеального газа вызван увеличением интенсивности ударов молекул о стенки сосуда. В случае нагревания насыщенного пара молекулы начинают бить не только сильнее, но и чаще — ведь пара становится больше. Одновременным действием этих двух факторов и вызван экспоненциальный рост давления насыщенного пара.

к оглавлению ▴

Влажность воздуха

Воздух, содержащий водяной пар, называется влажным.Чем больше пара находится в воздухе, тем выше влажность воздуха.

Абсолютная влажность — это парциальное давление водяного пара, находящегося в воздухе (т. е. давление, которое водяной пар оказывал бы сам по себе, в отсутствие других газов). Иногда абсолютной влажностью называют также плотность водяного пара в воздухе.

Относительная влажность воздуха varphi — это отношение парциального давления водяного пара в нём к давлению насыщенного водяного пара при той же температуре. Как правило, это отношение выражают в процентах:

varphi =frac{displaystyle p}{displaystyle p_H vphantom{1^a}} cdot 100 %.

Из уравнения Менделеева-Клапейрона (1) следует, что отношение давлений пара равно отношению плотностей. Так как само уравнение (1), напомним, описывает насыщенный пар лишь приближённо, мы имеем приближённое соотношение:

varphi =frac{displaystyle rho}{displaystyle rho_H vphantom{1^a}} cdot 100 %.

Одним из приборов, измеряющих влажность воздуха, является психрометр. Он включает в себя два термометра, резервуар одного из которых завёрнут в мокрую ткань. Чем ниже влажность, тем интенсивнее идёт испарение воды из ткани, тем сильнее охлаждается резервуар «мокрого» термометра, и тем больше разность его показаний и показаний сухого термометра. По этой разности с помощью специальной психрометрической таблицы определяют влажность воздуха.

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Насыщенный пар» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Содержание:

Влажность воздуха:

В ежедневных сводках погоды наряду со значениями температуры воздуха и атмосферного давления, как правило, называют значение относительной влажности воздуха. Почему влажность воздуха влияет на жизнедеятельность человека?

Влажность воздуха

Воздух, содержащий водяной пар, называют влажным воздухом. Основными количественными характеристиками такого воздуха являются его абсолютная и относительная влажности.

Абсолютная влажность Влажность воздуха в физике - формулы и определение с примерами

Обычно абсолютную влажность выражают в граммах на кубический метр Влажность воздуха в физике - формулы и определение с примерами

Поскольку атмосферный воздух представляет собой смесь различных газов (азот, кислород, углекислый газ и др.) и водяного пара, то атмосферное давление определяется суммой парциальных давлений компонентов сухого воздуха и водяного пара. Используя уравнение Клапейрона—Менделеева, плотность пара можно определить через его парциальное давление Влажность воздуха в физике - формулы и определение с примерами

Влажность воздуха в физике - формулы и определение с примерами

где Влажность воздуха в физике - формулы и определение с примерами — молярная масса воды; Т — температура воздуха.

Зная только плотность Влажность воздуха в физике - формулы и определение с примерами пара, нельзя судить о степени влажности воздуха. Ведь при одном и том же значении плотности пар может быть как близок к насыщению, так и далёк от него. Оказывается, чем ниже температура, тем ближе пар к насыщению. А ведь именно от этого зависит интенсивность испарения воды п потеря влаги живыми организмами. Вот почему вводят вторую характеристику влажности воздуха — относительную влажность, которая показывает, насколько водяной пар при данной температуре далёк от насыщения.

Относительная влажность Влажность воздуха в физике - формулы и определение с примерами воздуха — физическая величина, равная отношению абсолютной влажности Влажность воздуха в физике - формулы и определение с примерами к плотности Влажность воздуха в физике - формулы и определение с примерами насыщенного водяного пара при данной температуре.

Обычно относительную влажность выражают в процентах:

Влажность воздуха в физике - формулы и определение с примерами

Чем ниже относительная влажность воздуха, тем интенсивнее испаряется вода. При относительной влажности воздуха Влажность воздуха в физике - формулы и определение с примерами водяной пар становится насыщенным и оказывается в динамическом равновесии со своей жидкостью. В этом случае процессы испарения и конденсации идут с одинаковой скоростью.

Поскольку плотность пара и его парциальное давление связаны соотношением (10.1), то относительную влажность можно определить как отношение парциального давления Влажность воздуха в физике - формулы и определение с примерами водяного пара, находящегося в воздухе при данной температуре, к давлению Влажность воздуха в физике - формулы и определение с примерами насыщенного пара при той же температуре:

Влажность воздуха в физике - формулы и определение с примерами

Таким образом, относительная влажность зависит не только от абсолютной влажности, но и от температуры воздуха.

