Как найти показатель преломления стекла примерно

Законы физики играют очень важную роль при проведении расчетов для планирования определенной стратегии производства какого-либо товара или при составлении проекта строительства сооружений различного назначения. Многие величины являются расчетными, так что перед стартом работ по планированию производятся измерения и вычисления. Например, показатель преломления стекла равен отношению синуса угла падения к синусу угла преломления.

Так что вначале идет процесс измерения углов, затем вычисляют их синус, а уже только потом можно получить искомое значение. Несмотря на наличие табличных данных, стоит каждый раз проводить дополнительные расчеты, так как в справочниках зачастую используются идеальные условия, которых добиться в реальной жизни практически невозможно. Поэтому на деле показатель обязательно будет отличаться от табличного, а в некоторых ситуациях это имеет принципиальное значение.

Абсолютный показатель

Блики в стеклянных бокалах

Опять-таки, если важен точный показатель, то без дополнительных измерений не обойтись. Но и они не дают стопроцентно достоверного результата, так как на итоговое значение будет влиять положение солнца на небосводе и облачность в день измерений. К счастью, в 99,99% случае достаточно просто знать, что показатель преломления такого материала, как стекло больше единицы и меньше двойки, а все остальные десятые и сотые доли не играют роли.

На форумах, которые занимаются помощью в решении задач по физике, часто мелькает вопрос, каков показатель преломления стекла и алмаза? Многие думают, что раз эти два вещества похожи внешне, то и свойства у них должны быть примерно одинаковыми. Но это заблуждение.

Преломление стекла

Максимальное преломление у стекла будет находиться на уровне около 1,7, в то время как у алмаза этот показатель достигает отметки 2,42. Данный драгоценный камень является одним из немногих материалов на Земле, чей уровень преломления превышает отметку 2. Это связано с его кристаллическим строением и большим уровнем разброса световых лучей. Огранка играет в изменениях табличного значения минимальную роль.

Относительный показатель

  • —    показатель преломления стекла относительно воды составляет примерно 1,18;
  • —    показатель преломления этго же материала относительно воздуха равен значению 1,5;
  • —    показатель преломления относительно спирта — 1,1.

Измерения показателя и вычисления относительного значения проводятся по известному алгоритму. Чтобы найти относительный параметр, нужно разделить одно табличное значение на другое. Или же произвести опытные расчеты для двух сред, а потом уже делить полученные данные. Такие операции часто проводятся на лабораторных занятиях по физике.

Определение показателя преломления

Вообще данный коэффициент показывает, во сколько раз замедляется скорость распространения световых лучей при прохождении через определенное препятствие. Поэтому он характерен только для прозрачных материалов. За эталонное значение, то бишь за единицу, взят показатель преломления газов. Это было сделано для того, чтобы можно было отталкиваться от какого-нибудь значения при расчетах.

Формула определения показателя преломления

Если солнечный луч падает на поверхность стекла с показателем преломления, который равен табличному значению, то изменить его можно несколькими способами:

  • 1.    Поклеить сверху пленку, у которой коэффициент преломления будет выше, чем у стекла. Этот принцип используется в тонировке окон автомобиля, чтобы улучшить комфорт пассажиров и позволить водителю более четко наблюдать за дорожной обстановкой. Также пленка будет сдерживать и ультрафиолетовое излучение.
  • 2.    Покрасить стекло краской. Так поступают производители дешевых солнцезащитных очков, но стоит учесть, что это может быть вредно для зрения. В хороших моделях стекла сразу производятся цветными по специальной технологии.
  • 3.    Погрузить стекло в какую-либо жидкость. Это полезно исключительно для опытов.

Если луч света переходит из стекла, то показатель преломления на следующем материале рассчитывается при помощи использования относительного коэффициента, который можно получить, сопоставив между собой табличные значения. Эти вычисления очень важны при проектировке оптических систем, которые несут практическую или экспериментальную нагрузку. Ошибки здесь недопустимы, потому что они приведут к неправильной работе всего прибора, и тогда любые полученные с его помощью данные будут бесполезны.

Чтобы определить скорость света в стекле с показателем преломления, нужно абсолютное значение скорости в вакууме разделить на величину преломления. Вакуум используется в качестве эталонной среды, потому что там не действует преломление из-за отсутствия каких-либо веществ, которые могли бы мешать беспрепятственному движению световых лучей по заданной траектории.

В любых расчетных показателях скорость будет меньше, чем в эталонной среде, так как коэффициент преломления всегда больше единицы.

