Как найти полезную мощность на валу

полезная
мощность
Nп-это
мощность затрачиваемая на сообщение
жидкости энергии. Полная мощность равна
произведению удельной энергии жидкости
на массовый расход

(Вт)
(кг/с)

Мощность
на валу насоса(
Nв)-это
мощность потребляемая насосом или
затрачиваемая. Nв>Nп
в следствии потерь энергии.

(ВТ)

(КПД)
насоса=

-объемный
КПД=(отношение
действительной подачи к теоретической)

Объемный
КПД учитывает потери производимости
при утечках жидкости через зазоры и
сальники насоса, а так же в следствии
неодновременного открытия клапанов на
всасывающей и нагнетательной (высотах)?
и выделении газов при движении жидкости
в области пониженного давления.

-гидравлический
КПД=(отношение
удельной энергии действительной к
теоретической)

-механический
КПД-возникает за счет механического
трения в насосе.

Мощность
давления:

-КПД
насосной установки.

Мощность
насосной установки

B-коэффициент
запаса мощности, который учитывает
потери энергии на преодоление инерции
покоящийся жидкости. С увеличением
мощности давления, коэффициент запаса
мощности уменьшается.

21.Принцип работы центробежного насоса.

Устройство:

Основной
рабочий орган ц-б насоса – свободно
вращающееся внутри спиралевидного
корпуса колесо, насаженное на вал. Между
дисками колеса – лопасти, плавно
изогнутые в сторону, противоположную
направлению вращения колеса. Внутренние
поверхности дисков и поверхности лопаток
образуют т.н. межлопастные каналы колеса,
при работе заполненные перекачиваемой
жидкостью. Всасывание и нагнетание
жидкости происходит равномерно и
непрерывно под действием центробежной
силы, возникающей при вращении колеса.

Принцип
работы:

При
переходе жидкости из канала рабочего
колеса в корпус происходит резкое
снижение скорости, в результате чего
кинетическая энергия жидкости превращается
в потенциальную энергию давления,
которое необходимо для подачи жидкости
на заданную высоту. При этом в центре
колеса создается разрежение, и вследствие
этого жидкость непрерывно поступает
по всасывающему трубопроводу в корпус
насоса, а затем в межлопастные каналы
рабочего колеса. Если перед пуском ц-б
насоса всасывающий трубопровод и корпус
не залиты жидкостью, то возникающего
разрежения будет недостаточно для
подъема жидкости в насос (из-за зазоров
между колесом и корпусом). Чтобы жидкость
не выливалась из насоса, на всасывающем
трубопроводе устанавливают обратный
клапан. Для отвода жидкости в корпусе
насоса есть расширяющаяся спиралевидная
камера: жидкость сначала поступает в
эту камеру, а затем в нагнетательный
трубопровод.

22. Движение жидкости в рабочем колесе центробежного насоса. Параллелограмм скоростей. Основные уравнения центробежного насоса.

Параллелограмм
скоростей – графическое изображение
относительной (W)
и окружной (U)
скоростей.

Построив
параллелограмм скоростей, находим
скорость С1на
входе жидкости в рабочее колесо,
направленную под углом α1,
и скорость С2
на выходе из колеса, направленную под
углом α2.
При движении жидкости внутри рабочего
колеса её абсолютная скорость увеличивается
от С1
до С2.

Основное
уравнение ц-б насоса устанавливает
зависимость между теоретическим напором
Нт,
создаваемым колесом, и скоростью движения
жидкости в колесе. Это уравнение
называется уравнением Эйлера:

Где

На
практике насосы изготавливают таким
образом, чтобы α1≈90о,
т.е. cosα1=
0, это условие безударного входа жидкости
в колесо. Основное уравнение принимает
вид:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Типы электрических двигателей

Двигатели постоянного тока

Синхронные двигатели

При всех достоинствах синхронного двигателя основными недостатками, ограничивающими их применение являются сложность конструкции, наличие возбудителя, высокая цена, сложность пуска. Поэтому синхронные двигатели преимущественно используются при мощностях свыше 100 кВт.

Основное применение – насосы, компрессоры, вентиляторы, двигатель-генераторные установки.

Асинхронные двигатели

После того, как определен тип электродвигателя, полностью учитывающий специфику рабочего механизма и условия работы, необходимо определиться с рабочими параметрами двигателя: мощностью, номинальным и пусковым моментами, номинальными напряжением и током, режимом работы, коэффициентом мощности, классом энергоэффективности.

Мощность и моменты

ηвент, ηпер – КПД вентилятора и передаточного механизма соответственно,

ηнас, ηпер – КПД насоса и передаточного механизма соответственно,

А [Дж/м 3 ] – работа изотермического и адиабатического сжатия атмосферного воздуха объемом 1 м 3 давлением 1,1·10 5 Па до требуемого давления,

ηкомпр, ηпер – КПД компрессора и передаточного механизма соответственно,

Развиваемый электродвигателем момент M [Нм] и полезная мощность на валу Р2 [кВт] связаны следующим соотношением

Полная мощность, потребляемая из сети:

при этом потребляемые активная и реактивная мощности соответственно

В случае синхронного двигателя значение Q1 может получиться отрицательным, это означает, что двигатель отдает реактивную мощность в сеть.

Важно отметить следующее. Не следует выбирать двигатель с большим запасом по мощности, так как это приведет к снижению его КПД, а в случае двигателя переменного тока также к снижению коэффициента мощности.

При выборе напряжения электродвигателя необходимо учитывать возможности системы энергоснабжения предприятия. При этом нецелесообразно при больших мощностях выбирать двигатель с низким напряжением, так как это приведет к неоправданному удорожанию не только двигателя, но и питающих проводов и коммутационной аппаратуры вследствие увеличения расхода меди.

Нагрузка электродвигателя в процессе работы может изменяться различным образом. ГОСТом предусмотрены восемь режимов работы.

При этом для обоснованного выбора двигателя с целью оптимального его использования рекомендуется применять методы эквивалентных величин.

ris 1 ed

Определение мощности электродвигателя по току, размерам, диаметру вала

А если указан только ток — вы можете определить полную мощность по стандартной для трёхфазных цепей формуле:

Электроэнергетика и электротехника

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Электродвигатель — расчет мощности Этот способ определения используют на практике чаще остальных, поскольку нужно только измерить вал штангенциркулем и не нужно подключение к сети. Спрашивайте, я на связи!

