Как найти плотность внутри вещества

Ключевые ситуации при изучении физики. Сплавы

Наибольшие трудности при изучении физики учащиеся испытывают при решении задач, т.е. когда требуется применить знания. Эти трудности представляются ребятам настолько большими, что многие из них отказываются даже от попыток решать задачи. Отказ от решения задач еще как-то «проходил» во времена устных экзаменов по физике. Но теперь – как при прохождении Государственной итоговой аттестации, выполнении заданий Единого государственного экзамена или тестирования при поступлении – проверяют именно умение применять полученные знания, а не декларировать их.

Понимание смысла физических законов – главная цель школьного курса физики, но понимание этих законов может родиться только в осознанной деятельности по применению этих законов. Школьникам же часто предлагают алгоритмы решения задач, которые провоцируют бездумное, автоматическое применение физических формул.
Преодолеть эту принципиальную трудность можно, только неоднократно применяя законы физики в тщательно отобранных простейших ситуациях, когда смысл этих законов кристально ясен.

В школьном курсе физики тысячи задач. Однако, если посмотреть на все множество этих задач «с высоты птичьего полета», то нетрудно заметить, что подавляющее их большинство группируются вокруг нескольких десятков типичных учебных ситуаций. Эти ситуации можно назвать ключевыми. А овладение ключевыми ситуациями «даст ключи» к решению задач.

Ключевые ситуации – важнейшая связь между «теорией» и «задачами». Без этой связи теория мертва для школьника, а задачи представляются ему случайной россыпью неинтересных загадок. Однако пока еще некоторые учителя «дают» своим ученикам «теорию» отдельно, а «задачи» отдельно. После такого разрезания по живому от живой физики остаются только мертвые формулы-шаблоны для примитивных задач на подстановку.

Изучение ключевых ситуаций – это живой мост между «теорией» и «задачами», причем мост с двухсторонним движением. С одной стороны, задачи рождаются при изучении ключевых ситуаций, в которых наглядно проявляется действие физических законов, с другой стороны, благодаря решению задач на основе ключевой ситуации теория осознается, т.е. становится действенной силой, а не пассивным набором фактов и формул.
И еще одна очень важная роль ключевых ситуаций. Дело в том, что результатом изучения школьного курса физики должен быть не набор решенных задач (это быстро забывается), а понимание физических законов и физическая интуиция, которая может развиваться именно при рассмотрении ключевых ситуаций.

Приложение 1. Фрагмент урока с выделением ключевой ситуации по теме «Плотность».
Приложение 2. Фрагмент урока с выделением ключевой ситуации по теме «Полые тела».
Приложение 3. Дополнительный материал по теме «Сплавы».

Приведем фрагмент урока с выделение ключевой ситуации по теме «Сплавы».

Фрагмент урока по теме «СПЛАВЫ»

Учитель. Тема урока зашифрована ребусом. Кто первый раскроет секрет?

Ученики.

Учитель. Тема урока «Сплавы».
Сплав — макроскопически однородная смесь двух или большего числа химических элементов с преобладанием металлических компонентов. Основной или единственной фазой сплава, как правило, является твёрдый раствор легирующих элементов в металле, являющемся основой сплава.
Сплавы имеют металлические свойства, например: металлический блеск, высокие электропроводность и теплопроводность. Иногда компонентами сплава могут быть не только химические элементы, но и химические соединения, обладающие металлическими свойствами. Например, основными компонентами твёрдых сплавов являются карбиды вольфрама или титана. Макроскопические свойства сплавов всегда отличаются от свойств их компонентов, а макроскопическая однородность многофазных (гетерогенных) сплавов достигается за счёт равномерного распределения примесных фаз в металлической матрице.
Сплавы обычно получают с помощью смешивания компонентов в расплавленном состоянии с последующим охлаждением. При высоких температурах плавления компонентов, сплавы производятся смешиванием порошков металлов с последующим спеканием (так получаются, например, многие вольфрамовые сплавы).
Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В состав многих сплавов могут вводиться и неметаллы, такие как углерод, кремний, бор и др. В технике применяется более 5 тыс. сплавов.

Цель нашего урока – научиться решать задачи для определения плотности, массы или объема сплавов или веществ входящих в их состав.
Рассматривая сплавы, обычно предполагают, что объем сплава равен сумме объемов составляющих его веществ. В таком случае плотность сплава , где индексы 1 и 2 относятся к двум компонентам сплава.
Если заданы или требуется найти массы компонентов известной плотности ρ1 и ρ2, то объемы компонентов надо выразить через их массы и плотности, в результате чего формула для плотности сплава примет вид .
Часто в задаче дано или требуется найти соотношение масс компонентов сплава. Обозначим . Тогда . Эта формула связывает плотность сплава ρ и массовое отношение компонент . Из нее при следует: . Приведенные формулы позволяют по заданному значению одной из величин ( или ρ) найти значение другой.

Запишите в тетрадях:

Примечание.

1. Задача первого уровня предназначена для применения основной формулы: .
2. Задачи второго уровня похожи, поэтому целесообразно применить разные способы решения.
3. Задачи третьего уровня предусмотрены для закрепления способов решения задач предложенных ранее с добавлением дополнительных вычислений (объема и процентного отношения).

РЕШЕНИЕ ЗАДАЧ

Задачи по теме «СПЛАВЫ»:

Найдите плотность бронзы, для изготовления которой взяли 100 г меди и 30 г олова, считая, что объем сплава равен сумме объемов входящих в него металлов.

1. Кусок сплава из свинца и олова массой 664 г имеет плотность 8,3 г/см 3 . Определите массу свинца в сплаве. Принять объем сплава равным сумме объемов его составных частей.

2. В куске кварца содержится небольшой самородок золота. Масса куска 100 г, а его плотность 8 г/см 3 . Определите массу золота, содержащегося в кварце. Принять, что плотность кварца и золота соответственно равны 2,65 и 19,36 г/см 3 .

1. Сплав золота и серебра массой 400 г имеет плотность 14·103 кг/м 3 . Полагая объем сплава равным сумме объемов его составных частей, определите массу, объем золота и процентное содержание его в сплаве.

2. В чистой воде растворена кислота. Масса раствора 240 г, а его плотность 1,2 г/см 3 . Определите объем кислоты в растворе и его процентное содержание, если плотность кислоты 1,8 г/см 3 . Принять объем раствора равным сумме объемов его составных частей.

Выходной контроль:

1 А соотношение масс
2 Б плотность сплава, если известны соотношения масс
3 В процентное содержание массы одного из веществ в сплаве
4 Г процентное содержание объема одного из веществ в сплаве
5 Д плотность сплава
6 Е объем кварца
7 Ж плотность сплава, при заданных плотностях веществ его составляющих

Ответы: 1-Д, 2-Ж, 3-А, 4-Б, 5-В. 6-Г, 7-Е.