Преломление света.

  • Закон преломления (частный случай).

  • Обратимость световых лучей.

  • Закон преломления (общий случай).

  • Полное внутреннее отражение.

  • Разберем задачи ЕГЭ по теме: Преломление света.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: закон преломления света, полное внутреннее отражение.

На границе раздела двух прозрачных сред наряду с отражением света наблюдается его преломление — свет, переходя в другую среду, меняет направление своего распространения.

Преломление светового луча происходит при его наклонном падении на поверхность раздела (правда, не всегда — читайте дальше про полное внутреннее отражение). Если же луч падает перпендикулярно поверхности, то преломления не будет — во второй среде луч сохранит своё направление и также пойдёт перпендикулярно поверхности.

к оглавлению ▴

Закон преломления (частный случай).

Мы начнём с частного случая, когда одна из сред является воздухом. Именно такая ситуация присутствует в подавляющем большинстве задач. Мы обсудим соответствующий частный случай закона преломления, а уж затем дадим самую общую его формулировку.

Предположим, что луч света, идущий в воздухе, наклонно падает на поверхность стекла, воды или какой-либо другой прозрачной среды. При переходе в среду луч преломляется, и его дальнейший ход показан на рис. 1.

Рис. 1. Преломление луча на границе «воздух–среда»

В точке падения O проведён перпендикуляр (или, как ещё говорят, нормаль) CD к поверхности среды. Луч AO, как и раньше, называется падающим лучом, а угол alpha между падающим лучом и нормалью — углом падения. Луч OB — это преломлённый луч; угол beta между преломлённым лучом и нормалью к поверхности называется углом преломления.

Всякая прозрачная среда характеризуется величиной n, которая называется показателем преломления этой среды. Показатели преломления различных сред можно найти в таблицах. Например, для стекла n=1,6, а для воды n=1,33. Вообще, у любой среды n textgreater 1; показатель преломления равен единице только в вакууме. У воздуха n=1,0003, поэтому для воздуха с достаточной точностью можно полагать в задачах n=1 (в оптике воздух не сильно отличается от вакуума).

Закон преломления (переход «воздух–среда»).

1) Падающий луч, преломлённый луч и нормаль к поверхности, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно показателю преломления среды:

frac{displaystyle sinalpha }{displaystyle sinbeta }=n. (1)

Поскольку n textgreater 1 из соотношения (1) следует, что sinalpha textgreater sinbeta , то есть alpha textgreater beta — угол преломления меньше угла падения. Запоминаем: переходя из воздуха в среду, луч после преломления идёт ближе к нормали.

Показатель преломления непосредственно связан со скоростью v распространения света в данной среде. Эта скорость всегда меньше скорости света в вакууме: v textless c. И вот оказывается,что

n=frac{displaystyle c }{displaystyle v }. (2)

Почему так получается, мы с вами поймём при изучении волновой оптики. А пока скомбинируем формулы . (1) и (2):

frac{displaystyle sinalpha }{displaystyle sinbeta }=frac{displaystyle c }{displaystyle v }. (3)

Так как показатель преломления воздуха очень близок единице, мы можем считать, что скорость света в воздухе примерно равна скорости света в вакууме c. Приняв это во внимание и глядя на формулу . (3), делаем вывод: отношение синуса угла падения к синусу угла преломления равно отношению скорости света в воздухе к скорости света в среде.

к оглавлению ▴

Обратимость световых лучей.

Теперь рассмотрим обратный ход луча: его преломление при переходе из среды в воздух. Здесь нам окажет помощь следующий полезный принцип.

Принцип обратимости световых лучей. Траектория луча не зависит от того, в прямом или обратном направлении распространяется луч. Двигаясь в обратном направлении, луч пойдёт в точности по тому же пути, что и в прямом направлении.

Согласно принципу обратимости, при переходе из среды в воздух луч пойдёт по той же самой траектории, что и при соответствующем переходе из воздуха в среду (рис. 2) Единственное отличие рис. 2 от рис. 1 состоит в том, что направление луча поменялось на противоположное.

Рис. 2. Преломление луча на границе «среда–воздух»

Раз геометрическая картинка не изменилась, той же самой останется и формула (1): отношение синуса угла alpha к синусу угла beta по-прежнему равно показателю преломления среды. Правда, теперь углы поменялись ролями: угол beta стал углом падения, а угол alpha — углом преломления.

В любом случае, как бы ни шёл луч — из воздуха в среду или из среды в воздух — работает следующее простое правило. Берём два угла — угол падения и угол преломления; отношение синуса большего угла к синусу меньшего угла равно показателю преломления среды.