Что такое мощность электродвигателя и как ее определить: формулы и примеры

Класс энергоэффективности

В настоящее время вопросам энергоэффективности уделяется огромное внимание. При этом под энергоэффективностью понимается рациональное использование энергетических ресурсов, с помощью которого достигается уменьшение потребления энергии при том же уровне мощности нагрузки. Основным показателем энергоэффективности двигателя является его коэффициент полезного действия

где Р2 – полезная мощность на валу, Р1 – потребляемая активная мощность из сети.

Стандартом IEC 60034-30 для асинхронных электродвигателей с короткозамкнутым ротором были установлены три класса энергоэффективности: IE1, IE2, IE3.

ris 1 ed

Так, например, использование двигателя мощностью 55 кВт повышенного класса энергоэффективности позволяет сэкономить около 8000 кВт в год от одного двигателя.

Степень защиты IP, виды климатических условий и категорий размещения

ГОСТ Р МЭК 60034-5 – 2007 устанавливает классификацию степеней защиты, обеспечиваемых оболочками машин.

Обозначение степени защиты состоит из букв латинского алфавита IP и последующих двух цифр (например, IP55).

Большинство электродвигателей, выпускаемых в настоящее время, имеют степени защиты IP54 и IP55.

Категория размещения обозначается цифрой:

2 – под навесом при отсутствии прямого солнечного воздействия и атмосферных осадков;

3 – в закрытых помещениях без искусственного регулирования климатических условий;

4 – в закрытых помещениях с искусственно регулируемыми климатическими условиями.

Таким образом, при выборе электродвигателя необходимо учитывать условия окружающей среды (температура, влажность), а также необходимость защиты двигателя от воздействия инородных предметов и воды.

Например, использование электродвигателя с типом климатического исполнения и категорией размещения У3 на открытом воздухе является недопустимым.

Усилия, действующие на вал двигателя со стороны нагрузки

Наиболее нагруженными в двигателе являются подшипниковые узлы. Поэтому при выборе двигателя должны быть учтены радиальные и осевые усилия, действующие на рабочий конец вала двигателя со стороны нагрузки. Превышения допустимых значений сил приводит к ускоренному выходу из строя не только подшипников, но и всего двигателя (например, задевание ротора о статор).

Обычно допустимые значения сил для каждого подшипника приведены в каталогах. Рекомендуется в случае повышенных радиальных усилий (ременная передача) на рабочий конец вала установить роликовый подшипник, при этом предпочтительным является двигатель с чугунными подшипниковыми щитами.

Особенности конструкции двигателя при работе от преобразователя частоты

В настоящее время все большее распространение приобретает использование частотно-регулируемого привода (ЧРП), выполненного на основе асинхронного электродвигателя с короткозамкнутым ротором.

Определение оборотов вала

Асинхронные трехфазные двигатели по частоте вращения ротора делятся 4 типа: 3000, 1500, 1000 и 750 об. мин. Приводим пример маркировки на основании АИР 180:

Самый простой способ определить количество оборотов трехфазного асинхронного электродвигателя – снять задний кожух и посмотреть обмотку статора.

У двигателя на 3000 об/мин катушка обмотки статора занимает половину окружности – 180 °, то есть начало и конец секции параллельны друг другу и перпендикулярны центру. У электромоторов 1500 оборотов угол равен 120 °, у 1000 – 90 °. Схематический вид катушек изображен на чертеже. Все обмоточные данные двигателей смотрите в таблице.

Узнать частоту вращения с помощью амперметра

Узнать обороты вала двигателя, можно посчитав количество полюсов. Для этого нам понадобится миллиамперметр – подключаем измерительный прибор к обмотке статора. При вращении вала двигателя стрелка амперметра будет отклонятся. Число отклонений стрелки за один оборот – равно количеству полюсов.

двигатель авто

Выбор электродвигателя и расчет его рабочих параметров.

Как результат, обычно он выражается в миллиньютонах умноженные на метры (мН • м). 1000 мН • м в 1 Н • м, поэтому рассчитанный крутящий момент составляет 1,26 мН • м. Его можно было бы преобразовать далее в (г-см), умножив результат на 10,2, и. е. Крутящий момент составляет 12,86 г-см.

Электроэнергетика и электротехника

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Узнать мощность электродвигателя по диаметру вала без бирки Определить мощность двигателя можно сравнив габаритные размеры с таблицей определения мощности электродвигателя, перейдя по ссылке габаритно-присоединительные размеры электродвигателей АИР. Спрашивайте, я на связи!

Расчет мощности двигателя: методики и необходимые формулы — OneKu

Мощность электродвигателя в поршневом компрессоре

В поршневом компрессоре формула для расчета мощности элетродвигателя будет выглядеть так:

A=(AИ+Aа)/2- работа изотермического и адиабатического сжатия 1 м3 атмосферного воздуха давлением p1=1,1×105 Па до требуемого давления p2, Дж/м3;

для давлений до 10×105 Па значения A будут следующие:

В общем, рабочие характеристики двигателей центробежного типа (насосов и компрессоров) зависят от величины необходимого напора на выходе и от производительности механизма при различных угловых скоростях электродвигателя.

Эти зависимости, называемые Q — H характеристиками, обычно приводятся в виде графиков для каждого устройства отдельно.

машина постоянного тока

Электроэнергетика и электротехника

Мнение эксперта

It-Technology, Cпециалист по электроэнергетике и электронике

Задавайте вопросы «Специалисту по модернизации систем энергогенерации»

Мощность через массу авто и время разгона до «сотни» Данный расчет характеризует работу двигателя в идеальных условиях, то есть без учета потерь на трансмиссию, сторонних потребителей и аэродинамическое сопротивление. Спрашивайте, я на связи!

Расчет мощности электродвигателя для центробежного насоса

Способ определения полезной мощности на валу нагруженного коллекторного двигателя постоянного тока малой или средней мощности

Изобретение относится к измерительной технике и предназначено для использования при определении полезной мощности на валу нагруженного на технологический аппарат коллекторного двигателя постоянного тока. Задача изобретения — повышение точности. Результат достигается тем, что полезную мощность на валу нагруженного коллекторного двигателя постоянного тока малой или средней мощности определяют как разность измеряемой мощности, потребляемой двигателем, и мощности полных потерь. При этом последнюю рассчитывают с помощью математической модели, параметры которой определяют статической обработкой результатов измерения режимов двигателя на холостом ходу. 1 з.п.ф-лы.

Изобретение относится к измерительной технике и может быть использовано для определения полезной мощности на валу, нагруженного на технологический аппарат, коллекторного двигателя постоянного тока.