Значения давления Влажность воздуха в физике - формулы и определение с примерами и плотности Влажность воздуха в физике - формулы и определение с примерами насыщенного водяного пара при различных температурах приведены в таблице 1.

Таблица 1 — Давление и плотность насыщенного водяного пара
Влажность воздуха в физике - формулы и определение с примерами

Когда парциальное давление водяного пара в воздухе равно давлению насыщенного пара при той же температуре, говорят, что воздух насыщен водяными парами. Если же плотность водяного пара превышает плотность насыщенного пара, то пар в воздухе считают пересыщенным. Такое состояние является неустойчивым и заканчивается конденсацией.

Давление насыщенного пара уменьшается при понижении температуры (см. табл. 1). Из формулы (10.3) следует, что при одном и том же давлении Влажность воздуха в физике - формулы и определение с примерами водяного пара относительная влажность тем выше, чем ниже температура, и при некотором её значении может стать равной 100 %.

Температуру, при которой водяной пар в результате изобарного охлаждения становится насыщенным, называют точкой росы.

При понижении температуры ниже точки росы происходит конденсация водяного пара. Например, днём температура воздуха была Влажность воздуха в физике - формулы и определение с примерами а плотность водяного пара Влажность воздуха в физике - формулы и определение с примерами Ночью температура понизилась до Влажность воздуха в физике - формулы и определение с примерами При этой температуре плотность насыщенного водяного пара Влажность воздуха в физике - формулы и определение с примерами Значит, избыток пара сконденсировался и выпал в виде росы. Этот процесс является причиной образования тумана (в воздухе всегда есть пылинки, которые являются центрами конденсации), облаков и дождя. В технике конденсация обычно осуществляется на охлаждаемых поверхностях.

Если относительная влажность меньше 100 %, то точка росы всегда ниже температуры воздуха и тем ниже, чем меньше относительная влажность.

Приборы для измерения влажности

Относительную влажность воздуха обычно измеряют психрометром, состоящим из двух термометров — сухого и влажного (рис. 61). Сухой термометр показывает температуру воздуха.

Резервуар влажного термометра обёрнут тканью, смачиваемой водой. Вода с ткани испаряется, охлаждая при этом термометр. Чем меньше относительная влажность воздуха, тем интенсивнее испаряется вода и тем сильнее охлаждается влажный термометр. И наоборот — при большой относительной влажности воздуха влажный термометр охлаждается незначительно.

Влажность воздуха в физике - формулы и определение с примерами

При 100 %-ной относительной влажности вода и её пар находятся в динамическом равновесии и показания обоих термометров совпадают.

Зная показания сухого и влажного термометров, относительную влажность воздуха определяют, используя специальную таблицу, называемую психрометрической (табл. 2).

Таблица 2 — Психрометрическая таблица
Влажность воздуха в физике - формулы и определение с примерами

Живые организмы и растения весьма восприимчивы к относительной влажности воздуха. При температуре 20—25 °С наиболее благоприятная для человека относительная влажность составляет 40—60 %.

При высокой влажности, особенно в жаркий день, испарение влаги с поверхности кожи затрудняется, что приводит к нарушению важнейших биологических механизмов регулирования температуры тела.

При низкой влажности происходит интенсивное испарение с поверхности тела и высыхание слизистой оболочки носа, гортани, лёгких, что приводит к ухудшению самочувствия. При низкой влажности в воздухе дольше сохраняются патогенные микроорганизмы, что также небезопасно для человека. В случае низкой влажности воздуха интенсивность испарения с листьев увеличивается, и при малом запасе влаги в почве они быстро вянут и засыхают.

Влажность воздуха необходимо учитывать и в различных технологических процессах, таких, например, как сушка и хранение готовых изделий. Стальные изделия при высокой влажности быстро ржавеют. Сохранение произведений искусства и книг также требует поддержания влажности воздуха на необходимом уровне. Большое значение имеет влажность в метеорологии для предсказания погоды. Если воздух у поверхности Земли охлаждается ниже точки росы, то могут образовываться туман, роса или иней.
Влажность воздуха в физике - формулы и определение с примерами

Пример решения задачи

Температура воздуха в комнате Влажность воздуха в физике - формулы и определение с примерами а его относительная влажность Влажность воздуха в физике - формулы и определение с примерами На улице температура и относительная влажность воздуха Влажность воздуха в физике - формулы и определение с примерами соответственно. Каким будет направление движения водяных паров, если открыть форточку: с улицы в комнату пли из комнаты на улицу?
Влажность воздуха в физике - формулы и определение с примерами
Решение. При температуре воздуха Влажность воздуха в физике - формулы и определение с примерами давление насыщенных паров Влажность воздуха в физике - формулы и определение с примерами а при температуре Влажность воздуха в физике - формулы и определение с примерами (см. таблицу 1 § 10). Тогда давление водяного пара в комнате

Влажность воздуха в физике - формулы и определение с примерами

а на улице
Влажность воздуха в физике - формулы и определение с примерами
Влажность воздуха в физике - формулы и определение с примерами следовательно, пар выходит из комнаты на улицу.

