Как найти плотность раствора с массовой долей

Относительные плотности растворов и массовая доля растворённого вещества

Веще–

ство

Массовая
доля растворённого вещества

4

6

8

10

12

14

16

18

20

22

KCl

1,024

1,037

1,050

1,063

1,077

1,090

1,104

1,118

1,133

1,157

NaCl

1,029

1,044

1,058

1,073

1,089

1,119

1,119

1,135

1,151

1,160

NaNO3

1,025

1,039

1,053

1,067

1,082

1,097

1,119

1,127

1,143

1,159

H2SO4

1,025

1,038

1,052

1,066

1,080

1,095

1,109

1,124

1,139

1,155

Таблица 2

Пример записи результатов измерения

Испытуемый

раствор

Показания
ареометра

1

2

3

Среднее

KCl

1,096

1,098

1,097

1,097

В
таблице 1 для раствора KCl относительная
плотность 1,097 отсутствует, но указаны
величины: меньшая – 1,090 и большая -1,104.
В таком случае концентрацию находят
интерполяцией
– определением промежуточной величины
по двум крайним, поступая следующим
образом:

1. Находят разность величин относительных плотностей растворов и массовых долей, выраженных в процентах, по табличным данным:

1,104 – 16%

1,090 – 14%

_______________

0,014
– 2%

2.
Находят разность между величиной,
определенной ареометром, и меньшей
табличной: 1,097 – 1,090 = 0,007

Составляют
пропорцию: 0,014 – 2%

х = 1%

0,007
– х%

3.
Найденное число прибавляют к меньшей
массовой доле вещества в растворе,
взятой из таблицы: 14%+1%=15%, это отвечает
массовой доле растворённого вещества
в исследуемом растворе.

Результаты измерений
записываем в виде таблицы 2.

Опыт 2.
Определение молярной концентрации

эквивалента раствора щелочи титрованием
раствором кислоты известной концентрации.

Укрепленную
в штативе бюретку заполните до нулевой
отметки раствором соляной (хлороводородной)
кислоты известной концентрации. В
оттянутом кончике бюретки не должно
оставаться пузырьков воздуха. Пипеткой
налейте в три конические колбы по 20 мл
раствора едкого натра (NaOH),
концентрацию которого нужно определить.
В каждую из колб добавьте по 2-3 капли
индикатора – метилоранжа, который имеет
желтую
окраску в щелочной
среде.

Под бюреткой
на белый лист бумаги поставьте одну из
колб с раствором. Жидкость из бюретки
приливайте медленно по каплям, перемешивая
содержимое колбы. Постепенно щелочь
нейтрализуется кислотой. При этом
происходит реакция, описываемая
уравнением:

NaOH
+ HCl
= NaCl
+ H2O

Титрование
ведите до изменения окраски раствора
до оранжево-розового
цвета. Запишите объем раствора кислоты,
пошедшей на титрование, с точностью до
0,1 мл. Титрование проведите 3 раза, каждый
раз начиная титрование от нулевой
метки. Результаты титрования не должны
отличаться друг от друга более чем на
0,1 мл. Взяв среднее арифметическое
значение объема раствора кислоты,
пошедшего на титрование, рассчитайте
молярную концентрацию эквивалента
(формула 11) и титр раствора едкого натра
(формуле 10).

Результаты
опыта оформите в виде таблицы 2.

Таблица 2.

Объём
взятого раствора щелочи, см3

Объем
р-ра кислоты, пошедший на титрование,
см3

Среднее значение

см3

1
– е титрование

2
– е титрование

3
– е титрование

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В этой статье мы коснемся нескольких краеугольных понятий в химии, без которых совершенно невозможно
решение задач. Старайтесь понять смысл физических величин, чтобы усвоить эту тему.

Я постараюсь приводить как можно больше примеров по ходу этой статьи, в ходе изучения вы увидите множество примеров
по данной теме.

Моль в химии

Относительная атомная масса — Ar

Представляет собой массу атома, выраженную в атомных единицах массы. Относительные атомные массы указаны в периодической
таблице Д.И. Менделеева. Так, один атом водорода имеет атомную массу = 1, кислород = 16, кальций = 40.

Относительная молекулярная масса — Mr

Относительная молекулярная масса складывается из суммы относительных атомных масс всех атомов, входящих в состав вещества.
В качестве примера найдем относительные молекулярные массы кислорода, воды, перманганата калия и медного купороса:

Mr (O2) = (2 × Ar(O)) = 2 × 16 = 32

Mr (H2O) = (2 × Ar(H)) + Ar(O) = (2 × 1) + 16 = 18

Mr (KMnO4) = Ar(K) + Ar(Mn) + (4 × Ar(O)) = 39 + 55 + (4 * 16) = 158

Mr (CuSO4*5H2O) = Ar(Cu) + Ar(S) + (4 × Ar(O)) + (5 × ((Ar(H) × 2) +
Ar(O))) = 64 + 32 + (4 × 16) + (5 × ((1 × 2) + 16)) = 160 + 5 * 18 = 250

Моль и число Авогадро

Моль — единица количества вещества (в системе единиц СИ), определяемая как количество вещества, содержащее столько же структурных единиц
этого вещества (молекул, атомов, ионов) сколько содержится в 12 г изотопа 12C, т.е. 6 × 1023.