Известен способ [1] , в котором полезная мощность Р2 на валу двигателя определяется как разность потребляемой двигателем мощности Р1 и суммарной мощности потерь Pп в двигателе. При этом Pп определяется расчетно по конструктивным параметрам двигателя, либо экспериментально. Первый способ непригоден в условиях эксплуатации по причине отсутствия необходимых параметров в паспортах двигателей. Второй способ предполагает испытания двигателя при заранее известных нагрузках, что не всегда возможно, если двигатель подключен к технологическому аппарату. Оценка полезной мощности по потребляемой и паспортному значению КПД приводит к большим погрешностям.

Задачей изобретения является повышение точности.

Решение поставленной задачи достигается тем, что измеряют потребляемую двигателем мощность, определяют мощность полных потерь, а искомую мощность на валу получают как разность между потребляемой мощностью и мощностью полных потерь, причем мощность полных потерь рассчитывают с помощью математической модели, для определения параметров которой варьируют на холостом ходу двигателя при известной температуре его напряжением питания, током якоря и числом оборотов, выполняют измерения режима и производят статистическую обработку результатов измерения. Параметры математической модели для полных потерь мощности при иных значениях температуры определяют путем экстраполяции.

Способ осуществляется следующим образом.

Потери Pп в коллекторном двигателе постоянного тока определяются четырьмя параметрами: Рп=f(U, I, n, Т), где U — постоянное напряжение питания двигателя; I — ток в якоре двигателя; n — число оборотов вала двигателя; T — температура двигателя.

Потери в аппарате зависят от n, T и их можно включить в Рп.

При незагруженном аппарате (т.е. на холостом ходу) путем вариации U, I, n выполняют измерения режима при известной температуре Т. Статистической обработкой получают математическую модель для Рп (например, в виде регрессии). Для иных значений Т используют экстраполяцию.

Когда аппарат загружен и выведен на рабочий режим, непрерывно измеряют мощность Р1, потребляемую двигателем, а мощность Р2 на валу двигателя вычисляют по формуле: Р2= Р1-Рп, причем дополнительные потери от нагрузки учитываются в модели автоматически за счет увеличивающегося тока якоря.

Формула изобретения

1. Способ определения полезной мощности на валу нагруженного коллекторного двигателя постоянного тока малой или средней мощности, согласно которому измеряют потребляемую двигателем мощность, определяют мощность полных потерь, а искомую мощность на валу получают как разность между потребляемой мощностью и мощностью полных потерь, отличающийся тем, что мощность полных потерь рассчитывают с помощью математической модели, для определения параметров которой варьируют на холостом ходу двигателя при известной температуре его напряжением питания, током якоря и числом оборотов, выполняют измерения режима и производят статистическую обработку результатов измерения.

2. Способ по п.1, отличающийся тем, что параметры математической модели для полных потерь мощности при иных значениях температуры определяют путем экстраполяции.

Похожие патенты:

Изобретение относится к силоизмерительной технике, а именно к конструкции моментомеров, используемых для замера крутящего момента на валах электродвигателей

Изобретение относится к электротехнике и может быть использовано при проверке механических характеристик электродвигателей

Изобретение относится к измерительной технике и может быть использовано преимущественно в электротехнической промышленности при динамометрических исследованиях например асинхронных двигателей

Изобретение относится к области магнитной записи и, в частности, к контролю качества и отбраковке кассет с магнитной лентой

Изобретение относится к измерительной технике и может быть использовано для измерения крутящего момента при автоматизированных испытаниях микроэлектродвигателей

Изобретение относится к силоизмерительной технике и позволяет повысить точность при испытании машин с линейным участком механической характеристики

Изобретение относится к приборостроительной промышленности, а именно к конструкции моментомеров, используемых для замера крутящего момента на валах электродвигателей

Изобретение относится к измерительным устройствам и может быть использовано для измерения крутящего момента на валу, например, электродвигателя

Изобретение относится к приборостроению, в частности к измерительной технике, и может быть использовано для измерения крутящего момента на валах, например электродвигателей

Изобретение относится к измерительным устройствам и может быть использовано для измерения крутящего момента

Изобретение относится к измерительным устройствам и может быть использовано для измерения крутящего момента

Изобретение относится к измерительным устройствам и может быть использовано для измерения крутящего момента

Изобретение относится к приборостроению, в частности к измерительной технике, и может быть использовано для измерения крутящего момента на валах, например, электродвигателей

Изобретение относится к приборостроительной промышленности, а именно к конструкции моментомеров, используемых для замера крутящего момента, создаваемого на валах, к примеру электродвигателей

Изобретение относится к приборостроению, в частности к измерительной технике, и может быть использовано для измерения крутящего момента

Изобретение относится к приборостроению, в частности к измерительной технике, и может быть использовано для измерения крутящего момента

Какая мощность указана на шильдике электродвигателя?

На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность. Это та мощность, которую двигатель может отдавать механической нагрузке с заявленными параметрами без перегрева. В формулах номинальная механическая мощность обозначается через Р2.

Что такое мощность на валу электродвигателя?

P2 (кВт) Мощность на валу электродвигателя — это мощность, которую электродвигатель передает на вал насоса. Р3 (кВт) Входная мощность насоса = P2, при условии, что соединительная муфта между валами насоса и электродвигателя не рассеивает энергию. Р4 (кВт) Гидравлическая мощность насоса.

Как определить полную мощность электродвигателя?

Полная мощность «S» представляется математической комбинацией по формуле теоремы Пифагора: S*S = Q*Q + P*P. Она измеряется в V*A и вычисляется: S = P / cosφ = √(P2 + Q2)=I*U. Реактивную мощность трехфазного асинхронного двигателя можно представить суммой двух составляющих: индуктивной и емкостной.

Как определить мощность двигателя формула?

Для определения мощности двигателя в киловаттах, когда известен крутящий момент, можно по формуле такого вида: P = Mкр * n/9549, где: Mкр – крутящий момент (Нм), n – обороты коленвала (об./мин.), 9549 – коэффициент для перевода оборотов в об/мин.

Как определить мощность на валу?

Чтобы подобрать двигатель для конкретного механизма вы можете определить мощность двигателя по крутящему моменту и количеству оборотов, которые требуются на валу. Для этого используют формулу: P=M*n/9550, где M – момент, n – число оборотов, 9550 – коэффициент.

Сколько меди в электродвигатели?