Ответ: пар выходит из комнаты на улицу.

Пример №2

Вечером при температуре Влажность воздуха в физике - формулы и определение с примерами относительная влажность воздуха Влажность воздуха в физике - формулы и определение с примерами Выпадет ли роса, если ночью температура понизится до Влажность воздуха в физике - формулы и определение с примерами

Влажность воздуха в физике - формулы и определение с примерами

Решение. Для того чтобы узнать, выпадет ли роса при понижении температуры воздуха до Влажность воздуха в физике - формулы и определение с примерами необходимо сравнить плотность (давление) насыщенного пара при этой температуре с плотностью (парциальным давлением) пара при температуре Влажность воздуха в физике - формулы и определение с примерами

При температуре Влажность воздуха в физике - формулы и определение с примерами плотность насыщенного водяного пара

Влажность воздуха в физике - формулы и определение с примерами (см. таблицу 1 $10). Плотность водяного пара, содержащегося в воздухе при температуре Влажность воздуха в физике - формулы и определение с примерами можно определить, воспользовавшись формулой

Влажность воздуха в физике - формулы и определение с примерами

где Влажность воздуха в физике - формулы и определение с примерами(см. таблицу 1 §10):

Влажность воздуха в физике - формулы и определение с примерами

Поскольку Влажность воздуха в физике - формулы и определение с примерами то имеющегося в воздухе количества водяного пара недостаточно для насыщения, роса не выпадет.

Ответ: роса не выпадет.

Влажность воздуха и точка росы

Влажный воздух — это воздух, в составе которого имеется водяной пар. Основными количественными характеристиками такого воздуха являются абсолютная и относительная влажность.

Абсолютная влажность — это физическая величина, равная плотности водяного пара в воздухе в данных условиях.

Абсолютную влажность (плотность водяного пара в воздухе) можно выразить через парциальное давление водяного пара на основании уравнения Менделеева-Клапейрона:

Влажность воздуха в физике - формулы и определение с примерами

ГдеВлажность воздуха в физике - формулы и определение с примерами — плотность водяного пара в воздухе — абсолютная влажность, Влажность воздуха в физике - формулы и определение с примерами — молярная масса воды, Влажность воздуха в физике - формулы и определение с примерами — температура воздуха, Влажность воздуха в физике - формулы и определение с примерами — парциальное давление пара, Влажность воздуха в физике - формулы и определение с примерами — универсальная газовая постоянная. Обычно абсолютная влажность измеряется в Влажность воздуха в физике - формулы и определение с примерами

Однако невозможно определить, в каком состоянии находится пар, насколько он отличается от насыщенного состояния, зная только плотность и парциальное давление водяного пара при данных условиях. Поэтому была введена вторая характеристика степени увлажнения воздуха — относительная влажность.

Относительная влажность — это физическая величина, равная отношению абсолютной влажности воздуха при данной температуре к плотности насыщенного водяного пара при той же температуре. Относительная влажность выражается в процентах:

Влажность воздуха в физике - формулы и определение с примерами

Где Влажность воздуха в физике - формулы и определение с примерами — плотность насыщенного водяного пара в воздухе, Влажность воздуха в физике - формулы и определение с примерами — относительная влажность воздуха.

Ссылаясь на связь плотности водяного пара в воздухе с его парциальным давлением, из равенства (6.33) относительную влажность можно выразить через давление:

Относительная влажность равна отношению парциального давления водяного пара в воздухе при данной температуре к давлению насыщенного водяного пара при той же температуре:

Влажность воздуха в физике - формулы и определение с примерами

Таким образом, относительная влажность определяется не только абсолютной влажностью, но и температурой воздуха. Относительная влажность воздуха измеряется с помощью психрометра и гигрометра.

Если парциальное давление водяного пара в воздухе при данной температуре будет равно давлению насыщенного пара при той же температуре, то состояние водяного пара в воздухе будет насыщенным. Если плотность водяного пара в воздухе при данной температуре больше плотности насыщенного водяного пара при той же температуре, то в этом случае говорят, что водяной пар в воздухе находится в перенасыщенном состоянии. Такое состояние приводит к конденсации пара.