Домашнее задание:

Сплавы различаются по своему предназначению.
Конструкционные сплавы: стали, чугуны, дюралюминий.
Конструкционные со специальными свойствами (например, искробезопасность, антифрикционные свойства): бронзы, латуни.
Для заливки подшипников: баббит.
Для измерительной и электронагревательной аппаратуры: манганин, нихром.
Для изготовления режущих инструментов: победит.

Подготовьте сообщение о каком-нибудь сплаве. Расскажите о веществах, которые в него входят, о их процентном вхождении в сплав и т.д.

Задачи:

1. Найдите плотность стали (сталь — деформируемый (ковкий) сплав железа с углеродом), для изготовления которой взяли 100 г железа и 2 г углерода (углекислого газа), считая, что объем сплава равен сумме объемов входящих в него веществ.
2. Чтобы получить латунь, сплавили куски меди массой 178 кг и цинка массой 355 кг. Какой плотности была получена латунь? Объем сплава равен сумме объемов его составных частей.
3. Сплав золота и серебра массой 500 г имеет плотность 11 г/см3. Полагая объем сплава равным сумме объемов его составных частей, определите массу, объем золота и процентное содержание его в сплаве.

Ответы: 1. 0,098 г/см 3 , 2. 8540 кг/м 3 , 3. 50 г, 2,59 см 3 , 10%.

Подведение итогов урока. Рефлексия

На полях рабочей тетради изобрази схематически один из рисунков, который соответствует степени усвоения материала на уроке. Солнце – мне все понятно, туча – материал интересный, но надо еще поработать, луна – я все проспал.

Статья «Решение задач на нахождение плотности смесей и сплавов, средней плотности неоднородных тел» (7 класс)

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Решение задач на нахождение плотности смесей и сплавов,

средней плотности неоднородных тел (7 класс)

Ларионов Вадим Сергеевич,

учитель физики МБОУ Лицея № 15 г.Сарова, larionvadim @ yandex . ru

Ларионова Наталья Валентиновна,

В статье сформулированы методические рекомендации по организации факультативного занятия по решению задач на нахождение плотности смесей, сплавов и неоднородных тел. Представлены учебные материалы по теме, структурированные по уровню сложности.

Задачи на нахождение плотности смеси или сплава, средней плотности неоднородного («составного») тела являются базовыми при изучении темы «Плотность» и достаточно часто встречаются в олимпиадах по физике в 7-8-х классах. Именно поэтому целесообразно данному типу задач посвятить отдельное факультативное занятие, структура которого соответствует принципу «от простого к сложному» и содержит последовательные блоки задач: ключевые, олимпиадные и задачи для самостоятельного решения (см. приложение).

Средняя плотность неоднородного («составного») тела, плотность смеси или сплава рассчитывается по формуле

где m 1 , m 2 , m 3 -массы отдельных частей тела (компонентов смеси или сплава), а V 1 , V 2 , V 3 — их объёмы.

Для решения задач по данной теме, необходимо составить систему уравнений, в основе которой лежат следующие положения:

1. Определительная формула плотности

2. Свойство аддитивности массы (масса смеси или сплава равна сумме масс его составных частей)

m=m 1 + m 2 + m 3 +…

3. Как правило, в таких задачах полагают, что объём сплава (смеси) равен сумме объёмов его составных частей

V = V 1 + V 2 + V 3

В задачах, предложенных ниже, исключением является задача № 6 из блока олимпиадных задач (задача о смешивании спирта и воды).

Ключевые задачи, представленные в занятии, в зависимости от подготовки учащихся могут быть решены непосредственно на уроке при изучении темы «Плотность». В этом случае на факультативном занятии рассматриваются олимпиадные задачи. Далее ученикам предлагаются задачи для самостоятельного решения, которые, как правило, составляют домашнее задание. В этом случае удобно дифференцировать домашнее задание учеников, предложив не более трёх обязательных задач в зависимости от уровня подготовленности учеников. Учитель может дополнить списки олимпиадных задач и задач для самостоятельного решения, используя материалы последних олимпиад.

Плотность смесей, сплавов, «составных» тел

Цель: Научиться решать задачи на нахождение плотности смесей и сплавов, а также средней плотности неоднородных тел («составных») тел.

Ключевые задачи

1. Какова плотность сплава из 300г олова и 100г свинца? (8г / см 3 )

2. Сплав изготовлен из меди объёмом 0,4 м 3 и цинка массой 710 кг. Какова плотность сплава? (8540 кг/м 3 )

3. Для приготовления вишнёвого сиропа в кастрюлю вылили 1 л вишнёвого варенья и 2 л воды и хорошо перемешали. Какова плотность сиропа, если плотность варенья 1300 кг/м 3 ? (1100 кг/м 3 )

4. Какова плотность смеси из глицерина и спирта, если объём спирта составляет половину объёма смеси? Как изменится ответ, если масса спирта составляет половину массы смеси? (1030 кг / м 3 , 980 кг / м 3 )

Олимпиадные задачи

1. Масса первого изделия в 2 раза больше массы второго изделия, а их объёмы находятся в отношении V 1 : V 2 =1:3. Плотность первого изделия ρ1=4г/см 3 . Какова будет средняя плотность «составного» тела, если два изделия склеить? Массой и объёмом клея пренебречь. (1,5 г/см 3 )

2. Изделие, склеенное из трёх различных частей, имеет объём V =600см 3 . Объёмы частей находятся в соотношении V 1 : V 2 : V 3 =2:3:5, а их плотности – в соотношении ρ123=4:3:1. Чему равна масса изделия, если плотность первой части ρ1=2000кг/м 3 ? (660 г)

3. Ученик измерил плотность деревянного бруска, покрытого краской, и она оказалась равной ρ=600 кг/м 3 . Но на самом деле брусок состоит из двух частей, равных по массе, плотность одной из которых в два раза больше плотности другой. Найдите плотности обеих частей бруска. Массой краски можно пренебречь. (450 кг/м 3 , 900 кг/м 3 )

4. В дистиллированную воду аккуратно вливают серную кислоту. Получившийся раствор имеет плотность ρр=1200 кг/м 3 и массу m =120г. Объём раствора равен сумме объёмов воды и кислоты. Плотность воды ρв=1000 кг/м 3 , плотность кислоты ρк=1800 кг/м 3 . Какова масса кислоты, влитой в воду? (45 г)

5. Однородный кубик со стороной a и плотностью ρ поместили внутрь куска глины с плотностью 4ρ, которому придали форму куба со стороной 2a. Получившийся куб облепили пластилином плотностью 2ρ, в результате чего получился куб со стороной 3a (см. рисунок). Определите среднюю плотность получившейся системы. (67ρ/27≈2 ,5ρ)

6. Плотностью вещества называют отношение массы тела из этого вещества к его объёму. Например, масса 1 см 3 воды составляет 1 г, поэтому плотность воды 1 г/см 3 . Представим, что смешали 100 литров воды и 100 литров спирта плотностью 0,8 г/см 3 , и при смешении оказалось, что суммарный объём уменьшился на 5 процентов. Какова плотность полученного раствора? ( ρ =18/19 г/ c м 3 ≈0,95г/ c м 3 )