сколько меди в электродвигателях таблица

Электродвигатели 4А, 4АМ масса, кг при числе пар полюсов
Мощность, кВт 2/3000 об/мин 4/1500 об/мин
двигатель медь, кг
0,06 0,419/0,485
0,09 3,3/3 0,542/0,534

Что такое мощность на валу?

Мощность на валу – это энергия, потребляемая насосом за единицу времени. Другими словами, мощность на валу — это энергия, передаваемая валу рабочего колеса от электродвигателя.

Как определить мощность электродвигателя если на нем нет бирки?

Если при работающем двигателе счетчик делает 20 оборотов в минуту, умножьте эту цифру на 60 (количество минут в часу). Получается 1200 оборотов в час. Разделите 1600 на 1200 (1.3) – это и есть мощность двигателя.

Что такое мощность электродвигателя?

Мощность – пожалуй, самый важный параметр при выборе электродвигателя. Традиционно она указывается в киловаттах (кВт), у импортных моделей – в киловаттах и лошадиных силах (л. … приблизительно равна 0,75 кВт. На шильдике двигателя указана номинальная полезная (отдаваемая механическая) мощность.

Как найти полную мощность цепи?

Произведение действующего значения напряжения на действующее значение тока в цепи переменного тока называется полной мощностью. Она является произведением значений напряжения и тока без учёта фазового угла. Единицей измерения полной мощности (S) является ВА, 1 ВА = 1 В х 1 А.

Как определить мощность и обороты двигателя?

Электродвигатель подключается к сети и измеряется напряжение. С помощью амперметра поочередно замеряем ток в цепи каждой из обмоток статора. Сумму потребляемых токов умножаем на фиксированное напряжение. Полученное число – мощность электродвигателя в ваттах.

Какую мощность измеряет вольтметр?

Ваттметр (ватт + др. -греч. μετρεω — «измеряю») — измерительный прибор, предназначенный для определения мощности электрического тока или электромагнитного сигнала.

Как рассчитать полезную мощность двигателя?

η=PpP(5), где Pp — полезная мощность; P — затраченная мощность. Из выражения (5) следует, что полезная мощность может быть найдена как: Pp=ηP (6).

Как рассчитать киловатты двигателя?

Если же вы не знаете крутящий момент двигателя своего автомобиля, то для определения его мощности в киловаттах также можно воспользоваться формулой такого вида: Ne = Vh * pe * n/120 (кВт), где: Vh — объём двигателя, см³ n — частота вращения, об/мин

Как определить номинальную мощность двигателя?

Pном = Мвр ∙ ωном, где Мвр – значение вращающего момента, ωном – номинальная угловая скорость двигателя.

Шильдик электродвигателя. Учимся читать шильдики. | Потомственный мастер

Каждый двигатель снабжен техническим паспортом в виде приклепанной металлической таблички (шильдик), на которой приведены основные характеристики двигателя. В паспорте указан тип двигателя. В качестве примера на рис. 6.7 приведен внешний вид шильдика двигателя типа 4А100S2УЗ.

Рис. 6.7. Шильдик с паспортными данными асинхронного электродвигателя 4А100S2УЗ

Расшифровка обозначений на шильдике:

Тип 4А100S2У3 – электродвигатель асинхронный серии 4А закрытого исполнения с высотой оси вращения 100 мм, с короткой длиной корпуса, двухполюсный, климатического исполнения «У», категории 3;

100592 – заводской номер; дает возможность отличить электрическую машину среди однотипных;

– двигатель трехфазного переменного тока;

50 Hz – частота переменного тока (50 Гц), при которой двигатель должен работать;

4,0 KW – номинальная полезная мощность на валу электродвигателя;

220/380V, 13,6/7, 8А – при соединении обмотки статора в треугольник она должна включаться на напряжение 220 В, а при соединении в звезду – на 380 В. При этом машина, работающая с номинальной нагрузкой, потребляет 13,6 А при включении на треугольник и 7,8 А – при включении на звезду;

S1 – двигатель предназначен для длительного режима работы;

2880 об./мин. – частота вращения электродвигателя при номинальной нагрузке и частоте сети 50 Гц. Если двигатель работает вхолостую, частота вращения ротора приближается к частоте вращения магнитного поля статора;

КПД = 86,5 % – номинальный коэффициент полезного действия двигателя, соответствующий номинальной нагрузке на его валу;

IP44 – степень защиты. Двигатель изготовлен во влагоморозостойком исполнении. Может работать в среде с повышенной влажностью и на открытом воздухе.

На шильдике также указан ГОСТ, класс изоляции обмотки (для класса В предельно допустимая температура 130 °C), вес машины и год выпуска.

Сегодня на рынке России можно купить и зарубежные электродвигатели, в частности немецкой компании Siemens, поэтому приведем расшифровку шильдика асинхронного электродвигателя этой фирмы (рис. 6.8). Код, указанный на табличке, содержит всю информацию по данному электродвигателю (https://mtd-proekt.ru/elektrodvigateli_siemens). Рабочие параметры электродвигателей Siemens не должны превышать паспортных значений.

Обозначения на шильдике электродвигателя

Посмотрите на фотографию шильдика.


Давайте полностью рассмотрим шильдик.

  1. Логотип производителя. Тут всё понятно.
  2. Название «двигатель асинхронный» и его тип «АИР350S6 У2». В типе по определенным алгоритмам шифруются различные параметры двигателя. На них останавливаться не будем, поскольку не каждый производитель придерживается каких-то стандартов. Обычно в названии могут шифроваться данные о количестве пар полюсов, типоразмер и т.д. Тем не менее, производители могут придумать свою систему шифрования и кодировать в них какие-то свои данные.
  3. Далее идет мощность «45 кВт». Это показатель максимальной мощности, которую двигатель способен развивать при указанных параметрах на шильдике
  4. Количество оборотов вала «980 об/мин». Обороты в минуту могут иметь другое обозначение — «мин-1». У асинхронных двигателей количество оборотов фиксированное и зависит от количества пар полюсов. Существуют двигатели, допускающие посредством изменения схемы соединения обмоток в клеммной коробке изменить количество оборотов. Если двигатель выполнен на определенные обороты, то изменить их стандартными способами не получится.
  5. Дальше идёт обозначение количества фаз, род напряжения и схема соединения. 3Ф или 3P — цифра указывает количество фаз, а буква или русская или английская («Ф»аза или «P»hase) указывает на слово «фаза». Далее идет знак «

Ну вот и всё. Теперь вам не составит труда узнать данные двигателя по шильдику. За сим позвольте с вами попрощаться

С наилучшими пожеланиями, Я!

