Как найти погрешность резистора

2. Вычислим относительную погрешность коэффициента формы резисторов:

3. Вычислим коэффициенты формы резисторов:

Коэффициент формы резистора вычисляется
по формуле:

,
гдеR– сопротивление
резистора,
удельное поверхностное сопротивление.

Для
:;

Для
:;

Для
:;

Для
:;

Для
:;

Для
:;

Для
:;

Для
:

Все резисторы будем выполнять в базовом
слое, но для резисторов
и, т.к.и,
требуется в ходе расчетов проверить
реальность выполнения длины данных
резисторов.

4. Определяем расчетную ширину резисторов.

За расчетную ширину принимаем,
где

— минимальная ширина резистора, при
которой обеспечивается заданная
погрешность геометрических размеров;

— минимальная ширина резистора,
определяемая из максимально допустимой
мощности рассеяния.

— минимальный габаритный размер резистора,
определяемый разрешающей способностью
технологии;

Минимальная ширина резистора, при
которой обеспечивается заданная
погрешность геометрических размеров
считается по формуле:

,

где
— абсолютная погрешность изготовления;— коэффициент формы-го
резистора, относительную погрешность
коэффициента формы резисторов,.

Минимальная ширина резистора, определяемая
из максимально допустимой мощности
рассеяния считается по формуле

,

где(Вт)
— допустимая мощность рассеяния;(Вт)
— средняя мощность рассеяния-го
резистора;— коэффициент формы-го
резистора, относительную погрешность
коэффициента формы резисторов,.

Выбранное значение
будет
не реальной шириной резистора в кристалле.
Реально же ширина будет больше из-за
боковой диффузии и подтравов, поэтому
значение топологической ширины(закладываемой
в фотошаблон) будет меньшим будет
считаться по формуле:

,

где
— погрешность, вносимая растравливанием
окон перед диффузией, процессе
фотолитографии;— погрешность, вносимая уходом диффузионного
слоя под маскирующий окисел в боковые
стороны.

Окончательно за
принимают
ближайшие к вычисленным целые значения,
кратные шагу координатной сетки.

Чтобы максимально уменьшить погрешность
номинала резистора, определяют реальную
ширину резистора по формуле:

На основании формул приведенных выше,
сделаем расчет ширины все резисторов
данной схемы.

Для
:;;

зададимся

.

Окончательно
.
Тогда реальная ширина резистора:

Для
:

зададимся

.

Окончательно
.
Тогда реальная ширина резистора :

Для
:

зададимся

.

Окончательно
.
Тогда реальная ширина резистора :

Для
:

зададимся

.

Окончательно
.
Тогда реальная ширина резистора :

Для
:

зададимся

.

Окончательно
.
Тогда реальная ширина резистора :

Для
:

зададимся

.

Окончательно
.
Тогда реальная ширина резистора :

Для
:

зададимся

.

Окончательно
.
Тогда реальная ширина резистора:

Для
:

зададимся

.

Окончательно
.
Тогда реальная ширина резистора:

5. Определяем расчетную длину резисторов:

Расчетная длина резистора считается
по формуле:

,

где

реальная ширина резистора;
коэффициент формы резистора;n– количество контактных окон у
резистора();— поправочных коэффициент, учитывающий
сопротивление, обусловленное растеканием
электрического тока у контактных
областей резистора.

Коэффициент К определяется из номограмм
для соответствующих контактных областей
резисторов[1,стр.37, Рис.1.35б,1.35г].

Далее для проектирования топологического
чертежа определяют топологическую
длину резистора по формуле:

.

При этом погрешность изготовления
резистора увеличивается, т.к. реально
полученный резистор будет иметь меньшую
длину, чем спроектированный. Окончательно
за
принимают
ближайшие к вычисленным целые значения,
кратные шагу координатной сетки. Реальная
же длина резистора определяется из
формулы:

Однако надо учитывать резисторы с
.
Для таких резисторов требуется проверить
реальность выполнения размера длины
резистора по формуле:

,

где
— получаемая длина резистора,
вычисленная ширина резистора,— коэффициент формы резистора.

В этом случае должно соблюдаться условие
.

Для всех резисторов предварительно
посчитаем коэффициент К, который приведет
в таблице 3.

Таблица 3. Рассчитанные поправочные
коэффициенты К для всех резисторов

Значение

Значение

0.13

0.03

0.14

0.24

0.26

0.12

0.13

0.035

Рассчитаем на основе вышеприведенных
формул длину резисторов.

Для
,

.

Окончательно

Для
,

.

Окончательно

Для
,

.

Окончательно

Для
,

.

Окончательно

Для
,

.

Окончательно

Для
,

.

Окончательно

Для

Проверим реальность выполнения данного
резистора:

условиевыполняется.

,

.

Окончательно

Для

Проверим реальность выполнения данного
резистора:

условиевыполняется.

,

.

Окончательно

Соседние файлы в папке курсовой

  • #
  • #

    20.04.201520.2 Кб10корпус.cdw

  • #

    20.04.201535.36 Кб10Схема.cdw

  • #

    20.04.201597.61 Кб10чертеж0.cdw

  • #

    20.04.2015106.1 Кб10чертеж1.cdw

  • #

    20.04.201590.29 Кб10чертеж2.cdw

И снова о погрешностях

Окончание. См. № 15/07

Д.А.ИВАШКИНА,
лицей г. Троицка, Московская обл.

aivashkin@mail.ru

И снова о погрешностях

4. Учёт случайных погрешностей при
прямых измерениях

Если, проведя одно и то же измерение
несколько раз, вы видите, что результат остаётся
одним и тем же, то случайные погрешности
эксперимента малы, их не следует учитывать. Но
если при повторении измерения получаются разные
значения, то следует взять среднее значение из
серии измерений:

где n – число измерений. Как
узнать, какова погрешность результата? Логично, и
ученики сами обычно предлагают это, определить
среднее отклонение результата от среднего
значения. Полученная величина носит название средней
арифметической ошибки
: Она показывает, на сколько в
среднем каждое измеренное значение отклоняется
от среднего значения. Но эта величина слабо
зависит от количества проведённых измерений. В
чём же тогда смысл многократных измерений?