Число Авогадро (постоянная Авогадро, NA) — число частиц (молекул, атомов, ионов) содержащихся в одном моле любого вещества.

Число Авогадро

Больше всего мне хотелось бы, чтобы вы поняли физический смысл изученных понятий. Моль — международная единица количества вещества, которая
показывает, сколько атомов, молекул или ионов содержится в определенной массе или конкретном объеме вещества. Один моль любого вещества
содержит 6.02 × 1023 атомов/молекул/ионов — вот самое важное, что сейчас нужно понять.

Иногда в задачах бывает дано число Авогадро, и от вас требуется найти, какое вам дали количество вещества (моль). Количество вещества в химии
обозначается N, ν (по греч. читается «ню»).

Рассчитаем по формуле: ν = N/NA количество вещества 3.01 × 1023 молекул воды и 12.04 × 1023 атомов углерода.

Число Авогадро пример

Мы нашли количества вещества (моль) воды и углерода. Сейчас это может показаться очень абстрактным, но, иногда не зная, как найти
количество вещества, используя число Авогадро, решение задачи по химии становится невозможным.

Молярная масса — M

Молярная масса — масса одного моля вещества, выражается в «г/моль» (грамм/моль). Численно совпадает с изученной нами ранее
относительной молекулярной массой.

Рассчитаем молярные массы CaCO3, HCl и N2

M (CaCO3) = Ar(Ca) + Ar(C) + (3 × Ar(O)) = 40 + 12 + (3 × 16) = 100 г/моль

M (HCl) = Ar(H) + Ar(Cl) = 1 + 35.5 = 36.5 г/моль

M (N2) = Ar(N) × 2 = 14 × 2 = 28 г/моль

Полученные знания не должны быть отрывочны, из них следует создать цельную систему. Обратите внимание: только что мы рассчитали
молярные массы — массы одного моля вещества. Вспомните про число Авогадро.

Получается, что, несмотря на одинаковое число молекул в 1 моле (1 моль любого вещества содержит 6.02 × 1023 молекул),
молекулярные массы отличаются. Так, 6.02 × 1023 молекул N2 весят 28 грамм, а такое же количество молекул
HCl — 36.5 грамм.

Это связано с тем, что, хоть количество молекул одинаково — 6.02 × 1023, в их состав входят разные атомы, поэтому и
массы получаются разные.

Молярная масса

Часто в задачах бывает дана масса, а от вас требуется рассчитать количество вещества, чтобы перейти к другому веществу в реакции.
Сейчас мы определим количество вещества (моль) 70 грамм N2, 50 грамм CaCO3, 109.5 грамм HCl. Их молярные
массы были найдены нам уже чуть раньше, что ускорит ход решения.

Молярная масса и количество вещества

ν (CaCO3) = m(CaCO3) : M(CaCO3) = 50 г. : 100 г/моль = 0.5 моль

ν (HCl) = m(HCl) : M(HCl) = 109.5 г. : 36.5 г/моль = 3 моль

Иногда в задачах может быть дано число молекул, а вам требуется рассчитать массу, которую они занимают. Здесь нужно использовать
количество вещества (моль) как посредника, который поможет решить поставленную задачу.

Предположим нам дали 15.05 × 1023 молекул азота, 3.01 × 1023 молекул CaCO3 и 18.06 × 1023 молекул
HCl. Требуется найти массу, которую составляет указанное число молекул. Мы несколько изменим известную формулу, которая поможет нам связать
моль и число Авогадро.

Молярная масса, количество вещества и число Авогадро

Теперь вы всесторонне посвящены в тему. Надеюсь, что вы поняли, как связаны молярная масса, число Авогадро и количество вещества.
Практика — лучший учитель. Найдите самостоятельно подобные значения для оставшихся CaCO3 и HCl.

Молярный объем

Молярный объем — объем, занимаемый одним молем вещества. Примерно одинаков для всех газов при стандартной температуре
и давлении составляет 22.4 л/моль. Он обозначается как — VM.

Подключим к нашей системе еще одно понятие. Предлагаю найти количество вещества, количество молекул и массу газа объемом
33.6 литра. Поскольку показательно молярного объема при н.у. — константа (22.4 л/моль), то совершенно неважно, какой газ мы
возьмем: хлор, азот или сероводород.

Запомните, что 1 моль любого газа занимает объем 22.4 литра. Итак, приступим к решению задачи. Поскольку какой-то газ
все же надо выбрать, выберем хлор — Cl2.