Определение по таблицам

Как узнать мощность электродвигателя по диаметру вала и другим показателям? В интернете нетрудно найти технические таблицы, с помощью которых можно узнать тип мотора и, соответственно, его мощность. Вам потребуется снять следующие параметры:

  • диаметр вала;
  • частота его вращения или число полюсов;
  • крепежные размеры;
  • диаметр фланца (если двигатель фланцевый);
  • высота до центра вала;
  • длина мотора (без выступающей части вала);
  • расстояние до оси.

Основные значения AMPS

На следующем изображении представлены наиболее часто используемые значения AMPS. Вы можете записать файл изображения в формате PNG для автономного использования или отправить его своим друзьям по электронной почте.Если вы являетесь веб-мастером некоммерческого веб-сайта, пожалуйста, не стесняйтесь публиковать изображение определений AMPS на вашем веб-сайте.

Что означает аббревиатура amps

Особенности[править | править код]

AMPS относится к стандартам первого поколения сотовой связи и использует технологию FDMA (Frequency division multiple access) — метод частотного разделения каналов. При этом для каждого соединения выделяется индивидуальный частотный канал, шириною 30 кГц. Следовательно, чем выше необходима емкость, тем шире должна быть полоса частот, задействованная системой. Изначально предполагалось, что система AMPS будет работать в диапазоне 800 МГц. Однако со временем, для реализации сетей AMPS в других странах и для расширения возможностей существующих сетей, появились другие возможные частотные диапазоны, например 1900 МГц.

В стандарте AMPS указанная проблема решается методом переиспользования частот, который стал ключевым во всех последующих системах сотовой связи. Принцип данного метода заключается в том, что каждая выделенная для оператора частота может быть использована на многих несмежных сотах. Это становится возможным благодаря тому, что базовые станции AMPS обладают гораздо меньшей излучаемой мощностью. Сигнал на определенной частоте распространяется на меньшей территории, а переотраженные волны быстро затухают и не могут оказать существенное влияние на работу близлежащих сот с аналогичной частотой. Таким образом, оператор может, используя одни и те же частотные каналы в сравнительно небольшом диапазоне частот, для строительства целой сети.

Одним из наиболее заметных изменений в стандарте AMPS, наряду с методом переиспользования частот, является гораздо более низкая излучаемая мощность мобильных устройств (MSU). В первых аналоговых системах сотовой связи, абонентские терминалы представляли собой громоздкие не портативные устройства. Мобильными их можно назвать лишь по тому, что они устанавливались на различных транспортных средствах. В системе AMPS телефон стал действительно мобильным.

Онлайн журнал электрика

В движках серий А, АО, А2, АО2 и A3 буковка А значит брызгозащищенное выполнение, АО — закрытое обдуваемое, 1-ая цифра после букв — номер серии. Число после первого дефиса охарактеризовывает типоразмер; 1-ая цифра в нем указывает габарит (условный номер внешнего поперечника сердечника статора), 2-ая — условный номер длины. Цифра после второго дефиса соответствует числу полюсов. К примеру, АО2-62-4 — асинхронный трехфазный электродвигатель в закрытом обдуваемом выполнении, 2-ой единой серии, шестого габарита, 2-ой длины, четырехполюсный. Электродвигатели 1—5-го габаритов во 2-ой серии выпускают исключительно в закрытом обдуваемом выполнении, что увеличивает их надежность: срок службы закрытой машины малой мощности возрастает в 1,5—2 раза по сопоставлению с защищенной. Движки единых серий А, АО и А2, АО2 основного выполнения имеют короткозамкнутый ротор с литой дюралевой обмоткой. На их базе был сотворен ряд модификаций движков. При обозначении модификаций к буквенной части добавляется буковка для электродвигателей: с завышенным пусковым моментом — П (к примеру, АОП2-62-4); с завышенным скольжением—С, для текстильной индустрии — Т, с фазным ротором — К.

Асинхронные движки с завышенным пусковым моментом предусмотрены для привода устройств с большенными нагрузками в период запуска. Движки с завышенным скольжением используются для устройств с неравномерным ударным нравом нагрузки и устройств с большой частотой пусков и реверсов.

Для движков общего предназначения с дюралевой обмоткой статора в конце обозначения добавляется буква А (к примеру, АО2-42-4А). В движках на несколько частот вращения в числа, характеризующие числа полюсов, заносят все их значения, разбитые косыми линиями: к примеру АО-94-12/8/6/4 — трехфазный асинхронный движок серии АО 9 габарита, 4-й длины на 12, 8, 6 и 4 полюсов.

Буковка Л (к примеру, АОЛ2-21-6) обозначает, что корпус и щиты отлиты из дюралевого сплава.

Обозначение типоразмера мотора серии 4А, к примеру 4АН280М2УЗ, расшифровывается последующим образом: 4 — порядковый номер серии, А — вид мотора (асинхронный), Н — защищенный (отсутствие данного знака значит закрытое обдуваемое выполнение), 280 — высота оси вращения (три либо две числа), мм, S, М либо L — установочный размер по длине станины, 2 (либо 4, 6, 8, 10, 12) — число полюсов, УЗ — климатическое исполнение (У) и кате азмещения (3).

После первой буковкы А может стоять 2-ая А (к примеру, 4АА63), которая значит, что станина и щиты выполнены из дюралевого сплава, либо X—станина дюралевая, щиты чугунные; отсутствие этих символов свидетельствует о том, что станина и щиты чугунные либо железные.

В обозначении движков с фазным ротором ставится буковка К, к примеру 4АНК.

При одних и тех же размерах станины сердечник статора может иметь различные длины. В данном случае в обозначении типоразмера после букв S, M, JL и конкретно после высоты вращения, если эти буковкы отсутствуют, ставятся знаки А (наименьшая длина сердечника) или В (большая длина), например 4А90LА8, 4A90LB8, 4А71А6, 4А71В6.

Климатические выполнения движков обозначаются последующими знаками:

У — для умеренного климата, ХЛ — для прохладного климата, ТВ — для мокроватого тропического климата, ТС — для тропического сухого климата, Т — для тропического как сухого, так и мокроватого климата, О — для всех районов на суше (общеклиматическое выполнение), М — для морского умеренного прохладного климата, ТМ — для тропического морского климата, . ОМ — для неограниченного района плавания, В — для всех районов на суше и море.