Теперь мы целиком подготовлены для того, чтобы обсудить закон преломления в самом общем случае.

к оглавлению ▴

Закон преломления (общий случай).

Пусть свет переходит из среды 1 с показателем преломления n_{displaystyle 1} в среду 2 с показателем преломления n_{displaystyle 2}. Среда с большим показателем преломления называется оптически более плотной; соответственно, среда с меньшим показателем преломления называется оптически менее плотной.

Переходя из оптически менее плотной среды в оптически более плотную, световой луч после преломления идёт ближе к нормали (рис. 3). В этом случае угол падения больше угла преломления: alpha textgreater beta .

Наоборот, переходя из оптически более плотной среды в оптически менее плотную, луч отклоняется дальше от нормали (рис. 4). Здесь угол падения меньше угла преломления: alpha textless beta

Оказывается, оба этих случая охватываются одной формулой — общим законом преломления, справедливым для любых двух прозрачных сред.

Закон преломления.
1) Падающий луч, преломлённый луч и нормаль к поверхности раздела сред, проведённая в точке падения, лежат в одной плоскости.
2) Отношение синуса угла падения к синусу угла преломления равно отношению показателя преломления второй среды к показателю преломления первой среды:

frac{displaystyle sinalpha }{displaystyle sinbeta }=frac{displaystyle n_{displaystyle 2}}{displaystyle n_{displaystyle 1}}. (4)

Нетрудно видеть, что сформулированный ранее закон преломления для перехода «воздух–среда» является частным случаем данного закона. В самом деле, полагая в формуле (4) n_{displaystyle 1}=1, n_{displaystyle 2}=n, мы придём к формуле (1).

Вспомним теперь, что показатель преломления — это отношение скорости света в вакууме к скорости света в данной среде: n_{displaystyle 1}=c/v_{displaystyle1}, n_{displaystyle 2}=c/v_{displaystyle2}. Подставляя это в (4), получим:

frac{displaystyle sinalpha}{displaystyle sinbeta }=frac{displaystyle v_{displaystyle 1}}{displaystyle v_{displaystyle 2}}. (5)

Формула (5) естественным образом обобщает формулу (3). Отношение синуса угла падения к синусу угла преломления равно отношению скорости света в первой среде к скорости света во второй среде.

к оглавлению ▴

Полное внутреннее отражение.

При переходе световых лучей из оптически более плотной среды в оптически менее плотную наблюдается интересное явление — полное внутреннее отражение. Давайте разберёмся, что это такое.

Будем считать для определённости, что свет идёт из воды в воздух. Предположим, что в глубине водоёма находится точечный источник света S, испускающий лучи во все стороны. Мы рассмотрим некоторые из этих лучей (рис. 5).

Рис. 5. Полное внутреннее отражение

Луч SO_{displaystyle 1} падает на поверхность воды под наименьшим углом. Этот луч частично преломляется (луч O_{displaystyle 1} A_{displaystyle 1}) и частично отражается назад в воду (луч O_{displaystyle 1} B_{displaystyle 1}). Таким образом, часть энергии падающего луча передаётся преломлённому лучу, а оставшаяся часть энергии -отражённому лучу.

Угол падения луча S O_{displaystyle 2} больше. Этот луч также разделяется на два луча — преломлённый и отражённый. Но энергия исходного луча распределяется между ними по-другому: преломлённый луч O_{displaystyle 2} A_{displaystyle 2} будет тусклее, чем луч O_{displaystyle 1} A_{displaystyle 1} (то есть получит меньшую долю энергии), а отражённый луч O_{displaystyle 2} B_{displaystyle 2} — соответственно ярче, чем луч O_{displaystyle 1} B_{displaystyle 1} (он получит большую долю энергии).

По мере увеличения угла падения прослеживается та же закономерность: всё большая доля энергии падающего луча достаётся отражённому лучу, и всё меньшая — преломлённому лучу. Преломлённый луч становится всё тусклее и тусклее, и в какой-то момент исчезает совсем!

Это исчезновение происходит при достижении угла падения alpha _{0}, которому отвечает угол преломления 90^{circ}. В данной ситуации преломлённый луч OA должен был бы пойти параллельно поверхности воды, да идти уже нечему — вся энергия падающего луча SO целиком досталась отражённому лучу OB.

При дальнейшем увеличении угла падения преломлённый луч и подавно будет отсутствовать.