Задачи для самостоятельного решения

1. Какую плотность имеет сплав из 270г алюминия и 445г меди? (≈ 4,77 г /c м 3 )

2. Сплав золота и серебра массой 400 г имеет плотность 1,4·10 4 кг/м 3 . Полагая объём сплава равным сумме объёмов его составных частей, определите массу золота в сплаве? (220 г)

3. Масса первого изделия в 3 раза меньше массы второго изделия, а их объёмы находятся в соотношении V 1 : V 2 =2:1. Плотность первого тела ρ1=1,8 г/см 3 . Какова будет средняя плотность «составного» тела, если два изделия склеить? Массой и объёмом клея пренебречь. (4,8 г/см 3 )

4. Изделие, склеенное из трёх различных частей, имеет объём V =900см 3 . Объёмы частей находятся в соотношении V 1 : V 2 : V 3 =5:3:1, а их плотности – в соотношении ρ123=1:2:5. Чему равна масса изделия, если плотность первой части ρ1=500кг/м 3 ? (800 г)

5. Кубик с ребром a =20см сделан из материала с плотностью ρ=3000кг/м 3 . Однако внутри кубика имеется воздушная полость, поэтому его средняя плотность ρср=1200кг/м 3 . Определите объём этой воздушной полости. Во сколько раз изменится средняя плотность кубика, если полость целиком заполнить водой? Массой воздуха внутри полости можно пренебречь. (4800 см 3 , 1,5)

Литература к занятию

1. Генденштейн Л.Э., Кирик Л.А., Гельгафт И.М. Задачи по физике с примерами решений. 7-9 классы. Под ред. В.А.Орлова. – М.: Илекса, 2009. – 416 с.

2. Бажанский И.И., Гой В.А., Чубов Ю.Б. Приморские олимпиады школьников по физике (2003-2007 гг). Учебное пособие. – Владивосток: Изд-во Дальневост. ун-та, 2008. – 200с.

3. Олимпиады 2008-2009. Физика. Задачи Московских олимпиад школьников. Под ред. М.В.Семёнова, А.А.Якуты. – М.: МЦНМО, 2009. – 70 с.

4. 400 физических этюдов. Избранные задачи физических олимпиад Санкт-Петербурга. – СПб, 2006. –284 с.

5. Борисов С.Н. Учебное пособие по физике для учащихся 7-го класса. – М.: МИФИ, 2009. – 100 с.

Подготовка к олимпиадам: 7 класс, плотность

Продолжим подготовку к олимпиадам. Сегодня будем решать задачи на тему “плотность”. При смешивании двух веществ сумма их масс дает массу смеси, а вот с объемами все не так очевидно. Если вы в плотно набитое сухим песком ведро попытаетесь налить воды, то в промежутки между песчинками проникнет достаточное ее количество, таким образом, сумма объемов песка и воды – по-прежнему все то же ведро. О том, что сумма объемов не равна объему смеси, может быть сказано в задаче, или об этом придется догадаться.

Задача 1. Определите плотность сплава, состоящего из $2m$ золота и $7m$ серебра. Плотности металлов известны.

Средняя плотность равна

В данном случае можно считать

Задача 2. Определите плотность сплава, состоящего из $2V$ золота и $7V$ серебра. Плотности металлов известны.

Средняя плотность равна

Объем сплава в данном случае равен сумме объемов компонентов.

Задача 3. Известно, что после того, как из канистры объемом 7 л вылили всю воду, там осталось 1,4 мл воды в виде капель на стенках. Затем канистру плотно закрыли пробкой и поставили на солнце. В результате вся вода внутри канистры испарилась. Определите плотность получившегося газа, если первоначальная плотность воздуха равна 1,3 кг/м$^3$.

Пренебрежем объемом капель по сравнению с объемом канистры. Тогда вначале плотность воздуха равна

Где $m_v$ – масса воздуха.

После того, как капли испарились, плотность можно определить как

Где $m_0$ – масса воды.

Ответ: $rho_2=1,5$ кг/м$^3$.

Задача 4. Однородный кубик со стороной a и плотностью $rho$ поместили внутрь куска глины плотностью $4rho$, которой придали форму куба со стороной $2a$. Получившийся куб облепили пластилином плотностью $2rho$, в результате чего получился куб со стороной $3a$ (см. рисунок). Определите среднюю плотность получившейся системы.

Объем получившегося слепка, очевидно, равен $V=(3a)^3=27a^3$.

Определим массу. Масса внутреннего кубика равна

$$m_1=rho V_1=rho a^3$$

Определим массу глины. Ее объем равен $V_2=(2a)^3-a^3$. Тогда

И, наконец, масса пластилина. Объем его будет равен $(3a)^3-(2a)^2=19a^3$, масса

Тогда плотность всего куска

Задача 5. В ведро, доверху заполненное сухим песком массой 8 кг, добавили 4 л воды. В результате вода вся впиталась и не выступила на поверхность песка. Определите среднюю плотность получившегося сырого песка. Объем ведра 8 литров.

Вот тот случай, когда при смешивании компонентов $Vneq V_1+V_2$.

Плотность будет равна ($m_p$ – масса песка, $m_v$ – масса воды).

Ответ: 1,5 кг/л, или 1500 кг/м$^3$.

Задача 6. Смешали 1 кг воды плотностью 1000 кг/м$^3$ и 2 кг спирта плотностью 800 кг/м$^3$. Известно, что суммарный объем смеси составляет 95% от объема исходных компонент. Определите плотность получившейся смеси.

Тут прямо в условии нам показано, что $Vneq V_1+V_2$.

Плотность будет равна ($m_1$ – масса воды, $m_2$ – масса спирта).

Ответ: 902,25 кг/м$^3$.

Задача 7. В прямоугольном сосуде квадратного сечения (расстояние между стенками сосуда $a = 6$ см) плавает в вертикальном положении тонкостенный стакан квадратного сечения с толстым дном (длина внешней стороны квадрата $b = 4$ см). В пространство между стенками сосуда и стакана тонкой струйкой начинают наливать воду так, что за каждую секунду в сосуд поступает $mu = 2,7$ граммов. С какой скоростью $upsilon$ будет всплывать стакан? Плотность воды ρ=1000 кг/м$^3$.

Сколько воды поступит в стакан за время $Delta t$? $Delta m=mu Delta t$. Она растекается по стакану слоем толщины $h$. Для удобства можно представлять, что вся эта вода располагается у дна. Определим объем этой воды как $Delta V=h a^2$. С другой стороны,

Скорость подъема стакана равна

Задача 8. Однородная деталь из сплава с плотностью 2000 кг/м$^3$ имеет массу $m_1=54$ кг. А её точная копия, но в 3 раза меньших размеров, сделанная из сплава с плотностью 4000 кг/м$^3$, оказалась массой $m_2=2$ кг. Есть подозрение, что внутри копии существует скрытая полость. Какой у неё объём? Ответ дать в см$^3$.