Категории размещения обозначаются цифрами: 1 — для работы на открытом воздухе, 2 — для помещений со сравнимо свободным доступом воздуха, 3 — для закрытых помещений, где колебания температуры, влажности, также воздействие песка и пыли значительно меньше, чем на открытом воздухе, 4 — для помещений с искусственно регулируемыми климатическими критериями (к примеру, закрытые отапливаемые и вентилируемые производственные помещения), 5 — для работы в помещениях с завышенной влажностью (к примеру, невентилируемые и неотапливаемые подземные помещения, помещения, в каких может быть долгое наличие воды либо частая конденсация воды на стенках и потолке).

ГОСТ 17494—72 на электронные машины устанавливают степени защиты персонала от соприкосновения с токопроводящими либо передвигающимися частями, находящимися снутри машины и, не считая того, от попадания жестких сторонних тел и воды.

Электродвигатели общего внедрения в главном изготовляют 2-ух степеней защиты: 1Р23 (либо IP22 для движков неизменного тока) и IP44: 1-ая из их охарактеризовывает машины в защищенном выполнении, 2-ая — в закрытом.

Буквенно-цифровое обозначение степени защиты состоит из латинских букв IP и 2-ух цифр. 1-ая из этих цифр характеризуй степень защиты персонала от соприкосновения с токопроводящими и вращающимися частями, находящимися снутри машины, также степень защиты самой машины от попадания в нее жестких сторонних тел; 2-ая цифра — от проникания воды вовнутрь машины.

В обозначении IР23 1-ая цифра 2 показывает, что в машине обеспечена защита от вероятного соприкосновения пальцев человека с токопроводящими и передвигающимися частями и попадания вовнутрь жестких сторонних тел поперечником более 12,5 мм. Цифра 3 показывает на обеспечение защиты от дождика, падающего на машину под углом менее 60° к вертикали, а в обозначении IP22 2-ая цифра — от капель воды, падающих под углом менее 15° к вертикали.

В обозначении IP44 1-ая цифра 4 показывает на обеспечение защиты от соприкосновения инструмента, проволоки и других схожих предметов шириной более 1 мм с токопроводящими частями снутри машины, также от попадания вовнутрь предметов размерами более 1 мм. 2-ая цифра 4 обозначает защиту от водяных брызг хоть какого направления.