Описанное явление и есть полное внутреннее отражение. Вода не выпускает наружу лучи с углами падения, равными или превышающими некоторое значение alpha _{0} — все такие лучи целиком отражаются назад в воду. Угол alpha _{0} называется предельным углом полного отражения.

Величину alpha _{0} легко найти из закона преломления. Имеем:

frac{displaystyle sinalpha _{0}}{displaystyle sin90^{circ}}=frac{displaystyle 1}{displaystyle n}.

Но sin90^{circ}=1, поэтому

sinalpha _{0}=frac{displaystyle 1}{displaystyle n},

откуда

alpha _{0}=arcsinfrac{displaystyle 1}{displaystyle n}.

Так, для воды предельный угол полного отражения равен:

alpha _{0}=arcsinfrac{displaystyle 1}{1,33} approx 48,8^{circ} .

Явление полного внутреннего отражения вы легко можете наблюдать дома. Налейте воду в стакан, поднимите его и смотрите на поверхность воды чуть снизу сквозь стенку стакана. Вы увидите серебристый блеск поверхности — вследствие полного внутреннего отражения она ведёт себя подобно зеркалу.

Важнейшим техническим применением полного внутреннего отражения является волоконная оптика. Световые лучи, запущенные внутрь оптоволоконного кабеля (световода) почти параллельно его оси, падают на поверхность под большими углами и целиком, без потери энергии отражаются назад внутрь кабеля. Многократно отражаясь, лучи идут всё дальше и дальше, перенося энергию на значительное расстояние. Волоконно-оптическая связь применяется, например, в сетях кабельного телевидения и высокоскоростного доступа в Интернет.

к оглавлению ▴

Разберем задачи ЕГЭ по теме: Преломление света.


Задача 1. Нижняя грань AC прозрачного клина посеребрена и представляет собой плоское зеркало. Угол при вершине клина alpha = 30^{circ} . Луч света падает из воздуха на клин перпендикулярно грани AB, преломляется и выходит в воздух через ту же грань AB, но уэе под углом преломления beta = 90^{circ} Определите показатель преломления материала клина. Сделайте рисунок, поясняющий ход луча в клине.

Дано:
alpha = 30^{circ}
beta = 90^{circ}
n-?
Решение. Решение задач по геометрической оптике необходимо начинать с построения чертежа (рисунка), моделирующего условия, описанные в тексте задачи.

Световой луч падает на прозрачный клин перпендикулярно стороне АВ (см.рис.1). В этом случае, световой луч не преломляется на границе раздела воздух-клин, так как угол падения равен 0, соответственно, угол преломления также равен 0. Следовательно, внутри клина световой луч попадает на нижнюю грань АС, которая представляет собой плоское зеркало. Согласно рис.1 величина угла alpha_1=180^{circ}-(alpha+90^{circ})=90^{circ}-alpha.

alpha_1=90^{circ}-30^{circ}=60^{circ}.

Тогда угол падения луча на плоское зеркало будет равен
90^{circ}-alpha_1=90^{circ}-60^{circ}=30^{circ}.

То есть угол падения равен alpha=30^{circ}.
Согласно закону отражения света, угол падения светового луча равен углу отражения. В треугольнике МКО угол КОМ образован суммой двух углов α, поэтому он равен 60°. Тогда угол падения светового луча на грань АВ также будет равен 2alpha=60^{circ} (равенство накрест лежащих углов).
На следующем этапе задачи надо применить закон преломления света, так как луч переходит из одной среды в другую.
frac{sin{2alpha}}{sinbeta}=frac{1}{n}
При записи этой формулы учтено, что второй средой является воздух с показателем преломления равным 1, а первой средой является материал клина с показателем преломления n, который необходимо определить. Из последней формулы можно выразить и рассчитать n.

n=frac{sinbeta}{sin2alpha}

n=frac{sin90^{circ}}{sin(2cdot 30^{circ})}=frac{sin90^{circ}}{sin60^{circ}}approx 1,15

Ответ: 1,15

Задача 2. На тонкую собирающую линзу от удалённого источника падает пучок параллельных лучей (см. рисунок). Как изменится положение изображения источника, создаваемого линзой, если между линзой и её фокусом поставить
плоскопараллельную стеклянную пластинку с показателем преломления n (на рисунке положение пластинки отмечено пунктиром)? Ответ поясните, указав, какие физические закономерности Вы использовали. Сделайте рисунок, поясняющий ход лучей до и после установки плоскопараллельной стеклянной пластинки.