Температура, при которой в результате изобарного охлаждения водяной пар в воздухе превращается в насыщенный, называется точкой росы. При падении температуры воздуха ниже точки росы происходит конденсация водяного пара. Например, предположим, что температура воздуха днем Влажность воздуха в физике - формулы и определение с примерами а плотность водяного пара в воздухе составляет Влажность воздуха в физике - формулы и определение с примерами Ночью же температура воздуха Влажность воздуха в физике - формулы и определение с примерами плотность насыщенного водяного пара при этой же температуре Влажность воздуха в физике - формулы и определение с примерами Значит, излишки пара конденсируются, то есть выпадает роса. Этот процесс является причиной возникновения тумана, облаков и дождей.

Определение влажности воздуха

Известно, что человек примерно на 70 % состоит из воды, при этом не все догадываются, что в жизни человека значительную роль играет уровень влажности атмосферы. однако мы интуитивно чувствуем, что обычно влажный воздух полезен для здоровья, поэтому стремимся отдыхать на берегу моря, реки, озера. Выясним, от каких факторов зависит влажность воздуха и как ее можно изменить.

Что такое влажность воздуха

Воздух всегда содержит некоторое количество водяного пара. Содержание водяного пара в воздухе характеризуется абсолютной и относительной влажностью. Абсолютная влажность Влажность воздуха в физике - формулы и определение с примерами — физическая величина, которая характеризует содержание водяного пара в воздухе и численно равна массе водяного пара, содержащегося в 1 м3 воздуха:

Влажность воздуха в физике - формулы и определение с примерами

Единица абсолютной влажности в СИ — килограмм на метр кубический:Влажность воздуха в физике - формулы и определение с примерами

Обычно абсолютную влажность приводят в г/м3. В экваториальных широтах она может достигать 30 г/м3, к полюсам Земли снижается до 0,1 г/м3.

Таблица 1

Давление и плотность насыщенного водяного пара

Влажность воздуха в физике - формулы и определение с примерами
0 0,61 4,8
2 0,71 5,6
4 0,81 6,4
6 0,93 7,3
8 1,07 8,3
10 1,23 9,4
12 1,40 10,7
14 1,60 12,1
16 1,81 13,6
18 2,07 15,4
20 2,33 17,3
22 2,64 19,4
24 2,99 21,8
26 3,36 24,4
28 3,79 27,2
30 4,24 30,3 30,3

Относительная влажность ϕ — физическая величина, которая показывает, насколько водяной пар близок к насыщению, и равна выраженному в процентах отношению абсолютной влажности к плотности насыщенного водяного пара при данной температуре:

Влажность воздуха в физике - формулы и определение с примерами

Плотность насыщенного водяного пара (Влажность воздуха в физике - формулы и определение с примерами) при данной температуре — величина постоянная, поэтому ее заносят в таблицы (табл. 1) или представляют в виде графиков (рис. 32.1). Обратите внимание на два момента.

  1. По температуре и относительной влажности легко определить абсолютную влажность и массу водяного пара в воздухе:Влажность воздуха в физике - формулы и определение с примерами Например, измерения показали, что в комнате объемом 180 м3 при температуре 22 °С Влажность воздуха в физике - формулы и определение с примерами= 50 %. В табл. 1 находим: Влажность воздуха в физике - формулы и определение с примерами(22 °C) , =19 4 г/м3. Тогда: Влажность воздуха в физике - формулы и определение с примерами
  2. Плотность водяного пара прямо пропорциональна его парциальному давлению Влажность воздуха в физике - формулы и определение с примерами и концентрации Влажность воздуха в физике - формулы и определение с примерами молекул пара Влажность воздуха в физике - формулы и определение с примерами, поэтому относительную влажность воздуха можно найти из соотношений: Влажность воздуха в физике - формулы и определение с примерами

Точка росы

Анализ графика на рис. 32.1, а показывает, что относительную влажность можно увеличить, увеличив абсолютную влажность, то есть увеличив массу водяного пара в воздухе. Если на кухне долго кипятить воду, то относительная влажность может достигнуть 100 % (точка С графика), а кафель покроется влагой. Относительная влажность также увеличится, если уменьшить температуру воздуха (рис. 32.1, б). При температуре Влажность воздуха в физике - формулы и определение с примерами (в точке В) пар становится насыщенным (относительная влажность достигает 100 %). В дальнейшем даже незначительное уменьшение температуры приведет к тому, что избыточный водяной пар будет конденсироваться и выпадать в виде росы или тумана. Так под утро, когда температура воздуха резко уменьшается, на траве выпадает роса, а над поверхностью водоемов появляется туман.