Молярная масса, количество вещества, число Авогадро и молярный объем

Молярная масса, количество вещества, число Авогадро и молярный объем

Моль (количество вещества) — самое гибкое из всех понятий в химии. Количество вещества позволяет вам перейти и к
числу Авогадро, и к массе, и к объему. Если вы усвоили это, то главная задача данной статьи — выполнена :)

Количество вещества в химии

Относительная плотность и газы — D

Относительной плотностью газа называют отношение молярных масс (плотностей) двух газов. Она показывает, во сколько раз одно вещество
легче/тяжелее другого. D = M (1 вещества) / M (2 вещества).

В задачах бывает дано неизвестное вещество, однако известна его плотность по водороду, азоту, кислороду или
воздуху. Для того чтобы найти молярную массу вещества, следует умножить значение плотности на молярную массу
газа, по которому дана плотность.

Запомните, что молярная масса воздуха = 29 г/моль. Лучше объяснить, что такое плотность и с чем ее едят на примере.
Нам нужно найти молярную массу неизвестного вещества, плотность которого по воздуху 2.5

Плотность

Предлагаю самостоятельно решить следующую задачку (ниже вы найдете решение): «Плотность неизвестного вещества по
кислороду 3.5, найдите молярную массу неизвестного вещества»

Относительная плотность

Относительная плотность и водный раствор — ρ

Пишу об этом из-за исключительной важности в решении
сложных задач, высокого уровня, где особенно часто упоминается плотность. Обозначается греческой буквой ρ.

Плотность является отражением зависимости массы от вещества, равна отношению массы вещества к единице его объема. Единицы
измерения плотности: г/мл, г/см3, кг/м3 и т.д.

Для примера решим задачку. Объем серной кислоты составляет 200 мл, плотность 1.34 г/мл. Найдите массу раствора. Чтобы не
запутаться в единицах измерения поступайте с ними как с самыми обычными числами: сокращайте при делении и умножении — так
вы точно не запутаетесь.

Задача на плотность

Иногда перед вами может стоять обратная задача, когда известна масса раствора, плотность и вы должны найти объем. Опять-таки,
если вы будете следовать моему правилу и относится к обозначенным условным единицам «как к числам», то не запутаетесь.

В ходе ваших действий «грамм» и «грамм» должны сократиться, а значит, в таком случае мы будем делить массу на плотность. В противном случае
вы бы получили граммы в квадрате :)

К примеру, даны масса раствора HCl — 150 грамм и плотность 1.76 г/мл. Нужно найти объем раствора.

Плотность раствора

Массовая доля — ω

Массовой долей называют отношение массы растворенного вещества к массе раствора. Важно заметить, что в понятие раствора входит
как растворитель, так и само растворенное вещество.

Массовая доля вычисляется по формуле ω (вещества) = m (вещества) / m (раствора). Полученное число будет показывать массовую долю
в долях от единицы, если хотите получить в процентах — его нужно умножить на 100%. Продемонстрирую это на примере.

Расчет массовой доли

Решим несколько иную задачу и найдем массу чистой уксусной кислоты в широко известной уксусной эссенции.

Массовая доля

© Беллевич Юрий Сергеевич 2018-2023

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Расчеты массы (объема, количества вещества) продукта реакции, если одно из веществ дано в виде раствора с определенной массовой долей растворенного вещества

Для расчета массы (объема, количества вещества) продукта реакции, если данные по одному из веществ представлены в виде раствора с определенной массовой долей этого растворенного вещества, следует воспользоваться нижеследующим алгоритмом:

1) Прежде всего следует найти массу растворенного вещества. Возможны две ситуации:

* В условии даны масса раствора и массовая доля растворенного вещества (концентрация). В этом случае масса растворенного вещества рассчитывается по формуле:

формула расчета массы растворенного вещества, зная массу раствора и его концентрацию

* В условии даны объем раствора вещества, плотность этого раствора и массовая доля растворенного вещества в этом растворе. В таком случае следует воспользоваться формулой для расчета массы раствора:

m(р-ра) = ρ(р-ра) ∙V(р-ра)

После чего следует рассчитать массу растворенного вещества по формуле 1.

2) Рассчитать количество вещества (моль) участника реакции, масса которого стала известна из расчетов выше. Для этого воспользоваться формулой:

n(в-ва) = m(в-ва)/M(в-ва), где М - молярная масса вещества

3) Записать уравнение реакции и убедиться в правильности расставленных коэффициентов.

4) Рассчитать количество моль интересующего участника реакции исходя из известного количества другого участника реакции, зная, что количества веществ любых двух участников реакции A и B относятся друг к другу как коэффициенты перед этими же веществами в уравнении реакции, то есть:

n(A)/n(B) = k(A)/k(B)

Если  в условии требовалось рассчитать количество вещества, то действия на этом заканчиваются. Если же требуется найти его массу или объем, следует переходить к следующему пункту.