Для среднеквадратичной погрешности,
которая определяется немного сложнее:

есть простое правило: средняя
квадратичная погрешность среднего
арифметического равна средней квадратичной
погрешности отдельного результата, делённой на
корень квадратный из числа измерений
: Из формулы ясно,
что с увеличением числа измерений случайная
погрешность среднего значения уменьшается.
Поэтому необходимо проводить столько измерений,
чтобы случайная погрешность стала меньше
значения систематической погрешности данного
измерения.

К сожалению, в лабораторных работах и
при любых других экспериментах в школе провести
достаточное количество измерений невозможно в
силу нехватки времени. Как поступать, может
решить сам учитель. На мой взгляд, для нахождения
средней арифметической погрешности среднего
значения можно использовать формулу,
аналогичную формуле для средней квадратичной
ошибки:

Хотя эта формула и неверна, она
помогает понять смысл проведения большого числа
измерений. Использоваться же она будет всего в
нескольких работах, и, следовательно, нет нужды
специально обучать нахождению погрешности
среднего значения. Зато, получив в этих работах
случайную погрешность меньше погрешности
систематической, ученик запомнит, что каждое
измерение следует производить несколько раз при
малейшем подозрении, что в данном эксперименте
имеется случайная погрешность. Как правило, уже
при пяти измерениях достигается необходимая
малость случайной погрешности по сравнению с
систематической.

5. Определение погрешности
результата косвенных измерений

К определению погрешности результата
косвенных измерений учащиеся готовы, на мой
взгляд, уже к 8-му классу. В зависимости от уровня
класса впервые метод границ [1, 12] можно
применить или в работе по сравнению количеств
теплоты при смешивании воды, или при нахождении
сопротивления проводника. Поясню на примерах.

  • Допустим, при нагревании холодной
    воды в процессе смешивания мы имеем следующие
    результаты измерений:

– температура холодной воды t1
= (16,0 ± 1,5) °С;

– температура смеси t = (43,0 ± 1,5) °С;

– объём холодной воды V1 = (80
± 2) мл = (80 ± 2) • 10–6 м3.

Получаем количество теплоты,
полученное холодной водой:

Q = 4190 Дж/(кг • °С) • 1000 кг/м3
• 80 • 10–6  м3  (43 – 16) °С = 9050,4 Дж.
     (1)

Возникает вопрос: а какова погрешность
полученного значения? Другими словами, на
сколько мы можем ошибиться, если точные значения
не равны измеренным, а лежат где-то в интервале,
даваемом погрешностью? Например, начальная
температура воды может быть равна 16,5 °С, 17,0 °С и
т.д. Тогда вычисленное количество теплоты будет
меньше. Логично посмотреть, на сколько мы можем
ошибиться по максимуму. Максимальное количество
теплоты получится, если взять для всех
сомножителей максимальные значения, т.е. верхние
границы интервалов значений с погрешностью, для
уменьшаемого взять верхнюю границу значения, а
для вычитаемого – нижнюю:

Qв = 4190 Дж/(кг • °С) • 1000
кг/м3 • 82 • 10–6 м3 (44,5 – 14,5)°С = 10 307,4 Дж.

Аналогично вычисляем нижнюю границу
значения количества теплоты:

Qн = 4190 Дж/(кг • °С) • 1000
кг/м3 • 78 • 10–6 м3 (41,5 – 17,5) °С = 7843,68
Дж.

В данных пределах и лежит искомое
значение. Чтобы сравнивать методом интервалов
это значение с количеством теплоты, отданным
горячей водой, надо округлить значения верхней и
нижней границ. Лучше это сделать, оценив
абсолютную погрешность найденного значения
количества теплоты.

Рис. 2
Рис. 2

Из рис. 2 видно, что

Найденное выше значение (1) близко к (3),
поэтому его не стоит находить ещё раз. А вот для
погрешности найдём с помощью (2):

(две
значащие цифры, т.к. первая «1»). Поэтому
количество теплоты, полученное холодной водой,
можно округлить: Qполуч = 9000 Дж ±
1200 Дж (т.е. между 7800 Дж и 10 200 Дж). Если количество
теплоты, отданное горячей водой, лежит между 8500
Дж и 11 500 Дж (Qотдан = 10 000 Дж ± 1500 Дж), то
можно видеть, что эти количества теплоты
совпадают в пределах погрешности эксперимента
(рис. 3).

Рис.3
Рис.3

  • Определение сопротивления резистора.
    Пусть измеренные значения напряжения и силы тока
    следующие:

U = 2,60 В ± 0,15 В (инструментальная
погрешность 0,15 В; погрешность отсчёта может быть
взята равной 0,05 В, т.е. в 3 раза меньше
инструментальной, поэтому ею можно пренебречь);

I = 1,2 А ± 0,1 А (инструментальная
погрешность 0,05 А, погрешность отсчёта 0,05 А).

Тогда для сопротивления получаем:

Но на самом резисторе написано: «2 ± 0,1 ». Получается, что
мы неверно определили сопротивление? Рассчитаем
погрешность нашего определения значения
сопротивления:

Uв = 2,75 В; Uн = 2,45 В; Iв
= 1,3 А, Iн = 1,1 А;

Полученное экспериментально значение
сопротивления R = (2,2 ± 0,3) Ом совпадает в
пределах погрешности со значением R = (2,0 ± 0,1)
Ом, указанным на резисторе.