Объем маленькой детали равен $V$, тогда, поскольку большая втрое больше, то ее объем больше в 27 раз – $27V$. Тогда плотность большой детали равна

Следовательно, ее объем равен

Плотность малой детали равна

Где $V_0$ – объем полости.

Задача 9. Для определения качества древесины были экспериментально определены массы досок различной длины. Их ширина равнялась 20 см, толщина 3 см. Зависимость массы досок m от их длины представлена в таблице. Постройте график этой зависимости и по нему найдите массу доски длиной 1 м и плотность древесины.

плотность

Строим график и по нему находим массу доски: 4,2 кг.

плотность

Для определения плотности возьмем точку не в начале графика, потому что чем больше значение, тем меньше относительная погрешность. Например, точку, где $m=9$ кг. Длина равна тогда (по графику) $L=2,1$. Тогда

Ответ: 4,2 кг, 714,3 кг/м$^3$.

Задача 10. Шарик накачали гелием. Масса газа составляет 20% от массы всего шарика. Через день, когда часть гелия просочилась через стенки, объем шарика уменьшился в 2 раза, а масса гелия стала составлять 10% от массы всего шарика. Определите, во сколько раз изменилась средняя плотность воздушного шарика.

Плотность шарика сначала:

Плотность после того, как он сдулся

Сначала масса складывалась из массы газа и массы оболочки:

После того, как шар сдулся, масса равна

Тогда, возвращаясь к плотностям, имеем:

Тогда отношение плотностей

Задача 11. В ящик с жесткими стенками, имеющий форму куба объемом 1 м в кубе и массой 300 кг, насыпали стальные шары диаметром 20 мм плотностью 7800 кг/м$^3$. Затем ящик потрясли и добавили в него столько шаров, что больше уже не получается засунуть ни одного шара (то есть получилась максимально плотная упаковка шаров в ящике). Суммарная масса шаров и ящика получилась 6072 кг. Далее в этот ящик с шарами досыпали еще мелких шариков диаметром 1 мм, сделанных из того же материала, и снова утрясли ящик до максимально возможного заполнения, досыпая при необходимости мелкие шарики. Оцените, какой после этого стала суммарная масса ящика с шарами и шариками.

Определяем массу шариков «крупного» размера:

Так как они заняли 1м$^3$, то средняя плотность упаковки $rho_=5772$ кг/м$^3$.

Поскольку плотность шариков известна, то определим их объем:

Тогда «свободного» пространства остается $V=1-0,74=0,26$ м$^3$.

Если плотность «упаковки» мелких шариков такая же, как и крупных, то их масса равна

Сложим плотности «крупных» и «мелких» шариков:

Задача 12. Большую коробку доверху заполнили деревянными кубиками, плотно уложив их ровными рядами. Через середины противоположных граней каждого из этих кубиков проделаны по три сквозных квадратных отверстия (схема одного кубика приведена на рисунке). Определите среднюю плотность содержимого коробки, если сторона кубика равна 9 см, а сторона отверстия 3 см. Плотность дерева 800 кг/м3 .

7_плотность_4

Определим, какую фигуру в итоге вырезали из каждого кубика. Она имеет форму пространственного креста:

плотность

Это заключение позволяют сделать размеры кубиков и размер отверстия. Этот «крест» будет состоять из 7 кубиков размером 3 на 3. То есть без отверстий кубик бы состоял из $3^3=27$ кубиков 3 на 3, а с отверстиями он лишился 7 кубиков, поэтому состоит из 20 кубиков 3 на 3. Определим массу 20 маленьких кубиков (то есть массу кубика с дырками):

Найти массу, плотность или объем онлайн

На данной странице калькулятор поможет найти плотность, массу или объем вещества онлайн. Для расчета введите значения в калькулятор.

Объем, масса и плотность


Найти

Масса:

Объем:

Плотность:


Ответы:

Формула для нахождения массы тела через плотность и объем:

m — масса; V — объем; p — плотность.

Формула для нахождения объема тела через плотность и массу:

m — масса; V — объем; p — плотность.

Формула для нахождения плотности тела через объем и массу:

m — масса; V — объем; p — плотность.

Калькулятор

Как определить плотность

Плотность является скалярной величиной, которая характеризуется заключенной в единицу объема массой вещества. Существуют несколько подходов к тому, как измерить плотность того или иного вещества.

Как определить плотность

Вам понадобится

  • Для твердого/сыпучего/жидкого вещества:
  • — Знание массы вещества;
  • — Знание объема вещества.
  • Для газа:
  • — Знание молярной массы вещества
  • — Знание молярного объема вещества (если вещество находится в нормальных условиях, то оно определяется как 22,4 л./моль)

Инструкция

Подход 1. Расчет плотности твердого, сыпучего вещества.
При расчете плотности твердого или сыпучего вещества применяется следующая формула:
p = m/V, где
p — плотность вещества;
m — масса тела, образованная веществом;
V — объем заданного тела.

Подход 2. Расчет плотности газов. Для этого потребуется следующая формула:
p = M/Vm, где
M — молярная масса газа;
Vm — нормальный объем.

Обратите внимание

В практике для измерения плотности различных веществ используются следующие приборы:
1) Ареометр (плотность жидких веществ);
2) Пикнометр (прибор для измерения истинной плотности, с учетом всех полостей и пустот);
3) Плотнометр вибрационный (необходим для измерения плотности тех жидкостей и газов, которые находятся под давлением).

Источники:

  • Презентация на тему Плотность вещества к уроку по физике

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Определение плотности твердых тел, имеющих правильную геометрическую форму

Приборы и принадлежности: исследуемые тела, штангенциркуль или микрометр, технические весы с разновесами.

Плотностью вещества ρ называется физическая величина, измеряемая отношением массы вещества к его объему, т.е.

где m – масса вещества, V – его объем.

Для определения ρ надо знать эти две величины. Масса твердого тела находится при помощи рычажных весов. Объем тела правильной геометрической формы вычисляется по формулам геометрии. Измерение линейных размеров тела производится при помощи штангенциркуля или микрометра.

1. Тело имеет форму прямоугольного параллелепипеда. Пусть a, b, c – длины его ребер. Тогда объем параллелепипеда будет равен V=a·d·c. Измерение линейных размеров тела производится с помощью штангенциркуля, точность которого 0,05 мм. Масса тела находится на технических весах, точность которых определяется наименьшим разновесом, который используется при взвешивании (обычно Δm=10 мг=0,01 г).

№ п/п а, мм |Δa|, мм b, мм b|, мм с, мм с|, мм m, г Δm, г
Ср

Пусть линейные размеры тела определяются по три раза в разных местах, а масса – один раз. Как следует из теории погрешностей, при небольшом числе измерений можно ограничиться нахождением средней арифметической абсолютной ошибки измерений и соответствующей ей относительной ошибки. Данные измерений рекомендуется записать в таблицу:

Расчет ρср производится по средним значениям измеряемых величин, т.е. по формуле

Все вычисления необходимо проводить в одной системе единиц: в ед.СИ (кг, м) или в системе СГС (г, см).