5) Зная количество вещества, определенное в п.4, мы можем рассчитать его массу по формуле:

Расчет количества продукта по данным раствора другого вещества

Также, если вещество является газообразным и речь идет о нормальных условиях (н.у.), его объем может быть рассчитан по формуле:

V(газа) = Vm ∙ n(газа) = n(газа) ∙ 22,4 л/моль

Рассмотрим пару примеров расчетных задач по этой теме.

Пример 1

Рассчитайте массу осадка, который образуется при добавлении к 147 г 20%-ного раствора серной кислоты избытка раствора нитрата бария.

Решение:

1) Рассчитаем массу чистой серной кислоты:

m(H2SO4) = w(H2SO4) ∙ m(р-ра H2SO4)/100% = 147 г ∙ 20% /100%  = 29,4 г

2) Рассчитаем количество вещества (моль) серной кислоты:

n(H2SO4) = m(H2SO4) / M(H2SO4) = 29,4 г/98 г/моль =  0,3 моль.

3) Запишем уравнение взаимодействия серной кислоты с нитратом бария:

H2SO4 + Ba(NO3)2 = BaSO4↓ + 2HNO3

4) В результате расчетов стало известно количество вещества серной кислоты. Осадок представляет собой сульфат бария. Зная, что:

n(BaSO4)/n(H2SO4) = k(BaSO4)/k(H2SO4), где n — количество вещества, а k — коэффициент в уравнении реакции,

можем записать:

n(BaSO4) = n(H2SO4) ∙ k(H2SO4)/k(BaSO4) = 0,3 моль ∙ 1/1 = 0,3 моль

5) Тогда масса осадка, т.е. сульфата бария, может  быть рассчитана следующим образом:

m(BaSO4) = M(BaSO4) ∙ n(BaSO4) = 233 г/моль ∙ 0,3 моль = 69,9 г

Пример 2

Какой объем газа (н.у.) выделится при растворении необходимого количества сульфида железа (II) в 20%-ном растворе соляной кислоты с плотностью 1,1 г/мл и объемом 83 мл.

Решение:

1) Рассчитаем массу раствора соляной кислоты:

m(р-ра HCl) = V(р-ра HCl) ∙ ρ(р-ра HCl) = 83 мл ∙ 1,1 г/мл = 91,3 г

Далее рассчитаем массу чистого хлороводорода, входящего в состав кислоты:

m(HCl) = m(р-ра HCl) ∙ w(HCl)/100% = 91,3 г ∙ 20%/100% = 18,26 г

2) Рассчитаем количество вещества хлороводорода:

n(HCl) = m(HCl)/M(HCl) = 18,26 г/36,5 г/моль = 0,5 моль;

3) Запишем уравнение реакции сульфида железа (II) с соляной кислотой:

FeS + 2HCl = FeCl2 + H2S↑

4) Исходя из уравнения реакции следует, что количество прореагировавшей соляной кислоты с количеством выделившегося сероводорода связано соотношением:

n(HCl)/n(H2S) = 2/1, где 2 и 1 — коэффициенты перед HCl и и H2S соответственно

Следовательно:

n(H2S) = n(HCl)/2 = 0,5/2 = 0,25 моль

5) Объем любого газа, находящегося при нормальных условиях, можно рассчитать по формуле V(газа) = Vm ∙ n(газа), тогда:

V(H2S) = Vm ∙ n(H2S) = 22,4 л/моль ∙ 0,25 моль = 5,6 л

Автор: С.И. Широкопояс https://scienceforyou.ru/

В ПОМОЩЬ МОЛОДОМУ
УЧИТЕЛЮ

Расчеты концентрации
растворенных веществ
в растворах

Решение задач на разбавление растворов особой
сложности не представляет, однако требует
внимательности и некоторого напряжения. Тем не
менее можно упростить решение этих задач,
используя закон разбавления, которым пользуются
в аналитической химии при титровании растворов.
Во всех задачниках по химии показаны решения
задач, представленных как образец решения, и во
всех решениях используется закон разбавления,
принцип которого состоит в том, что количество
растворенного вещества и масса m в исходном и разбавленном
растворах остаются неизменными. Когда мы решаем
задачу, то это условие держим в уме, а расчет
записываем по частям и постепенно, шаг за шагом,
приближаемся к конечному результату.
Рассмотрим проблему решения задач на
разбавление, исходя из следующих соображений.

• Количество растворенного вещества :

= cV,

где c – молярная концентрация
растворенного вещества в моль/л, V – объем
раствора в л.