С помощью метода границ можно вывести
и формулы для погрешности при обобщении темы
«Определение погрешности косвенных измерений»,
но уже в 9-м классе.

Определение погрешности разности. Пусть
А = В – С. Рассчитаем погрешность А в
общем виде:

Ав = ВвСн
= (В + В)
– (СС)
= (В – С) + (В
+ С);

Ан = ВнСв
= (ВВ)
– (С + С)
= (В – С) – (В
+ С);

Полученное очень важно: в некоторых
работах в формулах для вычисления результата
встречается разность двух близких по значению
величин, что приводит к большой относительной
погрешности результата.

  • В cтарой работе «Определение модуля
    Юнга резины» [11] удлинение резинового жгута
    находилось как разность его результирующей и
    начальной длин. Если условия опыта таковы, что
    эта разность мала, например, составляет 1,5 см, то
    относительная погрешность определения разности (погрешность
    отсчёта взята гораздо меньше инструментальной
    погрешности). Ясно, что такое измерение
    использовать для определения модуля Юнга
    нежелательно, – может получиться погрешность
    больше 100%. Лучше увеличить нагрузку на жгут.
    Аналогичная проблема возникает в работе
    «Измерение ЭДС и внутреннего сопротивления
    источника» [2] (одно сопротивление должно быть в
    несколько раз больше другого) и др.

Определение погрешности частного
двух величин.
Пусть Рассчитаем погрешность в общем виде:

Такую формулу трудно запоминать.
Поэтому найдём относительную погрешность
величины А:

Итак, относительная погрешность
частного равна сумме относительных погрешностей
величин, входящих в него. Такая же формула
получается и для относительной погрешности
произведения.

Важным я считаю не сам процесс расчёта
погрешности. Эти формулы дают мощный инструмент
для оценки обоснованности проведения
эксперимента. При их использовании легко
объяснить, при измерении какой из величин
следует увеличить точность, чтобы получить
лучший результат.

Рассмотрим формулу для нахождения
модуля Юнга:
Если воспользоваться для расчёта погрешности
результата методом границ, то неясным останется,
какая из величин в формуле вносит наибольшую
погрешность.

Для нахождения относительной
погрешности результата лучше воспользоваться
формулой:

При подстановке значений оказывается,
что слагаемое
даёт максимальный вклад в сумму, а остальные
слагаемые в несколько раз меньше, так что ими
можно пренебречь. Если ll0 будет
невелико, то значение относительной погрешности
окажется очень большим, порой выше 100%. Какой
вывод сделают в таком случае ученики?

Такая ситуация – пример того, как
применение упрощённого способа вычисления
погрешностей может привести к большим ошибкам.
Конечно же, этот эксперимент совершенно
обоснован, с помощью него можно найти модуль
Юнга. Только следует выбрать те измерения, где l
l0 достаточно велико, и не забыть
пренебречь малыми слагаемыми при расчёте
погрешности.

6. Определение коэффициента
прямой пропорциональности

В лабораторных работах нередко
встречается ситуация, когда необходимо по
графику определить коэффициент
пропорциональности в зависимости одной величины
от другой. И здесь в учебниках встречаются две
ситуации.

В работе «Определение модуля Юнга» [13]
после нахождения модуля Юнга для измерений с
тремя различными нагрузками учащимся
предлагается найти среднее арифметическое трёх
полученных значений. Такой подход ошибочен, т.к.
каждое значение получено с различными
систематическими погрешностями, т.е. с разной
степенью точности. Нельзя суммировать эти
значения «с одинаковым весом». При подобных
вычислениях в теории ошибок находится сумма этих
значений с разными коэффициентами.

Далее, в работе «Измерение жёсткости
пружины» [7] в аналогичной ситуации совершенно
справедливо отмечено, что, поскольку жёсткость
пружины в каждом из опытов получена при разных
условиях, среднее арифметическое этих значений
находить нельзя. И предлагается найти среднее
значение коэффициента жёсткости по графику как
коэффициент пропорциональности. Однако,
поскольку учащиеся не могут найти погрешность
найденного таким образом коэффициента
пропорциональности, предлагается взять в
качестве этой погрешности погрешность
наихудшего результата. Я считаю, что такой подход
не оправдан. Зачем брать погрешность самого
ненадёжного результата, если сам способ
нахождения коэффициента жёсткости из графика
применяется для того, чтобы определить этот
коэффициент наиболее точно? Думаю, авторы просто
не хотели заострять внимание на этом вопросе.

На мой взгляд, для определения
коэффициента пропорциональности по графику
можно предложить несколько вариантов.

Вариант 1. Самый простой, а потому
пригодный для младших классов. Отмечаем на
графике экспериментальные значения с указанием
погрешности. Обращаем внимание учащихся на то,
что если бы мы не нанесли погрешности на графики,
то провести прямую было бы затруднительно. В 7-м
классе достаточно просто отметить тот факт, что
зависимость между двумя величинами прямо
пропорциональна. Но если всё-таки необходимо
найти значение коэффициента пропорциональности,
можно обойтись без расчёта погрешности, отметив
только, что этот способ (многократные измерения
при различных условиях и построение графика)
используется именно для того, чтобы уменьшить
погрешность результата.

Вариант 2. Чертим прямую, находим
экспериментальную точку, которая лежит ближе
всего к прямой, и именно эту точку и считаем самой
точной. Остаётся вычислить результат для неё по
обычным формулам, рассчитав также и погрешность.

Вариант 3. Самый логичный. Пробуем
провести через точки вместе с их погрешностями
две прямые: с наибольшим и с наименьшим наклоном.
Значения коэффициентов для них и будут верхней и
нижней границами для результата. Зная границы,
рассчитываем среднее значение коэффициента и
погрешность. Данная погрешность неявно будет
содержать в себе как систематическую
погрешность экспериментально измеренных
величин, так и случайную погрешность определения
среднего, но уже с учётом точности каждого
результата. Этот вариант годится для
использования в экспериментах, когда
коэффициент должен быть оценён достаточно точно.
Но он достаточно сложен, поэтому не стоит его
использовать во всех случаях.