Решение. Рассмотрим ход световых лучей от удаленного источника через линзу при отсутствии плоскопараллельной стеклянной пластинки (см.рис.1).

Луч 1-1ʹ проходит через оптический центр линзы и не преломляется. Луч 2-2ʹ идет через фокус и после прохождения через линзу, идет параллельно главной оптической оси. Пересечение этих двух лучей дает действительное изображение удаленного источника, которое расположено в фокальной плоскости линзы. Этот факт также можно доказать, используя формулу тонкой линзы.

frac{1}{d}+frac{1}{f}=frac{1}{F} (1)

Так как источник света расположен на расстоянии d rightarrow infty, то frac{1}{d}rightarrow 0.

Тогда формула тонкой линзы (1) примет вид frac{1}{f}=frac{1}{F}, следовательно, f=F, т.е. изображение формируется в фокальной плоскости линзы.

Рассмотрим ход световых лучей через плоскопараллельную стеклянную пластинку. Для этого необходимо использовать закон преломления света.

Рис.2

Согласно рис.2 угол падения луча на пластину равен α. Закон преломления света на границе раздела воздух-пластинка имеет вид:

frac{sinalpha}{sinbeta}=frac{n}{1}=n (1).

Здесь учтено, что показатель преломления воздуха равен 1, а пластинки n.
При переходе светового луча из пластинки в воздух, закон преломления света будет иметь вид:

frac{sinbeta}{singamma}=frac{1}{n} (2).

В этом случае первой средой является пластинка с показателем преломления n, а второй средой будет воздух с показателем преломления равным 1.
Из (1) и (2) выразим sinalpha и singamma.

sinalpha=nsinbeta и singamma=nsinbeta.

Так как правые части этих уравнений равны, то sinalpha=singamma.

Отсюда вытекает равенство углов alpha=gamma. Следовательно, луч, падающий на стеклянную пластину, выходит из нее, оставаясь параллельным входящему лучу. Но при этом выходящий луч немного смещается вверх.

Исходя из этого можно сделать вывод, что изображение удаленного источника после прохождения через плоскопараллельную стеклянную пластину, не изменится. Из удаленного источника выходит бесконечное количество параллельных лучей, которые собираются в фокальной плоскости линзы.

Ответ: не изменится.


Задача 3. Ученик провел опыт по преломлению света, представленный на фотографии. Как изменится при уменьшении угла падения угол преломления светового пучка и скорость света, распространяющегося в стекле? Для каждой величины определите соответствующий характер изменения:
1) увеличится
2) уменьшиться
3) не изменится
Запишите в таблицу выбранные цифры для каждой величины. Цифры в ответе могут повторяться.

Угол преломления Скорость света в стекле

Решение. Для ответа на первый вопрос задачи необходимо применить закон преломления света для границы раздела воздух-стекло.

frac{sinalpha}{sinbeta}=frac{n}{1}=n.

Показатель преломления стекла равен n, а воздуха 1.
При уменьшении угла падения α, будет уменьшаться и значение sinalpha. Так как показатель преломления стекла не изменяется, то значение sinbeta так же будет уменьшаться. Поэтому угол преломления уменьшится.

Для ответа на второй вопрос надо учесть, что скорость света в данной среде определяется значением показателя преломления v_{cp}=frac{c}{n}, где с – скорость света в вакууме, а n – показатель преломления среды (стекла). Так как эти обе величины не изменяются, то скорость света в стекле так же не изменяется.

Ответ: 23.

Задача 4. Чему равен синус предельного угла полного внутреннего отражения при переходе света из вещества с n_1=1,5 в вещество с n_2=1,2?

Решение.

Явление полного внутреннего отражения наблюдается при переходе светового луча из оптически более плотной среды в оптически менее плотную (см.рис.1). Источник света S должен находиться в среде с большим показателем преломления.

Для нахождения синуса угла полного внутреннего отражения необходимо воспользоваться законом преломления света.

frac{sinalpha_{np}}{sinbeta}=frac{n_2}{n_1} (1)

При полном внутреннем отражении преломленный луч скользит по границе раздела двух сред и угол преломления beta=90^{circ}. С учетом того, что sin90^{circ}=1 уравнение (1) примет вид:

sinalpha_{np}=frac{1,2}{1,5}=0,8

sinalpha_{np}=0,8

Ответ: 0,8.

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Преломление света.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Как определить показатель преломления стекла

Несмотря на то, что нужную информацию можно найти в любом справочнике, студентам и школьникам часто приводятся методики определения показателя преломления стекла. Делается это потому, что расчет значения крайне нагляден и прост для объяснения физических процессов.