Оценим теперь погрешности измерений. В нашем случае проще сначала вычислить относительную ошибку измерений, а затем уже абсолютную. Тогда, пользуясь табл.1, находим

Откуда .

После вычисления ошибок необходимо сопоставить приборные ошибки и расчетную среднюю абсолютную ошибку результата. Результат эксперимента следует записать в виде г/см 3 .

2. Тело имеет форму цилиндра, диаметр которого равен d, а высота Н. Тогда объем тела равен Измерение линейных размеров цилиндра производится с помощью микрометра, точность которого 0,01 мм. Масса цилиндра определяется на технических весах с точностью 0,01 г. Пусть масса тела определяется один раз, а размеры не менее пяти раз. Для такого количества измерений, как следует из теории погрешностей, целесообразнее вычислить средние квадратичные ошибки измерений σ. Данные измерений записываются в таблицу:

№ п/п d, мм d|, мм d) 2 , мм Н, мм Н|, мм Н) 2 , мм m, г Δm, г
Ср

Расчет ρср производится по средним значениям измеряемых величин по формуле

Средние квадратичные ошибки σd и σН находятся по формуле (18)(следующим образом). В данном примере, как и в предыдущем, удобнее сначала вычислить относительную ошибку результата. Пользуясь табл.2, находим

Отсюда средняя квадратичная погрешность измерения плотности

Окончательный результат вычисления плотности тела записывается в виде ρ=( ρср±σρ) г/см 3 .

ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ

Колебательным движением (колебанием) называется процесс, при котором система, многократно отклоняясь от своего состояния равновесия, каждый раз вновь возвращается к нему. Если этот процесс совершается через равные промежутки времени, то колебание называется периодическим.

Несмотря на большое разнообразие колебательных процессов как по физической природе, так и по степени сложности, все они совершаются по некоторым общим закономерностям и могут быть сведены к совокупности простейших периодических колебаний, называемых гармоническими, которые совершаются по закону синуса (или косинуса).

Предположим, что они описываются законом

(1)

Здесь x — смещение (отклонение) колеблющейся системы от положения

А — амплитуда, т.е. максимальное смещение от положения равновесия, — фаза колебаний. Физический смысл фазы в том, что она определяет смещение х в данный момент времени,

φо — начальная фаза колебания (при t=0);

ω — круговая частота (или угловая скорость) колебаний. ω связана с

частотой колебания и периодом колебания Т: , (2)

Т — период — время одного полного колебания.

Если в уравнении (1) положить начальную фазу φо=0, то график зависимости смещения х от времени или график гармонического колебания будет иметь вид, представленный на рис.1.

Систему, закон движения которой имеет вид (1), называют одномерным классическим гармоническим осциллятором.

Хорошо известным примером гармонического осциллятора является тело (шарик), подвешенное на упругой пружине. По закону Гука при растяжении или сжатии пружины возникает противодействующая сила, пропорциональная растяжению или сжатию х, т.е. тело будет совершать гармонические колебания под действием силы упругости пружины F=-kx. Однако гармонические колебания возникают под действием не только упругих, но и других сил, по природе не упругих, но для которых остается справедливым закон F=-kx. Такие силы получили название квазиупругих.

Как известно, движение системы под действием силы описывается II-м законом Ньютона: ma =F, где a — ускорение колеблющейся системы Для гармонических колебаний F=-kx. Тогда второй закон Ньютона будет иметь вид неполного дифференциального уравнения второго порядка

, (3)

или уравнение движения классического осциллятора, где .

Решением данного уравнения (3) является выражение (1), что нетрудно проверить, дифференцируя дважды (1) по времени и подставляя в уравнение (3). При этом получим, что (4)

Для упрощения записи в дальнейшем можно положить начальную фазу нулю (φо=0), тогда уравнение (1) будет иметь вид (1 ΄ )

Скорость гармонически колеблющегося тела можно найти, дифференцируя по времени уравнение (1 ΄ ):

или . (5)

Видно, что скорость при гармонических колебаниях тоже изменяется по гармоническому закону, но опережает смещение по фазе на (по времени на Т/4).

Ускорение тела при гармонических колебаниях равно: , или

(6)

Сравнение этого выражения (6) с (1) показывает, что ускорение и смещение находятся в противофазе (рис.2). Это означает, что в тот момент, когда смещение достигает наибольшего положительного значения, ускорение достигает наибольшего по величине отрицательного значения, и наоборот.

Кинетическая энергия осциллятора при гармоническом колебании с учетом (4) и (5) имеет вид:

Потенциальная энергия: , а так как «k» связано с собственной частотой колебания осциллятора ( ), то

Полная энергия гармонического осциллятора в процессе колебаний не меняется. Действительно:

Из последнего выражения видно, что полная механическая энергия осциллятора пропорциональна квадрату амплитуды и не зависит от времени. Кинетическая и потенциальная энергии изменяются по гармоническому закону, как и , но когда одна из них увеличивается, другая уменьшается. Это означает, что процесс колебаний связан с периодическим переходом энергии из потенциальной в кинетическую и обратно.

Рассмотрим некоторые из классических гармонических осцилляторов.

Математический маятник

Математическим маятником называют систему, состоящую из невесомой и нерастяжимой нити, на которой подвешен шарик, масса шарика сосредоточена в одной точке (рис.3). В положении равновесия на шарик действуют две силы: сила тяжести P=mg и сила натяжения нити N — равные по величине и направленные в противоположные стороны.

Если маятник отклонить от положения равновесия на небольшой угол α, то он начнет совершать колебания в вертикальной плоскости под действием составляющей силы тяжести Pt, которую называют тангенциальной составляющей (нормальная составляющая силы тяжести Pn будет уравновешиваться силой натяжения нити N).

Из рис.3 видно, что тангенциальная составляющая силы тяжести .

Знак минус показывает, что сила, вызывающая колебательное движение, направлена в сторону уменьшения угла α. Если угол α мал, то синус можно заменить самим углом, тогда .

С другой стороны, из рис.3 видно, что угол α можно записать через длину дуги x и радиус ℓ: α = x/ℓ, т.е. сила, возвращающая маятник в положение равновесия, является квазиупругой: , где — коэффициент квазиупругой силы. Второй закон Ньютона в этом случае будет иметь следующий вид: . (7)

С учетом (4), можно записать, что , откуда . (8)

Период колебаний математического маятника при малых углах отклонения

не зависит от амплитуды колебания и от его массы, а определяется длиной маятника и ускорением свободного падения g.

Физический маятник

Физическим маятником называется абсолютно твердое тело, которое может совершать колебания под действием силы тяжести вокруг горизонтальной оси О, перпендикулярной плоскости рисунка и не проходящей через его центр тяжести.