Вариант 4. Использование
встроенных программ в калькуляторах или готовых
компьютерных программ для вычисления
коэффициентов по методу наименьших квадратов.
Этот способ пригоден для практикума в старших
классах и/или в классах физматпрофиля. К
сожалению, в такие программы, как правило,
встроен метод наименьших квадратов, не
учитывающий погрешностей экспериментальных
точек. Применение имеет смысл в случаях, когда
погрешности всех точек практически одинаковы
или когда доминирующей является случайная
погрешность. Она и будет учтена.

Какой из этих вариантов выбрать, может
решать сам учитель. К счастью, таких работ
довольно мало. Продемонстрируем все эти варианты
на примере.

  • Возьмём данные эксперимента по
    зависимости пути от времени равномерного
    движения (машинка из конструктора с
    электрическим приводом):

Действуя так, как описано в варианте 1,
строим график (рис. 4).

Рис. 4
Рис. 4

Так как точек на графике много, можно с
уверенностью утверждать, что 8-я и 10-я точки
являются «выбросами», т.е. измерены небрежно.
Учитывая погрешность эксперимента, можно
провести прямую практически единственным
способом: соответствующая скорость 0,16 м/с. Если
воспользоваться методом наименьших квадратов
(например, встроенной функцией ЛИНЕЙН в
программе MicrosoftExcel), то для коэффициента мы
получим значение 0,158 ± 0,002 м/с (вариант 4).

Для варианта 2 подходит 3-я точка.
Скорость, вычисленная по данным для этой точки,
0,158 м/с. Рассчитаем погрешность: Так как относительная
погрешность пути мала по сравнению с
относительной погрешностью времени,
пренебрегаем ею. Абсолютная погрешность
результата: 0,063
• 0,158 = 0,010 м/с. То есть скорость, вычисленная в
варианте 2: (0,158 ± 0,010) м/с.

Из приведённого примера видно, что
значения коэффициента пропорциональности
получаются очень близкими. В этом примере
погрешности отдельных измерений были достаточно
малы, а точек, наоборот, было много. Рассмотрим
пример, когда погрешности, напротив, велики, а
количество опытов в силу объективных причин
мало.

  • Найдём плотности пластмассы путём
    измерения массы и объёмов тел.

В случае варианта 1 прямую проводим
так, чтобы количество точек над и под прямой было
одинаково (рис. 5), т.е. в данном случае – одна
сверху, одна снизу (прямая 1). Плотность в
этом случае равна 1,23 г/см3.

Рис. 5
Рис. 5

В случае варианта 2 пригодна 2-я точка.
Для неё значение плотности (1,2 ± 0,2) г/см3.

Вариант 3: проведём прямые 2 и 3.
Для прямой 2 коэффициент пропорциональности
1,09 г/см3 является нижней границей
искомого значения плотности, а для прямой 3
(1,27 г/см3) – верхней. Полусумма этих
значений есть значение плотности (1,18 г/см3),
а полуразность – значение погрешности (0,09 г/см3).

Вариант 4 в данном случае менее
пригоден, т.к. не учитывает больших значений
погрешностей при измерении объёма с помощью
мерного цилиндра, но и в этом варианте плотность
(1,18 ± 0,05) г/см3.

Следует заметить, что в двух последних
примерах на графиках были обозначены только
погрешности вдоль горизонтальной оси, т.к.
погрешности значений второй переменной были
очень малы.

Послесловие

Научиться обрабатывать результаты
экспериментов учащиеся могут, лишь обрабатывая
результаты экспериментов. Это означает, что
помимо стандартного набора лабораторных работ
необходимо проводить много фронтальных и
демонстрационных экспериментов с обработкой
результатов. Это большая работа, и я хочу
пожелать успехов всем учителям, кто вступит на
этот путь или уже стоит на нём.

Литература

1. Анофрикова С.В., Стефанова Г.П.
Практическая методика преподавания физики.
Часть первая. – Астрахань: Издательство
Астраханского ГПИ, 1995.

2. Физика: Под ред. А.А.Пинского: Учебник
для 10 кл. школ и классов с угл. изучением физики. –
М.: Просвещение, 2002.

3. Попова О.Н. Обучение учащихся
выявлению устойчивых связей и отношений между
физическими величинами: Методическое пособие
для учителей физики. – Элиста: Элистинский лицей,
1998.

4. Анофрикова С.В. Азбука
учительской деятельности, иллюстрированная
примерами деятельности учителя физики. Ч. 1.
Разработка уроков. – М.: МПГУ, 2001.

5. Пёрышкин А.В. Физика-8. – М.:
Дрофа, 2004.

6. Громов С.В., Родина Н.А. Физика-8.
– М.: Просвещение, 2000.

7. Кикоин И.К., Кикоин А.К. Физика-10.
Механика. – М.: Просвещение, 2001.

8. Фронтальные лабораторные занятия по
физике в 7–11 классах общеобразовательных
учреждений. Книга для учителя: Под ред. В.А.Бурова,
Г.Г.Никифорова. – М.: Просвещение, Учебная
литература, 1996.

9. Зайдель А.Н. Элементарные оценки
ошибок измерений. – Л.: Наука, 1967.

10. Хорозов С.А. Работа над
ошибками: В кн. «Энциклопедия для детей», т. 16
«Физика», ч. 1 «Биография физики. Путешествие в
глубь материи. Механистическая картина мира». –
М.: Аванта+, 2000.