Как определить показатель преломления стекла

Инструкция

Формально показатель преломления является условной величиной, характеризующей способность материала изменять угол падения луча. Потому наиболее простым и очевидным способом определения n является эксперимент с лучом света.

N определяется при помощи установки, состоящей из источника света, линзы, призмы (или обычного стекла) и экрана. Свет, проходящий через линзу, фокусируется и падает на преломляющую поверхность, после чего отражается на экран, предварительно размеченный особым образом: на плоскости нарисована линейка, отсчитывающая угол преломления относительно исходного луча.

Главной формулой для нахождения n всегда является отношение sin(a)/sin(b)=n2/n1, где a и b – углы падения и преломления, а n2 и n1 — показатели преломления сред. Показатель преломления воздуха, для удобства принимается равным единице, а потому уравнение может принять вид n2=sin(a)/sin(b). В данное уравнение необходимо подставить экспериментальные значения из предыдущего пункта.

Некорректно говорить о единственном значении угла преломления вещества. Известно явление дисперсии: зависимость n от длины волны (L). Если говорить о видимом диапазоне, то зависимость имеет форму графика e^(-x) (обратна экспоненциальной), где по оси x отложена длина волны, а по y – показатель преломления. Чем меньше длина волны, тем показатель преломления больше.

Солнечный свет состоит из набора волн с разными длинами. Очевидно, что каждая из них обладает собственным значением n. Во втором шаге вместо стекла изначально указана призма, т.к. она позволяет значительно увеличить преломление, сделав его более наглядным. Однако при таком увеличении проявляется разложение света в спектр: на экране будет проецироваться небольшая радуга.

Каждый цвет «радуги» — электромагнитная волна определенной длины (380-700 нм). Красный цвет обладает меньшей длиной волны, в то время как фиолетовый – наибольшей.

Математический вывод дисперсии оперирует достаточно сложными формулами. Идея заключается в том, что n=(E*M)^(-1/2). M можно принять равным 1, а E расписать как 1+X, где X – электрическая восприимчивость среды. Она, в свою очередь может быть расписана через параметры вещества, которые, затем, выводятся в еще более общем виде. В конечном счете в формуле появляется w – частота волны.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Приднестровский
государственный университет

им.
Т.Г. Шевченко

Лабораторные
работы

по
курсу общей физики

раздел: ОПТИКА

 Лабораторная
работа № 4.04 (1)

Тема: Определение показателя

преломления стекла(1)

Кафедра
ОФТ

Тирасполь
– 2020

Тема: Определение
показателя преломления стекла.

Цель работы: Определить показатель преломления стекла с помощью микроскопа.

Приборы и принадлежности:

§ 
Измерительный микрометр.

§ 
Стеклянная пластинка со
штрихами на обеих поверхностях.

§ 
Микроскоп с
микрометрическим винтом.

КРАТКАЯ ТЕОРИЯ.

При прохождении света через
ровную и плоскую границу двух прозрачных веществ неодинаковой оптической
плотности падающий луч света
AO разделяется на два луча — отраженный луч OB и
преломленный луч
OD (рис.1).

Направления этих лучей  определяются
следующими законами отражения и преломления света:

1.Луч АО, падающий на преломляющую поверхность,
нормаль к поверхности в точке поверхности падения
OP,
луч отраженный
OB, луч преломленный OD
лежат в одной плоскости.

2.Угол отражения — РОВ численно равен углу
падения — РОА.

3.Синус угла падения i относится к  синусу
угла преломления
r, как скорость света в первой среде v1 относится к
скорости света во второй среде
v2:

.

Последний закон говорит о том, что свет
распространяется в различных средах с различной скоростью.

Для двух данных сред и для луча данной длины волны
отношение скорости света в среде 1 к скорости света в среде 2 или отношение
синуса угла падения к синусу угла преломления есть величина постоянная, т.е.

 ;                ;

Величина n21 называется относительным показателем (коэффициентом) преломления
второй среды  по отношению к первой.

Если одна из сред, например 1 — пустота или воздух, то
показатель преломления
n данной среды 2 по отношению к пустоте 
называется абсолютным показателем преломления данной среды или просто
показателем преломления.

Абсолютный показатель преломления среды 2 (рис.1)

где    с — скорость света в пустоте;

V2
— скорость света в данной среде. Т.е. показатель преломления среды есть
отношение скорости света в пустоте к скорости света в данной среде:

Показатель преломления зависит от длины волны света и
от свойств среды. Абсолютные  показатели преломления больше 1. Это значит, что
скорость распространения света в данной среде всегда меньше, чем в пустоте.