• Масса растворенного вещества m(р.в.):

m(р. в.) = m(р-ра)•,

где m(р-ра) – масса раствора в г, – массовая доля
растворенного вещества.
Обозначим в исходном (или неразбавленном)
растворе величины c, V, m(р-ра), через с1, V1,
m
1(р-ра), 1,
а в разбавленном растворе – через с2, V2,
m
2(р-ра), 2.
Составим уравнения разбавления растворов. Левые
части уравнений отведем для исходных
(неразбавленных) растворов, а правые части – для
разбавленных растворов.
Неизменность количества растворенного вещества
при разбавлении будет иметь вид:

Сохранение массы m(р. в.):

Количество растворенного вещества связано с его массой m
(р. в.) cоотношением:

= m(р.
в.)/M(р. в.),

где M(р. в.) – молярная масса растворенного
вещества в г/моль.
Уравнения разбавления (1) и (2) связаны между собой
следующим образом:

с1V1 = m2(р-ра)•2/M(р. в.),

m1(р-ра)•1 = с2V2M(р.
в.).

Если в задаче известен объем растворенного
газа V(газа), то его количество вещества связано с объемом
газа (н.у.) отношением:

= V(газа)/22,4.

Уравнения разбавления примут соответственно
вид:

V(газа)/22,4 = с2V2,

V(газа)/22,4 = m2(р-ра)•2/M(газа).

Если в задаче известны масса вещества или
количество вещества, взятого для приготовления
раствора, то в левой части уравнения разбавления
ставится m(р. в.) или , в зависимости от условия задачи.
Если по условию задачи требуется объединить
растворы разной концентрации одного и того же
вещества, то в левой части уравнения массы
растворенных веществ суммируются.
Довольно часто в задачах используется плотность
раствора (г/мл). Но
поскольку молярная концентрация с
измеряется в моль/л, то и плотность следует
выражать в г/л, а объем V – в л.
Приведем примеры решения «образцовых» задач.

Задача 1. Какой
объем 1М раствора серной кислоты надо взять,
чтобы получить 0,5 л 0,1М
H2SO4?

Дано:

с1 = 1 моль/л,
V2 = 0,5 л,
с2 = 0,1 моль/л.

Найти:

V1 = ?

Решение

V1с1 = V2с2,

V1•1 = 0,5•0,1; V1 = 0,05 л,
или 50 мл.

Ответ. V1 = 50 мл.

Задача 2 ([1],
№ 4.23). Определите массу раствора с массовой
долей
(СuSО4)
10% и массу воды, которые потребуются для
приготовления раствора массой 500 г с массовой
долей

(СuSО4) 2%.


Дано:

1 = 0,1,
m2(р-ра) = 500 г,
2 = 0,02.

Найти:

m1(р-ра) = ?
m(H2O) = ?

Решение

m1(р-ра)•1 = m2(р-ра)•2,

m1(р-ра)•0,1 = 500•0,02.

Отсюда m1(р-ра) = 100 г.

Найдем массу добавляемой воды:

m(H2O) = m2(р-ра) – m1(р-ра),

m(H2O) = 500 – 100 = 400 г.

Ответ. m1(р-ра) = 100 г, m(H2O)
= 400 г.

Задача 3 ([1],
№ 4.37). Какой объем раствора с массовой долей
серной кислоты 9,3%
(
= 1,05 г/мл)
потребуется для приготовления 0,35М
раствора H2SO4
объемом 40 мл?

Дано:

1 = 0,093,
1 = 1050 г/л,
с2 = 0,35 моль/л,
V2 = 0,04 л,
М(H2SO4) = 98 г/моль.

Найти:

V1 = ?

Решение

m1(р-ра)•1 = V2с2М(H2SO4),

V111
= V2 с2М(H2SO4).

Подставляем значения известных величин:

V1•1050•0,093 = 0,04•0,35•98.

Отсюда V1 = 0,01405 л, или 14,05 мл.

Ответ. V1 = 14,05 мл.

Задача 4 [2]. Какой
объем хлороводорода (н.у.) и воды потребуется,
чтобы приготовить 1 л раствора (
= 1,05 г/см3), в котором
содержание хлороводорода в массовых долях равно
0,1
(или 10%)?

Дано:

V(р-ра) = 1 л,
(р-ра) = 1050 г/л,
= 0,1,
М(HCl) = 36,5 г/моль.

Найти:

V(HCl) = ?
m(H2O) = ?

Решение

V(HCl)/22,4 = m(р-ра)•/М(HCl),

V(HCl)/22,4 = V(р-ра)•(р-ра)•/М(HCl),

V(HCl)/22,4 = 1•1050•0,1/36,5.

Отсюда V(HCl) = 64,44 л.
Найдем массу добавляемой воды:

m(H2O) = m(р-ра) – m(HСl),

m(H2O) = V(р-ра)•(р-ра) – V(HCl)/22,4• М(HCl),

m(H2O) = 1•1050 – 64,44/22,4•36,5 = 945 г.

Ответ. 64,44 л HCl и 945 г воды.

Задача 5 ([1],
№ 4.34). Определите молярную концентрацию
раствора с массовой долей гидроксида натрия 0,2 и
плотностью 1,22 г/мл.

Дано:

= 0,2,
= 1220 г/л,
М(NaOH) = 40 г/моль.

Найти:

c = ?