11. Мякишев Г.Я., Буховцев Б.Б., Сотский
Н.Н.
Физика-10. – М.: Просвещение, 2004.

12. Кирик Л.А. Физика-9: Методические
материалы. – М.: Илекса, 2003.

13. Шахмаев Н.М., Шахмаев С.Н., Шодиев
Д.Ш.
Физика-10. – М.: Просвещение, 1994.

Резистор

Его параметры и обозначение на схеме

Резистор и его условное обозначение

Резистор служит для ограничения тока в электрической цепи, создания падений напряжения на отдельных её участках и пр. Применений очень много, всех и не перечесть.

Другое название резистора – сопротивление. По сути, это просто игра слов, так как в переводе с английского resistance – это сопротивление (электрическому току).

Когда речь заходит об электронике, то порой можно встретить фразы типа: «Замени сопротивление», «Два сопротивления сгорели». В зависимости от контекста под сопротивлением может подразумеваться именно электронная деталь.

На схемах резистор обозначается прямоугольником с двумя выводами. На зарубежных схемах его изображают чуть-чуть иначе. «Тело» резистора обозначают ломаной линией – своеобразная стилизация под первые образцы резисторов, конструкция которых представляла собой катушку, намотанную высокоомным проводом на изоляционном каркасе.

Графическое обозначение резистора на схеме

Рядом с условным обозначением указывается тип элемента (R) и его порядковый номер в схеме (R1). Здесь же указано его номинальное сопротивление. Если указана только цифра или число, то это сопротивление в Омах. Иногда, рядом с числом пишут Ω – так, греческой заглавной буквой «Омега» обозначают омы. Ну, а, если так, – 10к, то этот резистор имеет сопротивление 10 килоОм (10 кОм – 10 000 Ом). Про множители и приставки «кило», «мега» можете почитать здесь.

Не стоит забывать о переменных и подстроечных резисторах, которые всё реже, но ещё встречаются в современной электронике. Об их устройстве и параметрах я уже рассказывал на страницах сайта.

Основные параметры резисторов.

  • Номинальное сопротивление.

    Это заводское значение сопротивления конкретного прибора, измеряется это значение в Омах (производные килоОм – 1000 Ом, мегаОм – 1000000 Ом). Диапазон сопротивлений простирается от долей Ома (0,01 – 0,1 Ом) до сотен и тысяч килоОм (100 кОм – 1МОм). Для каждой электронной цепи необходимы свои наборы номиналов сопротивлений. Поэтому разброс значений номинальных сопротивлений столь велик.

  • Рассеиваемая мощность.

    Более подробно о мощности резистора я уже писал здесь.

    При прохождении электрического тока через резистор происходит его нагрев. Если пропускать через него ток, превышающий заданное значение, то токопроводящее покрытие разогреется настолько, что резистор сгорает. Поэтому существует разделение резисторов по рассеиваемой мощности.

    На графическом обозначении резистора внутри прямоугольника мощность обозначается наклонной, вертикальной или горизонтальной чертой. На рисунке обозначено соответствие графического обозначения и мощности указанного на схеме резистора.

    Обозначение мощности рассеивания резисторов на схемах

    К примеру, если через резистор потечёт ток 0,1А (100 mA), а его номинальное сопротивление 100 Ом, то необходим резистор мощностью не менее 1 Вт. Если вместо этого применить резистор на 0,5 Вт, то он вскоре выйдет из строя. Мощные резисторы применяются в сильноточных цепях, например, в блоках питания или сварочных инверторах.

    Если необходим резистор мощностью более 2 Вт (5 Вт и более), то внутри прямоугольника на условном графическом обозначении пишется римская цифра. Например, V – 5 Вт, Х – 10 Вт, XII – 12 Вт.

  • Допуск.

    При изготовлении резисторов не удаётся добиться абсолютной точности номинального сопротивления. Если на резисторе указано 10 Ом, то его реальное сопротивление будет в районе 10 Ом, но никак не ровно 10. Оно может быть и 9,88 и 10,5 Ом. Чтобы как-то обозначить пределы погрешности в номинальном сопротивлении резисторов, их делят на группы и присваивают им допуск. Допуск задаётся в процентах.

    Если вы купили резистор на 100 Ом c допуском ±10%, то его реальное сопротивление может быть от 90 Ом до 110 Ом. Узнать точное сопротивление этого резистора можно лишь с помощью омметра или мультиметра, проведя соответствующее измерение. Но одно известно точно. Сопротивление этого резистора не будет меньше 90 или больше 110 Ом.

    Строгая точность номиналов сопротивлений в обычной аппаратуре важна не всегда. Так, например, в бытовой электронике допускается замена резисторов с допуском ±20% от того номинала, что требуется в схеме. Это выручает в тех случаях, когда необходимо заменить неисправный резистор (например, на 10 Ом). Если нет подходящего элемента с нужным номиналом, то можно поставить резистор с номинальным сопротивлением от 8 Ом (10-2 Ом) до 12 Ом (10+2 Ом). Считается так (10 Ом/100%) * 20% = 2 Ом. Допуск составляет -2 Ом в сторону уменьшения, +2 Ом в сторону увеличения.

    Для тех, кто ещё не знает, существует ещё одна возможность подобрать необходимое сопротивление – его можно составить, соединив вместе несколько резисторов разных номиналов. Об этом читайте в статье про соединение резисторов.

    Существует аппаратура, где такой трюк не пройдёт – это прецизионная аппаратура. К ней относится медицинское оборудование, измерительные приборы, электронные узлы высокоточных систем, например, военных. В ответственной электронике используются высокоточные резисторы, допуск их составляет десятые и сотые доли процента (0,1-0,01%). Иногда такие резисторы можно встретить и в бытовой электронике.