На рис.4 изображено сечение физического маятника плоскостью, перпендикулярной к его оси вращения О и проходящей через его центр тяжести С.

Запишем в общем виде уравнение движения маятника, т.е. основное уравнение динамики вращательного движения

где J — момент инерции маятника относительно горизонтальной оси О, β — угловое ускорение, М — момент внешних сил. В нашем случае момент внешних сил обусловлен действием силы тяжести. Очевидно, что на каждый элемент массы Δmi маятника действует сила тяжести Δmig, создающая определенный момент

относительно оси О. Сумма моментов этих сил равна моменту равнодействующей сил тяжести, которая приложена к центру тяжести маятника (точка С).

Докажем, что маятник, выведенный из положения равновесия на малый угол φ, будет совершать гармонические колебания. Для этого равнодействующую сил тяжести P=mg разложим на две составляющие, одна из которых P2 уравновешивается реакцией опоры, а под действием другой составляющей P1=Psinφ маятник приходит в движение. Обозначим расстояние от точки подвеса О до центра тяжести С через a. Тогда уравнение движения маятника (9) запишется в виде

Знак минус показывает, что сила P1 направлена к положению равновесия и приводит к уменьшению угла отклонения φ. Так как , а для малых углов φ можно принять sinφ≈φ, то уравнение (10) будет иметь вид:

, или . (11)

Частным решением этого дифференциального уравнения является уравнение

, где . Исходя из полученного выражения для ω, находим выражение для периода колебаний физического маятника

. (12)

Величина называется приведенной длиной физического маятника, это есть длина эквивалентного математического маятника, имеющего тот же период колебаний, что и данный физический маятник.

Физическим маятником также можно воспользоваться для определения ускорения свободного падения.

Любой физический маятник обладает свойством сопряженности, которое заключается в том, что в нем можно найти такие две точки, что при последовательном подвешивании маятника за ту или иную из них, период колебаний его остается одним и тем же. Расстояние между этими точками определяет собой приведенную длину физического маятника.

Разновидностью физического маятника является оборотный маятник, который обладает свойством сопряженности центра качания и точки подвеса. Центром качания называется точка, находящаяся на расстоянии приведенной длины от оси вращения. Приведенная длина всегда больше величины a (см.рис.4), т.е. центр качания всегда лежит ниже центра тяжести. Действительно, по теореме Штейнера момент инерции маятника относительно оси вращения равен J=Jo+ma 2 , где Jo — момент инерции маятника относительно оси, проходящей через центр тяжести. Тогда приведенная длина пр равна , т.е. >a.

Источник

Содержание:

Плотность, единицы плотности:

Мы часто употребляем выражение «легкий, как воздух» или «тяжелый. как свинец». Но знаете ли вы. что воздух внутри, скажем, супермаркета, весит больше 400 кг. а груз такой массы не поднять и силачу. Свинцовое же грузило для удочки легко поднимет даже малыш. Выходит, приведенные выше выражения — неправильные? Подождите делать выводы — давайте разберемся.

На рис. 2.8 вы видите два бруска, оба бруска изготовлены из одного и того же вещества — свинца, но имеют разные размеры. Наша задача — найти отношение массы каждого бруска к его объему.

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Для начала измерьте длину, ширину и высоту брусков и вычислите их объемы. (Если вы правильно выполните измерения и не ошибетесь в расчетах, то вы получите такие результаты: объем меньшего бруска равен 4 см3, большего бруска — 10 см3.)

Определив объемы брусков, взвесим их. На левую чашу весов поместим один из брусков, на правую — разновесы (рис. 2.9). Весы находятся в равновесии, ваша задача — сосчитать массу разновесов.

Нам осталось найти отношение массы каждого бруска к его объему, т. е. вычислить, чему равняется масса свинца объемом 1 см3 для меньшего и для большего брусков. Очевидно, что если масса меньшего бруска 45,2 г и он занимает объем 4 Плотность и единицы плотности в физике - виды, формулы и определения с примерами, то масса свинца объемом 1 Плотность и единицы плотности в физике - виды, формулы и определения с примерами для этого бруска равняется 45,2 : 4 — 11,3 (г). Выполнив аналогичные расчеты для большего бруска, получим 113 : 10 = 11,3 (г). Таким образом, отношение массы свинцового бруска к его объему (масса свинца единичного объема) одинаково как для большего, так и для меньшего брусков.

Если теперь взять бруски, изготовленные из другого вещества (например алюминия), и повторить те же действия, то отношение массы алюминиевого бруска к его объему также не будет зависеть от размеров бруска. Мы снова получим постоянное число, но уже другое, чем в опыте со свинцом.

Определение плотности вещества

Физическая величина, характеризующая данное вещество и численно равная массе вещества единичного объема, называется плотностью вещества.

Плотность обозначается символом р и вычисляется по формуле
Плотность и единицы плотности в физике - виды, формулы и определения с примерами
где V — объем, занятый веществом массой m.

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность — это характеристика вещества, не зависящая от массы вещества и его объема. Если увеличить массу вещества, например, в два раза, то объем, который оно займет, также возрастет в два раза*.

Из определения плотности вещества получим единицу плотности. Поскольку в СИ единицей массы является килограмм, а единицей объема — метр кубический, то единицей плотности в СИ будет килограмм на метр кубический (кг/м*).

1 кг/м-* — это плотность такого однородного вещества, масса которого в объеме один кубический метр равняется одному килограмму.

На практике также очень часто применяется единица плотности грамм на сантиметр кубический (г/см*).

Единицы плотности килограмм на метр кубический (кг/м-1) и грамм на сантиметр кубический (г/см3) связаны между собой соотношением:
Плотность и единицы плотности в физике - виды, формулы и определения с примерами
 

Плотности разных веществ

Плотности разных веществ и материалов могут существенно отличаться друг от друга (рис. 2.10). Рассмотрим несколько примеров. Плотность водорода при температуре О С и давлении 760 мм рт. ст. составляет 0,090 кг/Плотность и единицы плотности в физике - виды, формулы и определения с примерами — это значит, что масса водорода объемом 1 Плотность и единицы плотности в физике - виды, формулы и определения с примерами равна 0,090 кг, или 90 г. Плотность свинца 11 300 кг/м3. Это означает, что свинец объемом

1    м3 имеет массу 11 300 кг, или 11,3 т. Плотность вещества нейтронной звезды достигает Плотность и единицы плотности в физике - виды, формулы и определения с примерамикг/Плотность и единицы плотности в физике - виды, формулы и определения с примерами. Масса такого вещества объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами равняется 1 млрд тонн. Ниже в таблице приведены плотности некоторых веществ.

Плотность и единицы плотности в физике - виды, формулы и определения с примерамиПлотность, однако, существенно изменяется в случае изменения температуры и агрегатного состояния вещества. С причинами изменения плотности вещества мы познакомимся далее.