Решение

m(р-ра)• = сVМ(NaOH),

m(р-ра)• = сm(р-ра)•М(NaOH)/.

Разделим обе части уравнения на m(р-ра) и
подставим численные значения величин.

0,2 = c•40/1220.

Отсюда c = 6,1 моль/л.

Ответ. c = 6,1 моль/л.

Задача 6 ([1],
№ 4.30). Определите молярную концентрацию
раствора, полученного при растворении сульфата
натрия массой 42,6 г в воде массой 300 г, если
плотность полученного раствора равна 1,12 г/мл.

Дано:

m(Na2SO4) = 42,6 г,
m(H2O) = 300 г,
= 1120 г/л,
M(Na2SO4) = 142 г/моль.

Найти:

c = ?

Решение

m(Na2SO4) = сVМ(Na2SO4).

Подставляя численные значения, получим:

42,6 = с•(42,6 + 300)/1120•142.

Отсюда с = 0,98 моль/л.

Ответ. с = 0,98 моль/л.

Задача 7 ([1],
№ 4.19). В лаборатории имеются растворы с
массовой долей хлорида натрия 10% и 20%. Какую массу
каждого раствора надо взять для получения
раствора с массовой долей соли 12% и массой 300 г?

Дано:

1 = 0,1,
2 = 0,2,
3 = 0,12,
m3(р-ра) = 300 г.

Найти:

m1(р-ра) = ?
m2(р-ра) = ?

Решение

m1(р-ра)•1 + m2(р-ра)•2 = m3(р-ра)•3,

m1(р-ра)•0,1 + m2(р-ра)•0,2
= 300•0,12.

Поскольку m1(р-ра) + m2(р-ра) = 300
г, то получаем систему из двух уравнений с двумя
неизвестными. Решая совместно два уравнения,
находим:

m1(р-ра) = 240 г, m2(р-ра) =
60 г.

Ответ. m1(р-ра) = 240 г, m2(р-ра)
= 60 г.

Задача 8 ([1],
№ 4.48). В воде массой 100 г при температуре 0 °С
растворяется фторид натрия массой 4,1 г, а при
температуре 40 °С – массой 4,5 г. Какая масса
фторида натрия выпадет в осадок при охлаждении
насыщенного при температуре 40 °С раствора
NaF
массой 500 г до температуры 0 °С?

Дано:

m1(NaF) = 4,1 г,
m2(NaF) = 4,5 г,
m2(р-ра) = 500 г,
– массовая доля
NaF,
(1 – ) – массовая
доля воды.

Найти:

m(NaF) = ?

Решение

m(NaF) = m2(р-ра) – m1(р-ра).

Поскольку m22О) (40 °С) = m12О)
(0 °С), то можно записать:

m2(р-ра)•(1 – 2) = m1(р-ра)•(1 – 1).

Подставляем значения:

500•(1 – 4,5/(4,5 + 100)) = m1(р-ра)•(1 –
4,1/(4,1 + 100)).

Отсюда m1(р-ра) = 104,1/104,5•500 = 498,09 г,

m(NaF) = 500 – 498,09 = 1,91 г.

Ответ. m(NaF) = 1,91 г.

ЛИТЕРАТУРА

1. Хомченко Г.П., Хомченко И.Г. Задачи по химии
для поступающих в вузы. М.: Новая волна, 2002.
2. Фельдман Ф.Г., Рудзитис Г.Е. Химия-9. М.:
Просвещение, 1990, с. 166.

В.И.МАРТЫНОВ,
учитель химии
(пос. Архипо-Осиповка, Краснодарский край)

Материалы из методички: Сборник задач по теоретическим основам химии для студентов заочно-дистанционного отделения / Барботина Н.Н., К.К. Власенко, Щербаков В.В. – М.: РХТУ им. Д.И. Менделеева, 2007. -155 с.

Растворы. Способы выражения концентрации растворов

Способы выражения концентрации растворов

Существуют различные способы выражения концентрации растворов.

Массовая доля ω компонента раствора определяется как отношение массы данного компонента Х, содержащегося в данной массе раствора к массе всего раствора m. Массовая доля – безразмерная величина, её выражают в долях от единицы:

ωр.в. = mр.в./mр-ра (0 < ωр.в. < 1)                (1)

Массовый процент представляет собой массовую долю, умноженную на 100:

ω(Х) = m(Х)/m · 100% (0% < ω(Х) < 100%)                (2)

где ω(X) – массовая доля компонента раствора X; m(X) – масса компонента раствора X; m – общая масса раствора.

Мольная доля χ компонента раствора равна отношению количества вещества данного компонента X к суммарному количеству вещества всех компонентов в растворе.