    Стоит отметить, что в настоящее время в продаже можно встретить резисторы с допуском не более 10% (обычно 1%, 5% и реже 10%). Высокоточные резисторы имеют допуск в 0,25…0,05%.

  • Температурный коэффициент сопротивления (ТКС).

    Под влиянием внешней температуры или собственного нагрева из-за протекающего тока, сопротивление резистора меняется. Иногда в тех пределах, которые нежелательны для работы схемы. Чтобы оценить изменение сопротивления из-за воздействия температуры, то есть термостабильность резистора, используется такой параметр, как ТКС (Температурный Коэффициент Сопротивления). За рубежом принято сокращение T.C.R.

    В маркировке резистора величина ТКС, как правило, не указывается. Для нас же необходимо знать, что чем меньше ТКС, тем лучше резистор, так как он обладает лучшей термостабильностью. Более подробно о таком параметре, как ТКС, я рассказывал тут.

Первые три параметра основные, их надо знать!

Перечислим их ещё раз:

  • Номинальное сопротивление (маркируется как 100 Ом, 10кОм, 1МОм…)

  • Рассеиваемая мощность (измеряется в Ваттах: 1 Вт, 0,5 Вт, 5 Вт…)

  • Допуск (выражается в процентах: 5%, 10%, 0,1%, 20%).

Так же стоит отметить конструктивное исполнение резисторов. Сейчас можно встретить как микроминиатюрные резисторы для поверхностного монтажа (SMD-резисторы), которые не имеют выводов, так и мощные, в керамических корпусах. Существуют и невозгораемые, разрывные и прочее. Перечислять можно очень долго, но основные параметры у них одинаковые: номинальное сопротивление, рассеиваемая мощность и допуск.

В настоящее время номинальное сопротивление резисторов и их допуск маркируют цветными полосами на корпусе самого элемента. Как правило, такая маркировка применяется для маломощных резисторов, которые имеют небольшие габариты и мощность менее 2…3 ватт. Каждая фирма-изготовитель устанавливает свою систему маркировки, что вносит некоторую путаницу. Но в основном присутствует одна устоявшаяся система маркировки.

Новичкам в электронике хотелось бы рассказать и о том, что кроме резисторов, цветовыми полосами маркируют и миниатюрные конденсаторы в цилиндрических корпусах. Иногда это вызывает путаницу, так как такие конденсаторы ложно принимают за резисторы.

Таблица цветового кодирования.

Цветовое кодирование резисторов

Рассчитывается сопротивление по цветным полосам так. Например, три первых полосы – красные, последняя четвёртая золотистого цвета. Тогда сопротивление резистора 2,2 кОм = 2200 Ом.

Первые две цифры согласно красному цвету – 22, третья красная полоса, это множитель. Стало быть, по таблице множитель для красной полосы – 100. На множитель необходимо умножить число 22. Тогда, 22 * 100 = 2200 Ом. Золотистая полоса соответствует допуску в 5%. Значит, реальное сопротивление может быть в пределе от 2090 Ом (2,09 кОм) до 2310 Ом (2,31 кОм). Мощность рассеивания зависит от размеров и конструктивного исполнения корпуса.

На практике широкое распространение имеют резисторы с допуском 5 и 10%. Поэтому за допуск отвечают полосы золотого и серебристого цвета. Понятно, что в таком случае, первая полоса находится с противоположной стороны элемента. С неё и нужно начинать считывание номинала.

Но, как быть, если резистор имеет небольшой допуск, например 1 или 2% ? С какой стороны считывать номинал, если с обеих сторон присутствуют полосы красного и коричневого цветов?

Этот случай предусмотрели и первую полосу размещают ближе к одному из краёв резистора. Это можно заметить на рисунке таблицы. Полоски, обозначающие допуск расположены дальше от края элемента.

Конечно, бывают случаи, когда нет возможности считать цветовую маркировку резистора (забыли таблицу, стёрта/повреждена сама маркировка, некорректное нанесение полос и пр.).

В таком случае, узнать точное сопротивление резистора можно только, если измерить его сопротивление мультиметром или омметром. В таком случае вы будете 100% знать его реальную величину. Также при сборке электронных устройств рекомендуется проверять резисторы мультиметром для того, чтобы отсеить возможный брак.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Научись паять! Как подготовить паяльник к работе?

  • Что такое динистор?

  • Собираем «мультирозетку» для рабочего места.

«ИССЛЕДОВАНИЕ ПОГРЕШНОСТЕЙ ИЗМЕРЕНИЯ СОПРОТИВЛЕНИЯ ПРОВОДНИКА ПРИ РАЗЛИЧНЫХ СПОСОБАХ ВКЛЮЧЕНИЯ ИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ»

  • Авторы
  • Руководители
  • Файлы работы
  • Наградные документы

Пещеркина В.В. 1


1МОУ СОШ №4,


Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

I.Введение

В школьном курсе физики при изучении раздела «Электричество» в ходе выполнения лабораторных работ возникает необходимость в измерении сопротивлений проводников и внутренних сопротивлений источников тока. Для этого используют амперметры и вольтметры из школьного оборудования.

Поскольку измерительные приборы – амперметры и вольтметры не являются идеальными, то встаёт вопрос о выборе схемы соединения приборов, позволяющей с минимальной погрешностью измерить сопротивления проводников и источников тока.

В данной исследовательской работе мы сначала теоретически анализируем погрешности измерений сопротивления проводника при использовании двух схем подключения измерительных приборов, а затем, используя их на практике, рассчитываем погрешности измерений и приходим к выводу о целесообразности использования той или иной схемы. Актуальность данной исследовательской работы заключается в том, что учащиеся могут воспользоваться её результатами при выборе схем во время выполнения лабораторных работ по электричеству. Данную исследовательскую работу можно использовать на уроках физики в качестве обучающего пособия при изучении темы «Электричество» в 8-м, 10-м и при повторении материала, а также при подготовке к ЕГЭ в 11-м классе.