Электродвигатель АИР характеристики

Тип двигателя Р, кВт Номинальная частота вращения, об/мин кпд,* COS ф 1п/1н Мп/Мн Мmах/Мн 1н, А Масса, кг
АИР56А2 0,18 2840 68,0 0,78 5,0 2,2 2,2 0,52 3,4
АИР56В2 0,25 2840 68,0 0,698 5,0 2,2 2,2 0,52 3,9
АИР56А4 0,12 1390 63,0 0,66 5,0 2,1 2,2 0,44 3,4
АИР56В4 0,18 1390 64,0 0,68 5,0 2,1 2,2 0,65 3,9
АИР63А2 0,37 2840 72,0 0,86 5,0 2,2 2,2 0,91 4,7
АИР63В2 0,55 2840 75,0 0,85 5,0 2,2 2,3 1,31 5,5
АИР63А4 0,25 1390 68,0 0,67 5,0 2,1 2,2 0,83 4,7
АИР63В4 0,37 1390 68,0 0,7 5,0 2,1 2,2 1,18 5,6
АИР63А6 0,18 880 56,0 0,62 4,0 1,9 2 0,79 4,6
АИР63В6 0,25 880 59,0 0,62 4,0 1,9 2 1,04 5,4
АИР71А2 0,75 2840 75,0 0,83 6,1 2,2 2,3 1,77 8,7
АИР71В2 1,1 2840 76,2 0,84 6,9 2,2 2,3 2,6 10,5
АИР71А4 0,55 1390 71,0 0,75 5,2 2,4 2,3 1,57 8,4
АИР71В4 0,75 1390 73,0 0,76 6,0 2,3 2,3 2,05 10
АИР71А6 0,37 880 62,0 0,70 4,7 1,9 2,0 1,3 8,4
АИР71В6 0,55 880 65,0 0,72 4,7 1,9 2,1 1,8 10
АИР71А8 0,25 645 54,0 0,61 4,7 1,8 1,9 1,1 9
АИР71В8 0,25 645 54,0 0,61 4,7 1,8 1,9 1,1 9
АИР80А2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
АИР80А2ЖУ2 1,5 2850 78,5 0,84 7,0 2,2 2,3 3,46 13
АИР80В2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
АИР80В2ЖУ2 2,2 2855 81,0 0,85 7,0 2,2 2,3 4,85 15
АИР80А4 1,1 1390 76,2 0,77 6,0 2,3 2,3 2,85 14
АИР80В4 1,5 1400 78,5 0,78 6,0 2,3 2,3 3,72 16
АИР80А6 0,75 905 69,0 0,72 5,3 2,0 2,1 2,3 14
АИР80В6 1,1 905 72,0 0,73 5,5 2,0 2,1 3,2 16
АИР80А8 0,37 675 62,0 0,61 4,0 1,8 1,9 1,49 15
АИР80В8 0,55 680 63,0 0,61 4,0 1,8 2,0 2,17 18
АИР90L2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
АИР90L2ЖУ2 3,0 2860 82,6 0,87 7,5 2,2 2,3 6,34 17
АИР90L4 2,2 1410 80,0 0,81 7,0 2,3 2,3 5,1 17
АИР90L6 1,5 920 76,0 0,75 5,5 2,0 2,1 4,0 18
АИР90LA8 0,75 680 70,0 0,67 4,0 1,8 2,0 2,43 23
АИР90LB8 1,1 680 72,0 0,69 5,0 1,8 2,0 3,36 28
АИР100S2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
АИР100S2ЖУ2 4,0 2880 84,2 0,88 7,5 2,2 2,3 8,2 20,5
АИР100L2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
АИР100L2ЖУ2 5,5 2900 85,7 0,88 7,5 2,2 2,3 11,1 28
АИР100S4 3,0 1410 82,6 0,82 7,0 2,3 2,3 6,8 21
АИР100L4 4,0 1435 84,2 0,82 7,0 2,3 2,3 8,8 37
АИР100L6 2,2 935 79,0 0,76 6,5 2,0 2,1 5,6 33,5
АИР100L8 1,5 690 74,0 0,70 5,0 1,8 2,0 4,4 33,5
АИР112M2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
АИР112М2ЖУ2 7,5 2895 87,0 0,88 7,5 2,2 2,3 14,9 49
АИР112М4 5,5 1440 85,7 0,83 7,0 2,3 2,3 11,7 45
АИР112MA6 3,0 960 81,0 0,73 6,5 2,1 2,1 7,4 41
АИР112MB6 4,0 860 82,0 0,76 6,5 2,1 2,1 9,75 50
АИР112MA8 2,2 710 79,0 0,71 6,0 1,8 2,0 6,0 46
АИР112MB8 3,0 710 80,0 0,73 6,0 1,8 2,0 7,8 53
АИР132M2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
АИР132М2ЖУ2 11 2900 88,4 0,89 7,5 2,2 2,3 21,2 54
АИР132S4 7,5 1460 87,0 0,84 7,0 2,3 2,3 15,6 52
АИР132M4 11 1450 88,4 0,84 7,0 2,2 2,3 22,5 60
АИР132S6 5,5 960 84,0 0,77 6,5 2,1 2,1 12,9 56
АИР132M6 7,5 970 86,0 0,77 6,5 2,0 2,1 17,2 61
АИР132S8 4,0 720 81,0 0,73 6,0 1,9 2,0 10,3 70
АИР132M8 5,5 720 83,0 0,74 6,0 1,9 2,0 13,6 86
АИР160S2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
АИР160S2ЖУ2 15 2930 89,4 0,89 7,5 2,2 2,3 28,6 116
АИР160M2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
АИР160М2ЖУ2 18,5 2930 90,0 0,90 7,5 2,0 2,3 34,7 130
АИР160S4 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
АИР160S4ЖУ2 15 1460 89,4 0,85 7,5 2,2 2,3 30,0 125
АИР160M4 18,5 1470 90,0 0,86 7,5 2,2 2,3 36,3 142
АИР160S6 11 970 87,5 0,78 6,5 2,0 2,1 24,5 125
АИР160M6 15 970 89,0 0,81 7,0 2,0 2,1 31,6 155
АИР160S8 7,5 720 85,5 0,75 6,0 1,9 2,0 17,8 125
АИР160M8 11 730 87,5 0,75 6,5 2,0 2,0 25,5 150
АИР180S2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
АИР180S2ЖУ2 22 2940 90,5 0,90 7,5 2,0 2,3 41,0 150
АИР180M2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
АИР180М2ЖУ2 30 2950 91,4 0,90 7,5 2,0 2,3 55,4 170
АИР180S4 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
АИР180S4ЖУ2 22 1470 90,5 0,86 7,5 2,2 2,3 43,2 160
АИР180M4 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
АИР180М4ЖУ2 30 1470 91,4 0,86 7,2 2,2 2,3 57,6 190
АИР180M6 18,5 980 90,0 0,81 7,0 2,1 2,1 38,6 160
АИР180M8 15 730 88,0 0,76 6,6 2,0 2,0 34,1 172
АИР200M2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
АИР200М2ЖУ2 37 2950 92,0 0,88 7,5 2,0 2,3 67,9 230
АИР200L2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
АИР200L2ЖУ2 45 2960 92,5 0,90 7,5 2,0 2,3 82,1 255
АИР200M4 37 1475 92,0 0,87 7,2 2,2 2,3 70,2 230
АИР200L4 45 1475 92,5 0,87 7,2 2,2 2,3 84,9 260
АИР200M6 22 980 90,0 0,83 7,0 2,0 2,1 44,7 195
АИР200L6 30 980 91,5 0,84 7,0 2,0 2,1 59,3 225
АИР200M8 18,5 730 90,0 0,76 6,6 1,9 2,0 41,1 210
АИР200L8 22 730 90,5 0,78 6,6 1,9 2,0 48,9 225
АИР225M2 55 2970 93,0 0,90 7,5 2,0 2,3 100 320
АИР225M4 55 1480 93,0 0,87 7,2 2,2 2,3 103 325
АИР225M6 37 980 92,0 0,86 7,0 2,1 2,1 71,0 360
АИР225M8 30 735 91,0 0,79 6,5 1,9 2,0 63 360
АИР250S2 75 2975 93,6 0,90 7,0 2,0 2,3 135 450
АИР250M2 90 2975 93,9 0,91 7,1 2,0 2,3 160 530
АИР250S4 75 1480 93,6 0,88 6,8 2,2 2,3 138,3 450
АИР250M4 90 1480 93,9 0,88 6,8 2,2 2,3 165,5 495
АИР250S6 45 980 92,5 0,86 7,0 2,1 2,0 86,0 465
АИР250M6 55 980 92,8 0,86 7,0 2,1 2,0 104 520
АИР250S8 37 740 91,5 0,79 6,6 1,9 2,0 78 465
АИР250M8 45 740 92,0 0,79 6,6 1,9 2,0 94 520
АИР280S2 110 2975 94,0 0,91 7,1 1,8 2,2 195 650
АИР280M2 132 2975 94,5 0,91 7,1 1,8 2,2 233 700
АИР280S4 110 1480 94,5 0,88 6,9 2,1 2,2 201 650
АИР280M4 132 1480 94,8 0,88 6,9 2,1 2,2 240 700
АИР280S6 75 985 93,5 0,86 6,7 2,0 2,0 142 690
АИР280M6 90 985 93,8 0,86 6,7 2,0 2,0 169 800
АИР280S8 55 740 92,8 0,81 6,6 1,8 2,0 111 690
АИР280M8 75 740 93,5 0,81 6,2 1,8 2,0 150 800
АИР315S2 160 2975 94,6 0,92 7,1 1,8 2,2 279 1170
АИР315M2 200 2975 94,8 0,92 7,1 1,8 2,2 248 1460
АИР315МВ2 250 2975 94,8 0,92 7,1 1,8 2,2 248 1460
АИР315S4 160 1480 94,9 0,89 6,9 2,1 2,2 288 1000
АИР315M4 200 1480 94,9 0,89 6,9 2,1 2,2 360 1200
АИР315S6 110 985 94,0 0,86 6,7 2,0 2,0 207 880
АИР315М(А)6 132 985 94,2 0,87 6,7 2,0 2,0 245 1050
АИР315MВ6 160 985 94,2 0,87 6,7 2,0 2,0 300 1200
АИР315S8 90 740 93,8 0,82 6,4 1,8 2,0 178 880
АИР315М(А)8 110 740 94,0 0,82 6,4 1,8 2,0 217 1050
АИР315MВ8 132 740 94,0 0,82 6,4 1,8 2,0 260 1200
АИР355S2 250 2980 95,5 0,92 6,5 1.6 2,3 432,3 1700
АИР355M2 315 2980 95,6 0,92 7,1 1,6 2,2 544 1790
АИР355S4 250 1490 95,6 0,90 6,2 1,9 2,9 441 1700
АИР355M4 315 1480 95,6 0,90 6,9 2,1 2,2 556 1860
АИР355MА6 200 990 94,5 0,88 6,7 1,9 2,0 292 1550
АИР355S6 160 990 95,1 0,88 6,3 1,6 2,8 291 1550
АИР355МВ6 250 990 94,9 0,88 6,7 1,9 2,0 454,8 1934
АИР355L6 315 990 94,5 0,88 6,7 1,9 2,0 457 1700
АИР355S8 132 740 94,3 0,82 6,4 1,9 2,7 259,4 1800
АИР355MА8 160 740 93,7 0,82 6,4 1,8 2,0 261 2000
АИР355MВ8 200 740 94,2 0,82 6,4 1,8 2,0 315 2150
АИР355L8 132 740 94,5 0,82 6,4 1,8 2,0 387 2250