Для бинарного раствора, состоящего из растворённого вещества Х и растворителя (например, Н2О), мольная доля растворённого вещества равна:

χ(X) = n(X)/(n(X) + n(H2O))                (3)

Мольный процент представляет мольную долю, умноженную на 100:

χ(X), % = (χ(X)·100)%                (4)

Объёмная доля φ компонента раствора определяется как отношение объёма данного компонента Х к общему объёму раствора V. Объёмная доля – безразмерная величина, её выражают в долях от единицы:

φ(Х) = V(Х)/V  (0 < φ(Х) < 1)             (5)

Объёмный процент представляет собой объёмную долю, умноженную на 100.

φ(X), % = (φ(X)·100)%                

Молярность (молярная концентрация) C или Cм определяется как отношение количества растворённого вещества X, моль к объёму раствора V, л:

Cм(Х) = n(Х)/V                   (6)

Основной единицей молярности является моль/л или М. Пример записи молярной концентрации: Cм(H2SO4) = 0,8 моль/л или 0,8М.

Нормальность Сн определяется как отношение количества эквивалентов растворённого вещества X к объёму раствора V:

Cн(Х) = nэкв.(Х)/V                   (7)

Основной единицей нормальности является моль-экв/л. Пример записи нормальной концентрации: Сн(H2SO4) = 0,8 моль-экв/л или 0,8н.

Титр Т показывает, сколько граммов растворённого вещества X содержится в 1 мл или в 1 см3 раствора:

T(Х) = m(Х)/V                   (8)

где m(X) – масса растворённого вещества X, V – объём раствора в мл.

Моляльность раствора μ показывает количество растворённого вещества X в 1 кг растворителя:

μ(Х) = n(Х)/mр-ля                   (9)

где n(X) – число моль растворённого вещества X, mр-ля – масса растворителя в кг.

Мольное (массовое и объёмное) отношение – это отношение количеств (масс и объёмов соответственно) компонентов в растворе.

Необходимо иметь ввиду, что нормальность Сн всегда больше или равна молярности См. Связь между ними описывается выражением:

См = Сн · f(Х)               (10)

Для получения навыков пересчёта молярности в нормальность и наоборот рассмотрим табл. 1. В этой таблице приведены значения молярности См, которые необходимо пересчитать в нормальность Сн и величины нормальности Сн, которые следует пересчитать в молярность См.

Пересчёт осуществляем по уравнению (10). При этом нормальность раствора находим по уравнению:

Сн = См/f(Х)                   (11)

Результаты расчётов приведены в табл. 2.

Таблица 1. К определению молярности и нормальности растворов

Тип химического превращения См Сн Сн См
Реакции обмена 0,2 M Na2SO4 ? 6 н FeCl3 ?
1,5 M Fe2(SO4)3 ? 0,1 н Ва(ОН)2 ?
Реакции окисления-восстановления 0,05 М KMnO4

в кислой среде

? 0,03 М KMnO4

в нейтральной среде

?

Таблица 2

Значения молярности и нормальности растворов

Тип химического превращения См Сн Сн См
Реакции обмена 0,2M Ma2SO4 0,4н 6н FeCl3
1,5M Fe2(SO4)3 0,1н Ва(ОН)2 0,05М
Реакции окисления-восстановления 0,05М KMnOв кислой среде 0,25н 0,03М KMnO4

в нейтральной среде

0,01М

Между объёмами V и нормальностями Сн реагирующих веществ существует соотношение:

V1 Сн,1 =VСн,2                    (12)

Примеры решения задач

Задача 1. Рассчитайте молярность, нормальность, моляльность, титр, мольную долю и мольное отношение для 40 мас.% раствора серной кислоты, если плотность этого раствора равна 1,303 г/см3.

Решение.

Масса 1 литра раствора равна М = 1000·1,303 = 1303,0 г.

Масса серной кислоты в этом растворе: m = 1303·0,4 = 521,2 г.

Молярность раствора См = 521,2/98 = 5,32 М.

Нормальность раствора Сн = 5,32/(1/2) = 10,64 н.

Титр раствора Т = 521,2/1000 = 0,5212 г/см3.

Моляльность μ = 5,32/(1,303 – 0,5212) = 6,8 моль/кг воды.

Обратите внимание на то, что в концентрированных растворах моляльность (μ) всегда больше молярности (См). В разбавленных растворах наоборот.

Масса воды в растворе: m = 1303,0 – 521,2 = 781,8 г.

Количество вещества воды: n = 781,8/18 = 43,43 моль.

Мольная доля серной кислоты: χ = 5,32/(5,32+43,43) = 0,109. Мольная доля воды равна 1– 0,109 = 0,891.

Мольное отношение равно 5,32/43,43 = 0,1225.

Задача 2. Определите объём 70 мас.% раствора серной кислоты (r = 1,611 г/см3), который потребуется для приготовления 2 л 0,1 н раствора этой кислоты.

Решение.

2 л 0,1н раствора серной кислоты содержат 0,2 моль-экв, т.е. 0,1 моль или 9,8 г.

Масса 70%-го раствора кислоты m = 9,8/0,7 = 14 г.