Данную работу можно использовать как методический материал при обучении учащихся подсчёту погрешностей измерений.

При выполнении исследовательской работы автор использовал учебник «Электродинамика» для углублённого изучения физики под редакцией Г.Я. Мякишева, учебник Калашникова «Электричество» и «Физический практикум для классов с углублённым изучением физики» под редакцией Ю.И.Дика и О.Ф.Кабардина.

II.Теоретическая часть

2.1 Из закона Ома для участка цепи электрическое сопротивление проводника можно рассчитать R=U/I.

Для нахождения сопротивления R необходимо измерить приложенное к проводнику напряжение U и силу тока I в проводнике при этом напряжении.

Напряжение измеряется с помощью вольтметра, сила тока измеряется с помощью амперметра

Вольтметр включается параллельно участку цепи, на котором измеряется напряжение. Это напряжение Uиз равно показанию вольтметра.

Амперметр включается последовательно к участку цепи, в котором измеряется сила тока. Эта сила тока Iиз равна показанию амперметра.

Для измерения сопротивления проводника приведём две возможные электрические схемы соединения вольтметра V, амперметра A и исследуемого проводника (сопротивления) Rx.

Схема №1. На 1-ой схеме проводник и амперметр соединены последовательно.

Вольтметр измеряет и показывает сумму напряжения на проводнике и напряжения на амперметре UА.

Амперметр измеряет и показывает силу тока , которая равна силе тока в проводнике Ix:IА = Ix

Из закона Ома R х = Uх / Iиз

Для схемы №1 напряжение на проводнике =U из

Напряжение на амперметре согласно закону Ома равноUА=IАRА=Iиз RА. Напряжение на проводнике равно разности между напряжением на вольтметре и напряжением на амперметре U х =U изIиз RА.

Тогда R х = Uх / Iиз = (U изIиз RА) : Iиз. Окончательно получаем R х = U из/ Iиз RА.

Отношение U из/ Iиз является общим сопротивлением последовательно соединенных проводника и амперметра (сопротивлением, определенным по показаниям приборов):

Rиз = U из/ Iиз

Поэтому сопротивление проводника будет равно:R х = R из – R А

Это выражение следует из формулы общего сопротивления при последовательном соединении проводников

Отсюда следует, что ΔR =R из – R х = RА

Сопротивление Rиз, вычисленное по показаниям амперметра и

вольтметра по схеме №1, отличается от сопротивления проводника Rx на величину сопротивления амперметра. Сопротивление школьного амперметра по нашим измерениям не превышаетRА = 0,1 Ом

Мы определили сопротивление школьного амперметра опытным путём, используя электрическую цепь, собранную по схеме №3 . Резистор R нужен для ограничения тока через амперметр. Измерив силу тока и напряжение в этой цепи (IА и UА), получим RА = UА / IА =0.2/2.6=0,08 Ом ~ 0.1 Ом.

Относительное изменение сопротивления проводника Rx от сопротивления Rиз, определенного по показаниям амперметра и вольтметра, то есть относительная погрешность измерения равна:

εR= ΔR / R х = R А / (R из- RA)

Очевидно, что отличие значения сопротивления R из , полученного на основе экспериментальных данных, от истинного значения сопротивления проводника R х ,тем меньше, чем меньше сопротивление амперметра R А и чем больше сопротивление проводника.

2.2 На схеме 2 проводник и вольтметр соединены параллельно.

Амперметр измеряет и показывает сумму сил токов через проводник Jx и через вольтметр Jv :Jиз = Jx + Jv

Вольтметр измеряет и показывает напряжение на проводнике: Uиз = Ux.

Из закона Ома сопротивление проводникаRх = Uх / Iх = Uиз / Iх

Сила тока в проводнике Jx = Jиз — Jv

Сила тока через вольтметр Iv согласно закону Ома Iv = Uv / Rv =Uиз / Rv

ТогдаIх = Iиз — Uиз / Rv . Сопротивление на резисторе Rх = Uиз: (Iиз — Uиз / Rv) =

Uиз Rv : (Iиз Rv — Uиз)

Сопротивление Rиз = Uиз / Iиз , т.е. определенное по показателям приборов, в этом случае является общим сопротивлением параллельно соединенных проводника и вольтметра. Поэтому сопротивление проводника будет равно

Rx = Rиз: (1 — Rиз / Rv)

(Это выражение следует и из формулы общего сопротивления при параллельном соединении проводников).

Сопротивление Rиз, вычисленное по показаниям амперметра и вольтметра, отличатся от сопротивления проводника Rx в этом случае на величину ∆R = Rx – Rиз =Rх: (1 + Rv / Rx)

Относительное отличие сопротивления проводника Rx от сопротивления Rиз, определенного по показаниям амперметра и вольтметра, то есть относительная погрешность измерения равна: ε = ∆R / Rx = Rx : (Rv + Rx)

Видно, что отличие значения сопротивления Rиз, полученного на основе экспериментальных данных от истинного значения Rx тем меньше, чем больше сопротивление вольтметра Rv и чем меньше сопротивление проводника Rx.

Проведённые нами измерения сопротивления школьного вольтметра дали результат

Rv = 800 Ом.

Очевидно, что погрешность данного метода зависит не только от класса точности выбранных электроизмерительных приборов и пределов их измерений, но и от влияния тока, прошедшего через вольтметр, так как IA = IR + IV .

Током через вольтметр Iv можно пренебречь, если собственное сопротивление RV велико по сравнению с сопротивлением резистора: RV >> RX.

Допустимость использования выражения Rиз = Uиз / Iиз легко проверить на опыте: если при отключении вольтметра в схеме №2 показания амперметра не изменятся, то влиянием вольтметра можно пренебречь.