Температуру, при которой водяной пар, содержащийся в воздухе, становится насыщенным, называют точкой росы Влажность воздуха в физике - формулы и определение с примерами.

Влажность воздуха в физике - формулы и определение с примерамиВлажность воздуха в физике - формулы и определение с примерами

Рис. 32.1. Графики зависимости Влажность воздуха в физике - формулы и определение с примерами — плотности насыщенного водяного пара от температуры; Влажность воздуха в физике - формулы и определение с примерами — абсолютная влажность

Зная точку росы, можно определить абсолютную и относительную влажности. Например, температура в комнате 24 °С, а стенки сосуда с водой покрываются влагой при температуре воды 16 °С, то есть при этой температуре пар становится насыщенным (t=Влажность воздуха в физике - формулы и определение с примерами). Это означает, что Влажность воздуха в физике - формулы и определение с примерами (см. табл. 1). Поскольку Влажность воздуха в физике - формулы и определение с примерами.

Как измерить влажность воздуха

Приборы для прямого измерения влажности воздуха называют гигрометрами. Наиболее часто употребляемые виды гигрометров — волосяной (волосной) и психрометрический. Принцип действия волосяного гигрометра (рис. 32.2) базируется на свойстве обезжиренного волоса увеличивать свою длину с увеличением влажности воздуха. Зимой волосяной гигрометр является основным прибором для измерения влажности воздуха вне помещений. Чаще всего используют гигрометр психрометрический — психрометр.

Его действие основано на двух фактах: 1) скорость испарения жидкости тем выше, чем ниже относительная влажность воздуха; 2) жидкость при испарении охлаждается. Психрометр состоит из двух термометров — сухого измеряющего температуру окружающей среды, и влажного — его колба обернута тканью, конец которой опущен в сосуд с водой (рис. 32.3). Вода из ткани испаряется, и влажный термометр показывает более низкую температуру, чем сухой. Чем ниже относительная влажность, тем быстрее испаряется жидкость и тем больше разница показаний сухого и влажного термометров. Относительную влажность определяют с помощью психрометрической таблицы (табл. 2). Например, сухой термометр показывает 15 °С, а влажный 10 °С; разность температур ∆ =t 5 C° . Из табл. 2 видим, что ϕ = 52 %.

Влажность воздуха в физике - формулы и определение с примерами

Таблица 2

Психрометрическая таблица

Влажность воздуха в физике - формулы и определение с примерами

Почему нужно следить за влажностью воздуха

Человек чувствует себя хорошо при относительной влажности 50– 65 %. Для его здоровья вредны как чрезмерно сухой, так и очень влажный воздух. Избыточная влажность способствует размножению различных болезнетворных грибков. В сухом воздухе человек быстро утомляется, у него першит в горле, пересыхают губы, становится сухой кожа и т. п.

Если воздух слишком сухой, то пыль, не связанная влагой, летает по всему помещению, и это особенно опасно для людей, страдающих аллергией. Недостаточная влажность приводит к гибели чувствительных к уровню влажности домашних растений; трещины на предметах из дерева, расстроенные музыкальные инструменты — тоже результат недостаточной влажности воздуха. Влажность воздуха важно учитывать в ткацком, кондитерском и других производствах; при хранении книг и картин; в лечении многих болезней и т. д.

Выводы:

Физические величины, характеризующие влажность воздуха

Абсолютная влажность — плотность водяного пара, содержащегося в воздухе:

Влажность воздуха в физике - формулы и определение с примерами

Относительная влажность равна выраженному в процентах отношению абсолютной влажности к плотности насыщенного водяного пара при данной температуре: Влажность воздуха в физике - формулы и определение с примерами

  • Приборы для измерения влажности называют гигрометрами.
  • Температуру, при которой относительная влажность воздуха достигает 100 %, то есть водяной пар в воздухе становится насыщенным, называют точкой росы.
  • Нанотехнологии и наноматериалы
  • Космология — основные понятия, формулы и определение
  • Что изучает физика
  • Как зарождалась физика 
  • Изопроцессы в физике
  • Твердые тела и их свойства в физике
  • Строение и свойства жидкостей в физике
  • Испарение и конденсация в физике

Понравилась статья? Поделить с друзьями:
  • Как найти процент годовых в день
  • Как найти относительную атомную массу вещества
  • Как найти бестселлеры на озоне
  • Как найти фильм по году выпуска
  • Как найти на электродвигателе начало конец обмотки