Что означает AMPS в тексте

В общем, AMPS является аббревиатурой или аббревиатурой, которая определяется простым языком. Эта страница иллюстрирует, как AMPS используется в обмена сообщениями и чат-форумах, в дополнение к социальным сетям, таким как VK, Instagram, Whatsapp и Snapchat. Из приведенной выше таблицы, вы можете просмотреть все значения AMPS: некоторые из них образовательные термины, другие медицинские термины, и даже компьютерные термины. Если вы знаете другое определение AMPS, пожалуйста, свяжитесь с нами. Мы включим его во время следующего обновления нашей базы данных. Пожалуйста, имейте в информации, что некоторые из наших сокращений и их определения создаются нашими посетителями. Поэтому ваше предложение о новых аббревиатур приветствуется! В качестве возврата мы перевели аббревиатуру AMPS на испанский, французский, китайский, португальский, русский и т.д. Далее можно прокрутить вниз и щелкнуть в меню языка, чтобы найти значения AMPS на других 42 языках.

Определение по габаритам

Еще один способ – проведение замеров и вычислений. Многие из тех, кто интересуется, как узнать мощность трехфазного двигателя, предпочитают именно его. Вам понадобятся следующие данные:

  • Диаметр сердечника в сантиметрах (D). Он измеряется по внутренней части статора. Также необходима длина сердечника с учетом отверстий вентиляции.
  • Частота валового вращения (n) и частота сети (f).

Через них вычислите показатель полюсного деления. D умножьте на n и на число Пи – назовем это показание А. 120 умножьте на f – это В. Разделите А на В.

Расчетные формулы основных параметров асинхронных двигателей

В таблице 1 представлены расчетные формулы для определения основных параметров асинхронных двигателей.

В данной таблице собраны все формулы, которые касаются расчета параметров асинхронных двигателей.

Используя формулы из данной таблицы, вам больше не придется искать нужную формулу в различных справочниках.

Таблица 1 — Расчетные формулы для определения основных параметров асинхронных двигателей

Наименование величин Формулы Принятые обозначения
Потребляемая активная мощность из сети, кВт

Потребляемая  активная мощность из сети

U1, I1 – линейные значения напряжения, В и тока двигателя, А;
cosϕ – коэффициент мощности;
Потребляемая реактивная мощность, квар

Потребляемая реактивная мощность, квар

Полезная мощность на валу, кВт

Полезная мощность на валу, кВт

Ƞ — КПД двигателя;
Потребляемый двигателем ток, А

Потребляемый двигателем ток, А

Вращающий момент двигателя, кГм

Вращающий момент двигателя, кГм

nном. – номинальная скорость вращения ротора, об/мин;
Синхронная скорость вращения магнитного поля, об/мин

Синхронная скорость вращения магнитного поля, об/мин

f1 – частота питающего тока, Гц;
р – число пар полюсов машины;
Скольжение двигателя

Скольжение двигателя

Скорость вращения ротора при нагрузке, об/мин

Скорость вращения ротора при нагрузке, об/мин

ЭДС обмоток статора и ротора, В

ЭДС обмоток статора и ротора, В

kоб.1, kоб.2 – обмоточные коэффициенты статора и ротора, равные произведению коэффициентов укорочения kу шага и распределения обмотки kw;
kоб. = kу* kw;
Коэффициенты трансформации по напряжению и по току

Коэффициенты трансформации по напряжению и по току

w1, w2 – числа витков обмоток статора и ротора;
m1, m2 – числа фаз в обмотках статора и ротора. У двигателей с фазным ротором.
m2 = 3 у двигателей с короткозамкнутым ротором;
m2 = z2, т.е. числу пазов в роторе.
Параметры схемы замещения

Параметры схемы замещения

zк, rк, хк – полное, активное и индуктивное сопротивления при КЗ двигателя, Ом;
Iп – пусковой ток двигателя, А;
∆Рк – суммарные потери в меди статора и ротора двигателя, Вт;
r1, x1 – активное и индуктивное сопротивления обмотки статора, Ом;
r2’, x2’ – активные и индуктивные сопротивления ротора, приведенные к обмотке статора, Ом;
Ток холостого хода, А

Ток холостого хода

Iном. – номинальный ток двигателя, А
Критическое скольжение

Критическое скольжение

sinϕ – коэффициент реактивной мощности;
kм – коэффициент перегрузочной способности;
Уравнение вращающего момента

Уравнение вращающего момента

Sном. – скольжение при номинальной нагрузке
Скольжение двигателя s2 при введении добавочного сопротивления в ротор

Скольжение двигателя s2 при введении добавочного сопротивления в ротор

КПД двигателя при введении добавочного сопротивления в ротор

КПД двигателя при введении добавочного сопротивления в ротор

Критический максимальный момент, развиваемый в двигательном (+) и генераторном (-) режимах, кГм

Критический максимальный момент, развиваемый в двигательном (+) и генераторном (-) режимах, кГм

U1ф – фазное напряжение, В
Уравнение вращающего момента при добавочном сопротивлении в цепи ротора

Уравнение вращающего момента при добавочном сопротивлении в цепи ротора

Критическое скольжение

Литература:

1. Справочная книга электрика. В.И. Григорьева, 2004 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

активное сопротивление двигателя, полное сопротивление двигателя, реактивное сопротивление двигателя, ток двигателя

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Понравилась статья? Поделить с друзьями:
  • Как найти обрешетку под панелями пвх
  • Как найти фильм в ютубе на телевизоре
  • Как найти плейлист в спотифай чужой
  • Как составить договор купли продажи материалов
  • Как найти горизонтальную проекцию точки на