Если при отключении вольтметра показания амперметра существенно меняются, то необходимо учесть сопротивление вольтметра. Обычно оно указано на шкале прибора или в его паспорте. На школьных вольтметрах Лаборатории L – микро такой информации нет.

Мы определяли сопротивление вольтметра опытным путём, используя электрическую схему №4

Измерив значения Iv и Uv в этой цепи, мы рассчитали Rv:

Rv = Uv / Iv = 4В / 0,5 мА = 800 Ом .

III. Практическая (исследовательская) часть

3.1 Собрали электрическую цепь по схеме №1.

Поочерёдно подключая резисторы R1 и R2 , снятли показания измерительных приборов – амперметра и вольтметра. Необходимые расчёты произвели по формуле:

Rиз1 = U из/ Iиз = 4,60В/0,42А= 11,00 Ом

R х1 = R из1 – R А = 11,00 Ом – 0,10 Ом = 10,90 Ом

Rиз2 = U из/ Iиз = 3,90В/0,58А= 6,70 Ом

R х2 = R из2 – R А = 6,70 Ом – 0,10 Ом = 6,60 Ом

3.2 Значения измеренных и расчётных величин внесли в таблицу.

3.3 Собрали электрическую цепь по схеме №2. Поочерёдно подключая резисторы R1 и R2 , сняли показания измерительных приборов – амперметра и вольтметра. Необходимые расчёты произвели по представленным формулам.

Rиз1 = Uиз / Iиз = 4,0В/0,37А=10,80 Ом

Rx1 = Rиз: (1 — Rиз / Rv) = 10,8 : (1 – 10,8 / 800) = 10,95 Ом

Rиз2 = Uиз / Iиз = 4.3В/0,70А=6,14 Ом

Rx2 = Rиз: (1 — Rиз / Rv) = 6,14 : (1 – 6,14 / 800) =6,19 Ом

3.4 Значения измеренных и расчётных величин внесли в таблицу.

 

схемы

Uиз,А

Jиз, А

Rиз, Ом

Rx, Ом

R, Ом

R/Rср, Ом

R1

1

4,60

0,42

11,00

10,90

0,10

1,0%

2

4,0

0,37

10,80

10,95

0,13

1,3%

Среднее значение сопротивления R1 , измеренное в 1-ой и 2-ой схемах и рассчитанное как среднее арифметическое, равно

R1= 10,90 Ом

Относительная погрешность измерения сопротивления R1 составила по 1-ой схеме 1%,

а по 2-ой схеме 1,3 %.

 

схемы

Uиз,А

Jиз, А

Rиз, Ом

Rx, Ом

R, Ом

R/Rср, Ом

R2

1

3,9

0,58

6,70

6,60

0,10

1,6 %

2

4,3

0,70

6,14

6,19

0,05

0,9%

Среднее значение сопротивления R2 измеренное в 1-ой и 2-ой схемах и рассчитанное как среднее арифметическое, равно

R2= 6,42 Ом

Относительная погрешность измерения сопротивления R2 составила по 1-ой схеме 1,6%,

а по 2-ой схеме 0,9 %.

До сих пор мы оценивали систематическую погрешность, обусловленную способом включения вольтметра.

Оценим теперь инструментальную погрешность используемых приборов. Класс точности приборов 2,5. Это значит, что максимальная инструментальная погрешность составляет 2,5% от предела измерения по шкале.

Основная погрешность вольтметра имеет границу по верхней шкале ΔV=2,5×6В/100=0,15В.

Относительная погрешность измерения напряжения не превосходит при определении R1 по обеим схемам

εv=(0,15В/4,0В) × 100%=3.75 %,

Относительная погрешность измерения напряжения не превосходит при определении R2 по обеим схемам

εv=(0,15В/3,9В) × 100%=3.85 %

Аналогично определяем погрешность измерения силы тока.

ΔI=2,5×3А/100=0,075А

Относительная погрешность измерения силы тока не превосходит при определении R1 по обеим схемам

εI=(0,075А/0,37А) × 100%=20,3 %,

Относительная погрешность измерения силы тока не превосходит при определении R2 по обеим схемам

εI=(0,075А/0,58А) × 100%=13,0 %

Итак, общая граница относительной погрешности измерения сопротивления R1 по 1 схеме равна

ε = 1,0% + 3,75% + 20.3% = 25,05%,

Общая граница относительной погрешности измерения сопротивления R1по2 схеме равна

ε = 1,3% + 3,75% + 20,3% = 25,35%.

Общая граница относительной погрешности измерения сопротивления R2 по 1 схеме равна

ε = 1,6% + 3,85% + 13,0% = 18,45%,

Общая граница относительной погрешности измерения сопротивления R2 по 2 схеме равна

ε = 0,9% + 3,85% + 13,0% = 17,75%.

IV. Выводы

4.1 Систематическая погрешность, обусловленная способом включения вольтметра и амперметра, для школьных приборов оказалась существенно меньше, чем погрешности используемых приборов.

4.2 Сопротивления резисторов и источников тока из оборудования школьной физической лаборатории подобраны таким образом, что они во много раз превосходят сопротивление амперметра (R1 , R2 >> RА = 0,1 Ом)

Поэтому погрешности измерения сопротивлений по 1-ой схеме не превышают 1,6%

4.3 Сопротивления резисторов и источников тока из оборудования школьной физической лаборатории подобраны таким образом, что сопротивление вольтметра во много раз превосходит величины измеряемых сопротивлений

(R1 , R2

Просмотров работы: 6926

Понравилась статья? Поделить с друзьями:
  • Как найти проценты снижения цены
  • Как найти управу на банк тинькофф
  • Единичная нормаль как найти
  • Как найти спецификацию в 1с бухгалтерия
  • Как составить сложный план текста родной язык