Относительный показатель преломления двух сред n21 связан с абсолютными показателями преломления
сред
n1
и
n2
следующим соотношением:

.

 Для определения показателей преломления веществ следует воспользоваться
одним из  методов. Одним из них является метод определения показателя
преломления  стекла с помощью микроскопа.

В основе метода лежит явление кажущегося
уменьшения толщины стеклянной пластинки вследствие преломления световых лучей,
проходящих в стекле при рассматривании пластинки нормально к ее поверхности.
Схема прохождения лучей через пластинку дана на рис.2.

В находящуюся точку A,
на нижней поверхности пластинки, падают два луча света 1 и 2.
Луч 2 падает на пластинку нормально к её поверхности и поэтому
проходит сквозь пластинку и выходит в воздух в точке
C,
не испытывая преломления. Луч 1 преломляется и выходит из
пластинки в точку
O по направлению к точке D.

При выходе из пластинки луч OD
образует угол преломления
r больший,
чем угол падения
i.Если смотреть из точки D по направлению DO,
то наблюдатель будет видеть точку пересечения лучей
OD,
AC не в точке A, а в точке E,
т.е. толщина пластинки будет казаться равной
CE.

Из рис.2 видно, что кажущаяся
толщина пластинки
CE=h меньше истинной,
т.е. действительной её толщины
CA=H.

Для лучей близких к нормально
падающим лучам, углы падения и преломления малы. В этом случае синусы можно заменить
тангенсами и по закону преломления света написать (рассматривая обратный ход
лучей, т.е. от
D к A)

При рассмотрении рисунка и после
соответствующих преобразований имеем:

следовательно, показатель преломления стекла можно найти из отношения
истинной толщины стеклянной пластинки к кажущейся её толщине. Истинная толщина
пластинки измеряется микрометром, а кажущаяся– микроскопом с микрометрическим
винтом.

ХОД РАБОТЫ

1.       
Измеряют микрометром
истинную толщину стеклянной пластинки
H в том месте, где нанесены штрихи, и берут её
значения в миллиметрах.

2.       
Определяют кажущуюся
толщину стеклянной пластинки
h, для чего пластинку кладут на столик
микроскопа под объектив так, чтобы оба штриха  пересекали оптическую ось прибора.
Затем:

а) Двигая тубус, добиваются чёткого изображения видимого в микроскоп
штриха, нанесённого на верхнюю поверхность пластинки. Записывают отсчёт
микрометрического винта и считают его за 0 деление.

б) Отпускают тубус микроскопа до
получения чёткого изображения штриха, на нижней поверхности пластинки. Новый
отсчёт микрометрического винта даёт сразу кажущуюся толщину
h.

Очевидно h = (NZ + 0,002m) мм, где N – число полных оборотов барабана винта, Z – шаг винта, 50
– число делений на одном обороте барабана, 0,002 – цена
одного деления барабана винта,
m
число делений в неполном обороте барабана. За один полный оборот барабана
микрометрического винта тубус микроскопа перемещается на
Z=0,1 мм.

3.Вычисляют показатель
преломления стекла по формуле:

4.Измерения производят не менее
трёх раз. Все данные вносят в таблицу №1.

Таблица №1.

H, мм

N

m

h,мм

n

D n

e ,%

1.

2.

3.

Ср.зн.

1.

2.

3.

Ср. зн.

1.

2.

3.

Ср. зн.

КОНТРОЛЬНЫЕ ВОПРОСЫ.

1.                
Дать определение
показателя  преломления (абсолютного).

2.                
От чего зависит показатель
преломления?.

3.                
Сформулировать законы
преломления и отражения света.

Литература.

1.                
Г.С. Ландсберг  «Оптика».

2.                
Б.М. Яворский   «Курс
физики»  т.3  стр.99-101.

3.                
С.Э. Фриш, А.В. Тиморева 
«Курс общей физики», т.3, стр.13.

Почему в автомобиле с тонированными стеклами ехать более комфортно, а стеклянная линза может поджечь траву — ответы на подобные вопросы можно найти, если знать законы преломления света в стекле. Современные оптические приборы тоже появились благодаря изучению оптических свойств стеклянных линз. Важнейшая их характеристика — показатель преломления стекла.