Объём раствора кислоты V = 14/1,611 = 8,69 мл.

Задача 3. В 5 л воды растворили 100 л аммиака (н.у.). Рассчитать массовую долю и молярную концентрацию NH3 в полученном растворе, если его плотность равна 0,992 г/см3.

Решение.

Масса 100 л аммиака (н.у.) m = 17·100/22,4 = 75,9 г.

Масса раствора m = 5000 + 75,9 = 5075,9 г.

Массовая доля NH3 равна 75,9/5075,9 = 0,0149 или 1,49 %.

Количество вещества NH3 равно 100/22,4 = 4,46 моль.

Объём раствора V = 5,0759/0,992 = 5,12 л.

Молярность раствора См = 4,46/5,1168 = 0,872 моль/л.

Задача 4. Сколько мл 0,1М раствора ортофосфорной кислоты потребуется для нейтрализации 10 мл 0,3М раствора гидроксида бария?

Решение.

Переводим молярность в нормальность:

0,1 М Н3РО4  0,3 н; 0,3 М Ва(ОН)2  0,6 н.

Используя выражение (12), получаем: V(H3P04)=10·0,6/0,3 = 20 мл.

Задача 5. Какой объем, мл  2 и 14 мас.% растворов NaCl потребуется для приготовления 150 мл 6,2 мас.% раствора хлорида натрия?

Плотности растворов NaCl:

С, мас.% 2 6 7 14
ρ, г/см3 2,012 1,041 1,049 1,101

Решение.

Методом интерполяции рассчитываем плотность 6,2 мас.% раствора NaCl:

6,2% =6% + 0,2(7% —6% )/(7 – 6) = 1,0410 + 0,0016 = 1,0426 г/см3.

Определяем массу раствора: m = 150·1,0426 = 156,39 г.

Находим массу NaCl в этом растворе: m = 156,39·0,062 = 9,70 г.

Для расчёта объёмов 2 мас.% раствора (V1) и 14 мас.% раствора (V2) составляем два уравнения с двумя неизвестными (баланс по массе раствора и по массе хлорида натрия):

156,39 = V1 1,012 + V2 1,101 ,

9,70 = V1·1,012·0,02 + V2·1,101·0,14 .

Решение системы этих двух уравнений дает V1 =100,45 мл и V2 = 49,71 мл.

Задачи для самостоятельного решения

3.1. Рассчитайте нормальность 2 М раствора сульфата железа (III), взаимодействующего со щёлочью в водном растворе.

12 н.

3.2. Определите молярность 0,2 н раствора сульфата магния, взаимодействующего с ортофосфатом натрия в водном растворе.

0,1 M.

3.3. Рассчитайте нормальность 0,02 М раствора KMnO4, взаимодействующего с восстановителем в нейтральной среде.

0,06 н.

3.4. Определите молярность 0,1 н раствора KMnO4, взаимодействующего с восстановителем в кислой среде.

0,02 M.

3.5. Рассчитать нормальность 0,2 М раствора K2Cr2O7, взаимодействующего с восстановителем в кислой среде.

1,2 M.

3.6. 15 г CuSO4·5H2O растворили в 200 г 6 мас.% раствора CuSO4. Чему равна массовая доля сульфата меди, а также молярность, моляльность и титр полученного раствора, если его плотность составляет 1,107 г/мл?

0,1; 0,695М; 0,698 моль/кг; 0,111 г/мл.

3.7. При выпаривании 400 мл 12 мас.% раствора KNO3 (плотность раствора 1,076 г/мл) получили 2М раствор нитрата калия. Определить объём полученного раствора, его нормальную концентрацию и титр.

255 мл; 2 н; 0,203 г/мл.

3.8. В 3 л воды растворили 67,2 л хлороводорода, измеренного при нормальных условиях. Плотность полученного раствора равна 1,016 г/мл. Вычислить массовую, мольную долю растворённого вещества и мольное отношение растворённого вещества и воды в приготовленном растворе.

0,035; 0,0177; 1:55,6.

3.9. Сколько граммов NaCl надо добавить к 250 г 6 мас.% раствору NaCl, чтобы приготовить 500 мл раствора хлорида натрия, содержащего 16 мас.% NaCl? Плотность полученного раствора составляет 1,116 г/мл. Определить молярную концентрацию и титр полученного раствора.

74,28 г; 3,05 М; 0,179 г/мл.

3.10. Определить массу воды, в которой следует растворить 26 г ВaCl2·2H2O для получения 0,55М раствора ВaCl2 (плотность раствора 1,092 г/мл). Вычислить титр и моляльность полученного раствора.

192,4 г; 0,111 г/мл; 0,56 моль/кг.

Понравилась статья? Поделить с друзьями:
  • Как найти прошивку для своего устройства
  • Как найти размеры коробки
  • Как найти массу имея количество молекул
  • Потерял телефон андроид как найти через компьютер
  • Как можно через видео найти песню