Таблица плотностей некоторых веществ в твердом состоянии

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Таблица плотностей некоторых веществ в жидком состоянии

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Таблица плотностей некоторых веществ в газообразном состоянии (при температуре О °С и давлении 760 мм рт. ст.)
Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Вычисление плотности, массы и объема физического тела

На практике часто бывает необходимо определить, из какого вещества состоит то или иное физическое тело. Для этого можно воспользоваться таким способом. Вначале вычислить плотность этого тела, т. е. найти отношение массы тела к его объему. Далее, воспользовавшись данными таблицы плотностей, выяснить, какому веществу соответствует найденное значение плотности.

Например, если глыба объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами имеет массу 2700 кг, то очевидно, что плотность глыбы равна:Плотность и единицы плотности в физике - виды, формулы и определения с примерами

По таблице находим, что глыба состоит из льда.

В приведенных выше примерах мы рассматривали так называемые однородные тела, т. е. тела, не имеющие пустот и состоящие из одного ее щества (ледяная глыба, свинцовый и алюминиевый бруски). В таких случаях плотность тела равна плотности вещества, из которого оно состоит (плотность ледяной глыбы = плотности льда).

Если в теле есть пустоты или оно изготовлено из различных веществ (например, корабль, футбольный мяч, человек), то говорят о средней плотности тела, которая также исчисляется по формуле
Плотность и единицы плотности в физике - виды, формулы и определения с примерами
где V — объем тела массой m.
Средняя плотность тела человека, например, составляет Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Зная плотность вещества, из которого изготовлено тело (или среднюю плотность тела), и объем тела, можно определить массу данного тела без взвешивания. В самом деле, если Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность и единицы плотности в физике - виды, формулы и определения с примерамиСоответственно, зная плотность и массу тела, можно найти его объем: Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Итоги:
Физическая величина, характеризующая данное вещество и численно равная массе вещества единичного объема, называется плотностью вещества.

Плотность вещества и плотность тела можно рассчитать по формуле

Плотность и единицы плотности в физике - виды, формулы и определения с примерами
В СИ плотность измеряется в килограммах на метр кубический Плотность и единицы плотности в физике - виды, формулы и определения с примерамиЧасто также используют единицу плотности грамм на сантиметр кубическийПлотность и единицы плотности в физике - виды, формулы и определения с примерами. Эти единицы связаны между собой соотношением:
Плотность и единицы плотности в физике - виды, формулы и определения с примерами
Зная массу тела и его плотность, можно найти объем тела: Плотность и единицы плотности в физике - виды, формулы и определения с примерамиСоответственно, по известным объему тела и его плотности можно найти массу тела: Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность и единицы плотности

Вы наверняка слышали выражения «легкий, как воздух», «тяжелый, как свинец». При этом воздух внутри, скажем, супермаркета имеет массу более 5000 кг! Поднять груз такой массы не сможет и силач. В то же время свинцовое грузило для удочки легко поднимет даже малыш. Так что же, приведенные выражения ошибочны? Выясним, в чем здесь дело.

На рис. 16.1 изображены два однородных (не имеющих пустот) свинцовых бруска разного объема. Массы брусков тоже разные. Наша задача — найти отношение массы каждого бруска к его объему, то есть определить массу свинца объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

1)Измерьте длину, ширину, высоту брусков и вычислите их объемы Плотность и единицы плотности в физике - виды, формулы и определения с примерами 2)Определите массу каждого бруска (Плотность и единицы плотности в физике - виды, формулы и определения с примерами и Плотность и единицы плотности в физике - виды, формулы и определения с примерами) (рис. 16.2). Весы находятся в равновесии, значит, следует найти массу разновесов.

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

3)Определите отношение массы каждого бруска к его объему Плотность и единицы плотности в физике - виды, формулы и определения с примерами, то есть узнайте, какова в каждом случае масса свинца объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами Надеемся, что вы все сделали правильно и для обоих брусков получили одинаковые результаты: Плотность и единицы плотности в физике - виды, формулы и определения с примерами Итак, мы определили, что масса свинца объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами равна 11,3 г.

Как вы считаете, изменится ли результат, если для эксперимента взять однородные свинцовые бруски вдвое большей массы? Если изменится, то как?

Определение плотности вещества

Мы провели измерения и расчеты для тел, изготовленных из свинца. Если для эксперимента взять однородные тела, изготовленные из другого вещества, например алюминия, то снова получим одинаковые результаты, но уже другие, чем в опыте со свинцом.

Отношение массы тела к его объему — характеристика не тела, а вещества, из которого это тело изготовлено. Эту величину называют плотность вещества.

Плотность вещества — это физическая величина, которая характеризует вещество и равна отношению массы однородного тела, изготовленного из данного вещества, к объему этого тела: Плотность и единицы плотности в физике - виды, формулы и определения с примерами где ρ («ро») — плотность вещества; m — масса тела; V — объем тела (объем, занятый веществом). В СИ единица массы — килограмм, единица объема — метр кубический, поэтому единица плотности в СИ — килограмм на метр кубический: Плотность и единицы плотности в физике - виды, формулы и определения с примерами Используют также единицу плотности грамм на сантиметр кубический Плотность и единицы плотности в физике - виды, формулы и определения с примерами. Единицы плотности килограмм на метр кубический и грамм на сантиметр кубический связаны соотношением: Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Сравнение плотности разных веществ

Плотности веществ могут существенно отличаться. Именно поэтому одинаковые по размерам однородные тела, изготовленные из разных веществ, будут иметь разную массу. Приведем несколько примеров.

Кубики на рис. 16.3 изображены в натуральную величину и являются однородными. Объем каждого кубика — Плотность и единицы плотности в физике - виды, формулы и определения с примерами, массы кубиков указаны на рисунке.

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Первый кубик изготовлен из пробки. Плотность пробки составляет Плотность и единицы плотности в физике - виды, формулы и определения с примерами — это означает, что масса пробки объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами равна 0,2 г. Плотность льда Плотность и единицы плотности в физике - виды, формулы и определения с примерами, следовательно, масса льда объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами равна 0,9 г. Плотность свинца составляет Плотность и единицы плотности в физике - виды, формулы и определения с примерами, поэтому однородное свинцовое тело объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами имеет массу 11,3 г. Используя рис. 16.3, найдите плотность золота. По таблицам плотностей некоторых веществ (см. с. 249 учебника) определите массу кубика объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами, изготовленного из латуни.

От чего зависит плотность вещества

Плотность существенно зависит от агрегатного состояния и температуры вещества. Если вещество изменяет свое агрегатное состояние или температуру, его масса остается неизменной, так как количество частиц (молекул, атомов) и масса каждой из них не изменяются. А вот объем вещества изменяется, поскольку изменяется среднее расстояние между частицами. Так, при переходе вещества из жидкого состояния в газообразное плотность вещества уменьшается, поскольку увеличивается среднее расстояние между частицами, а значит, увеличивается объем, который занимает вещество (рис. 16.4).