свет в стекле

О законе преломления светового потока

Волновая природа света устроена так, что скорость прохождения волны уменьшается с увеличением плотности среды. Направление потока света также изменяется, это и есть преломление света (ПС) — важнейший физический процесс.

В вакууме нет никаких препятствий для движения световой волны, поэтому там она достигает максимальной скорости, которая принимается за эталон. В любой другой среде плотность больше, и скорость распространения светового потока меньше. Часто в расчетах за вакуум принимают воздух, так как скорость движения света в нём близка к скорости движения в вакууме, и направление мало отклоняется от первоначального.

В законе о преломлении света формулируется следующее соотношение для светового потока, проходящего через воздух в иную среду:

  • «скорость света во второй среде во столько раз меньше скорости в вакууме (воздухе), во сколько раз синус угла преломления меньше синуса угла падения».

Здесь под углом падения понимают направление света в воздушной среде, а под углом преломления — направление движения луча в следующей среде.

пример преломления света через стекло

Два показателя процесса преломления

Рассмотрим это соотношение, для этого введем некоторые обозначения.

Пусть a — угол падения, b — угол преломления, тогда: Этот коэффициент (вычисляется как sin a/sin b) – константа, постоянная величина для каждого вещества (или среды).

Если свет проходит через вакуум (воздух), то коэффициент называется в физике абсолютным показателем ПС. Для большинства веществ его величина находится в диапазоне от единицы до двух, например, показатель преломления

  • обычного стекла 1,52;
  • воды 1,33.

Редко он превышает двойку, например, у алмаза 2,42. Если же световой луч (поток) проходит через две среды разной плотности, то применяется относительный показатель ПС (обозначается латинской буквой n). Этот коэффициент вычисляется как частное от деления абсолютных показателей обеих сред. Например, показатель воды к воздуху 1,33; стекла к воздуху 1,52. Значит, показатель стекла относительно воды будет: 1,52/1,33 = 1,14.

Еще пример — величина показателя для стекла относительно спирта 1,1.

От чего зависит показатель ПС

Некоторые свойства любой среды оказывают влияние на величину коэффициента преломления. Рассмотрим основные факторы, влияющие на изменение показателя ПС: плотность среды (или вещества). Чем плотней среда, тем меньше скорость продвижения в ней света, и угол преломления меньше; температура среды (тела). Повышение температуры уменьшает показатель; длина световой волны. Чем короче длина волны, тем больше показатель ПС, поэтому в спектре он у фиолетовых лучей больше, чем у красных; состав стекла. Различные добавки могут изменять показатель преломления в ту или иную сторону. Например, SiO2 его уменьшает, а такие добавки, как PbO, ВаО, СаО, ZnO, увеличивают показатель.

определение преломления света

Методы определения показателя преломления стекла

Значения показателя преломления, указанные в таблицах, могут не учитывать все тонкости и нюансы конкретной среды, при необходимости высокоточных значений проводят измерения показателя ПС различными способами.

Есть совсем простые методы с использованием подручных материалов и инструментов. Их обычно проводят со студентами и школьниками для наглядного обучения. Например, используют транспортир, плоскопараллельную пластину, микроскоп.

Для высокоточных измерений определение показателя преломления стекла и других сред проводят с помощью современных сложных приборов. Например, с помощью рефрактометров, интерферометров, эллипсометров, разных экспериментальных установок.

Где применяется закон

Практическое значение закона преломления света огромно. Любые устройства, приборы, использующие различные линзы, базируются на законах преломления и отражения света. Даже если это линза не из стекла, а из органической ткани. Хрусталик и стекловидное тело человеческого глаза тоже работают на основе законов света. Современные оптические приборы, от простейшего бинокля и до мощных телескопов и перископов, тоже не могли бы работать без этих законов. Можно отметить и такое важнейшее направление, как волоконная оптика. Это инновационные виды связи, скоростная передача информации, медицинские приборы и инструменты, эффективные системы освещения и многое другое.

С законами света связаны многие явления в нашей обычной жизни. Знание всех нюансов процесса преломления и отражения световых лучей сделает нашу жизнь более безопасной и комфортной. Человечеству предстоит еще множество открытий в мире стекла и в исследовании его важнейшей характеристики – показателя преломления стекла.

Оцените статью:

Рейтинг: 0/5 — 0
голосов

Понравилась статья? Поделить с друзьями:
  • Как найти объем этой призмы основа
  • Как найти электронную школу на госуслугах
  • Как найти фото на которых отмечен человек
  • Как оплатить штраф нашел в интернете
  • Смотреть фильм как найти хорошую жену