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

С увеличением температуры среднее расстояние между частицами увеличивается, соответственно увеличивается объем вещества и уменьшается его плотность. И наоборот, чем ниже температура вещества, тем меньше межмолекулярные промежутки, а значит, меньше объем вещества и больше — его плотность*. 5

Вычисление и расчёт плотности тела, массы и объем тела

Как выяснить, из какого вещества изготовлено однородное тело? Один из способов — определить плотность этого тела и сравнить полученный результат с данными таблиц плотностей. Чтобы определить плотность тела, достаточно измерить его массу и объем и вычислить отношение массы тела к его объему.

Исключениями являются вода, чугун и некоторые другие вещества. Например, при нагревании воды от О °C до 4 °C ее плотность увеличивается. Плотность — это характеристика вещества, но иногда, например для сокращения записи, употребляют термин «плотность тела».

Например, если однородная фигурка объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами имеет массу m = 8,9 кг, то плотность вещества, из которого она изготовлена, равна: Плотность и единицы плотности в физике - виды, формулы и определения с примерами По таблице плотностей определяем, что фигурка изготовлена из вещества, имеющего такую же плотность, что и медь (рис. 16.5).

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

До сих пор речь шла об однородных телах, то есть телах, не имеющих пустот и состоящих из одного вещества (свинцовые бруски, медная фигурка). А вот если в теле есть пустоты или оно состоит из разных веществ (например, корабль, футбольный мяч, человек), то говорят о средней плотности тела; ее вычисляют по формуле: Плотность и единицы плотности в физике - виды, формулы и определения с примерами где ρ— средняя плотность тела; V — объем тела; m — масса тела. Так, средняя плотность тела человека чуть больше Плотность и единицы плотности в физике - виды, формулы и определения с примерами Зная объем тела и его плотность (плотность вещества, из которого оно изготовлено, или среднюю плотность тела), можно определить массу тела без взвешивания. Действительно, если Плотность и единицы плотности в физике - виды, формулы и определения с примерами Соответственно, зная массу тела и его плотность, можно найти объем тела: Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Итоги:

Плотность вещества — это физическая величина, которая характеризует вещество и равна отношению массы однородного тела, изготовленного из данного вещества, к объему этого тела. Плотность можно определить по формуле Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Единица плотности в СИ — килограмм на метр кубический Плотность и единицы плотности в физике - виды, формулы и определения с примерами Также используют единицу плотности грамм на сантиметр кубический Плотность и единицы плотности в физике - виды, формулы и определения с примерами Эти единицы связаны соотношением: Плотность и единицы плотности в физике - виды, формулы и определения с примерами Зная объем тела и его среднюю плотность, можно найти массу тела: Плотность и единицы плотности в физике - виды, формулы и определения с примерами. По известным массе и плотности можно найти объем тела: Плотность и единицы плотности в физике - виды, формулы и определения с примерами.

Напомним: приступив к решению задачи по физике, сначала следует несколько раз внимательно прочитать ее условие и понять, какое явление описано в задаче, какое тело рассматривается. Другими словами, нужно четко представить ситуацию, которую описывает задача, а уже потом приступать к поиску ответа. Итак, внимательно читаем, думаем, решаем. Попробуйте сначала поработать над каждой задачей самостоятельно, а уже потом ознакомьтесь с ее решением в учебнике.

  • Заказать решение задач по физике

Пример №1

Однородный кубик с ребром 2 см имеет массу 20 г. Из какого вещества изготовлен кубик? Анализ физической проблемы. Для ответа на вопрос определим плотность вещества, из которого изготовлен кубик, а потом воспользуемся таблицей плотностей. Задачу будем решать в единицах, данных в условии.

Дано:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами,Плотность и единицы плотности в физике - виды, формулы и определения с примерами.

Найти:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Решение:

По определению плотности:Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Объем куба вычисляют по формуле:Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Следовательно, имеем:Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Анализ результата. Из таблицы плотностей узнаем, что плотность Плотность и единицы плотности в физике - виды, формулы и определения с примерами имеет стекло.

Ответ: кубик, возможно, изготовлен из стекла.

Пример №2

Свинцовый шар объемом Плотность и единицы плотности в физике - виды, формулы и определения с примерами имеет массу 0,565 кг. Определите, однородный этот шар или имеет пустоту. Если в шаре есть пустота, вычислите ее объем. Анализ физической проблемы. Выполним пояснительный рисунок. Если объем свинца Плотность и единицы плотности в физике - виды, формулы и определения с примерами меньше объема шара Плотность и единицы плотности в физике - виды, формулы и определения с примерами, то шар имеет пустоту, объем которой равен: Плотность и единицы плотности в физике - виды, формулы и определения с примерами Определяя объем свинца, будем считать, что масса свинца равна массе шара: Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Плотность свинца найдем в таблице плотностей. В данной задаче массу лучше выразить в граммах, объем — в сантиметрах кубических, плотность — в граммах на сантиметр кубический.

Дано:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами,Плотность и единицы плотности в физике - виды, формулы и определения с примерами,Плотность и единицы плотности в физике - виды, формулы и определения с примерами,Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Найти:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Решение:

1. Определим объем свинца.

По определению плотности:Плотность и единицы плотности в физике - виды, формулы и определения с примерамипоэтому Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Анализ результатов: Плотность и единицы плотности в физике - виды, формулы и определения с примерами, следовательно, шар имеет пустоту.

2. Вычислим объем пустоты:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Ответ:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Пример №3

Сколько железнодорожных цистерн емкостью Плотность и единицы плотности в физике - виды, формулы и определения с примерами каждая требуется для перевозки 1080 т нефти? Анализ физической проблемы. Количество цистерн можно найти, разделив общий объем нефти (V) на емкость одной цистерны Плотность и единицы плотности в физике - виды, формулы и определения с примерами. Общий объем нефти определим по ее массе и плотности. Плотность нефти найдем в таблице плотностей. Задачу будем решать в единицах СИ.

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Дано:

Плотность и единицы плотности в физике - виды, формулы и определения с примерамиПлотность и единицы плотности в физике - виды, формулы и определения с примерами,Плотность и единицы плотности в физике - виды, формулы и определения с примерами,Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Найти:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Решение:

Из определения плотности найдем общий объем нефти:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Определим общее количество цистерн:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Проверим единицу, найдем значение искомой величины:

Плотность и единицы плотности в физике - виды, формулы и определения с примерами

Анализ результатов. Количество цистерн, полученное в результате расчетов, вполне реально.

Ответ: N=54.

  • Движение молекул в физике в газах, жидкостях и твёрдых телах
  • Скорость движения молекул газа
  • Газовые законы
  • Взаимодействие молекул
  • Движение и силы
  • Давление в физике
  • Строение вещества в физике
  • Физическое тело и вещество в физике

Понравилась статья? Поделить с друзьями:
  • Как найти гараж по условному номеру
  • Fm21 memory warning как исправить
  • Как найти меню автозагрузка в виндовс 10
  • Как найти битые автомобили
  • Как составить налоговую декларацию при продаже автомобиля