Как найти полезную работу за цикл

4.9 Циклы. Цикл
Карно.

Важным прикладным
приложением термодинамики являются
тепловые машины.

Под
тепловой
машиной

понимают устройство, преобразующее
некоторую часть внутренней энергии
рабочего тела в механическую работу.

Тепловые
машины делят на два класса: машины
одноразового действия (ракета, пушка и
т.п.) и циклические машины (паровые
машины, двигатели внутреннего сгорания).
В циклических машинах процессы
преобразования теплоты в работу
периодически повторяются. Для этого
нужно, чтобы рабочее тело после получения
теплоты от источника, совершив работу,
вернулось в исходное состояние, чтобы
снова начать такой же круговой процесс.

Циклом
называется процесс, начало и конец
которого — совпадают. Примером циклического
процесса является процесс, изображённый
на рис.4.6. Работа цикла складывается из
работы самой системы (участок1L12)
и работы над системой (участок 2L21):

.
Работа
цикла

численно равна площади фигуры, ограниченной
кривой, изображающей цикл. Газ совершает
работу на участке 1L12
за счёт полученного от нагревателя
количества теплоты, а на участке 2L21
над газом совершается работа внешними
силами. Чтобы работа внешних сил была
меньше работы газа, необходимо её
совершать при более низкой температуре,
а, следовательно, некоторое количество
теплоты должно перейти от рабочего
тела
–газа
— к менее нагретому телу – холодильнику.

Утверждение
о том, что для совершения полезной работы
в циклической машине необходимо участие
двух тел с различной температурой,
называется принципом
Карно
.

Схема
работы тепловой машины приведена на
рис. 4.7.

Цикл,
при помощи которого количество теплоты,
отнятое от какого-нибудь тела, можно
наилучшим образом преобразовать в
механическую работу, называется циклом
Карно
. В
качестве рабочего тела здесь выступает
идеальный газ. Цикл Карно состоит из
двух изотерм и двух адиабат (рис.4.8). На
участке 1-2 рабочее тело контактирует с
нагревателем (телом с большой теплоёмкостью)
и получает от него количество теплоты
Qн
. При этом
реализуется изотермическое расширение
газа (из-за большой теплоёмкости
нагревателя его температура не
изменяется). Это самый выгодный однократный
процесс, при котором всё полученное
количество теплоты переходит в
механическую работу, согласно первому
началу термодинамики:


(4.41)

Участок
2-3 соответствует адиабатному расширению
идеального газа. На этом этапе разорван
контакт с нагревателем и рабочее тело
не обменивается количеством теплоты с
другими телами. Это тоже выгодно,
поскольку в этом случае газ совершает
работу за счёт собственной внутренней
энергии, вследствие чего она уменьшается,
температура газа становится равной Т2
. Согласно
первому началу термодинамики,


(4.42)

На
участке 3-4 рабочее тело приводится в
тепловой контакт с холодильником,
имеющим большую теплоёмкость и температуру
Т2.
Здесь при более низкой температуре газ
сжимают изотермически, совершая над
ним работу, численно равную отданному
холодильнику количеству теплоты, работа
же самого газа, так же, как и отданное
количество теплоты, отрицательна:


(4.43)

При
более низкой температуре, когда внутренняя
энергия меньше первоначальной, газ
сжимать легче, поэтому работа А34
меньше работы А12.
Изотермическое сжатие опять-таки
является самым выгодным, поскольку не
нужно изменять внутреннюю энергию газа,
затрачивая на это дополнительную работу
внешних сил. На последнем участке цикла
Карно необходимо вернуть газ в
первоначальное состояние наивыгоднейшим
образом, то есть адиабатно сжать его.
При адиабатном сжатии нет теплового
контакта рабочего тела с холодильником,
а работа внешних сил полностью идёт на
увеличение внутренней энергии газа:


(4.44)

Полезная
работа за цикл равна алгебраической
сумме работ каждого участка цикла Карно:
.
Сравнение формул (4.41) и (4.44) позволяет
заключить, что работа газа на участке
2-3 по величине равна работе газа на
участке 4-1, но противоположна по знаку,
следовательно, алгебраическая сумма
работ на этих участках равна нулю, а
работа за цикл будет определяться суммой
работ участков 12 и 34:


(4.45)

Для
дальнейшего преобразования полезной
работы рассмотрим уравнения адиабаты
на участках 2-3 и 4-1, записанные через
объём и температуру:

и
.
Поделим второе уравнение на первое и
получим:
или
.
Учитывая это равенство, можно вынести
за скобки натуральный логарифм отношения
объёмов в формуле (4.45) и получить выражение
для полезной работы за цикл Карно:


(4.46)

Эффективность работы
тепловых машин характеризуют коэффициентом
полезного действия
,
определяемым как отношение полезной
работы, произведённой за цикл, к количеству
теплоты, полученному от нагревателя за
цикл:


(4.47)

Подставим в эту формулу
полезную работу, произведённую за цикл
Карно, определяемую по формуле (4.46), и
количество теплоты, полученное от
нагревателя, определяемое по формуле
(4.41), после преобразования получим
выражение для расчёта коэффициента
полезного действия (КПД) цикла Карно:


(4.48)

Эта формула пригодна
только для расчёта КПД цикла Карно. КПД
других циклов рассчитывают, используя
общую формулу (4.47). В случае, когда имеется
несколько нагревателей, можно рассчитать
полученное количество теплоты, суммируя
количества теплоты от каждого нагревателя,
по формуле:
.

Анализируя цикл,
реализуемый в идеальной тепловой
машине, Карно доказал два важных
положения, известных как теоремы
Карно
.

Первая теорема
Карно
: КПД идеального цикла Карно
не зависит от рода рабочего тела.

Вторая теорема
Карно
: цикл Карно обладает наибольшим
КПД по сравнению со всеми другими циклами
в том же интервале температур.

Доказательство
теорем Карно см. в [1-3].

4.10 Цикл Отто

Цикл
Отто

реализован в карбюраторных двигателях,
использующих высокосортные быстро
сгорающие сорта бензинов. Он изображён
на рис.4.9.

Реальные
машины используют порцию горючего за
один цикл, затем отработанное топливо
должно быть выброшено, а цилиндр двигателя
– пополнен новой порцией горючего.
Всасывание топлива происходит на участке
0-1 цикла Отто (рис.4.9), а выброс – на
участке 1-0.

Участок
1- 2 диаграммы соответствует адиабатному
(быстрому) сжатию топлива. При адиабатном
сжатии внутренняя энергия паров бензина
повышается, повышается температура и
в состоянии 2 горючее воспламеняется
при помощи искры. Так как оно сгорает
быстро, процесс 2-3 можно считать
изохорическим, поскольку объём не
успевает измениться, а давление
возрастает. На этом этапе за счёт сгорания
топлива к рабочему телу поступает
количество теплоты QН
, которое определяется по формуле:


(4.49)

На
участке 3-4 газ быстро адиабатно расширяется
(рабочий ход поршня). При этом его
внутренняя энергия, а, следовательно,
и температура уменьшается. Дальнейшее
охлаждение газа до первоначальной
температуры происходит изохорически
(участок 4-1). При этом часть количества
теплоты, полученной от нагревателя,
отдаётся холодильнику. Холодильником
для двигателей внутреннего сгорания
обычно является атмосфера. Количество
теплоты, отданное холодильнику, согласно
первому началу термодинамики для
изохорического процесса, определяется
по формуле:


(4.50)

Поскольку
в данном цикле только на одном участке
2-3 тепло поступает к рабочему телу и на
одном участке 4-1 отдаётся холодильнику,
полезная работа такого цикла может быть
определена из формулы:

. Тогда КПД такого цикла может быть
рассчитан по формуле (4.47). С учётом (4.49)
и (4.50) КПД цикла Отто равен:


(4.51)

Из
уравнений Пуассона для адиабат и

и

найдём
,
а отсюда
.
После учёта этого формула (4.51) примет
вид:


(4.52)

Из
этой формулы видно, что увеличение
степени сжатия
,
увеличивает КПД цикла, а также видно,
что КПД зависит от числа степеней свободы
вещества топлива. Следует отметить, что
минимальной температурой в данном цикле
является температура Т1
, а максимальной – Т3.
В формулу (4.52) входит температура Т2,
которая меньше, чем Т3.
Поэтому КПД цикла Отто меньше КПД цикла
Карно при том же интервале температур:

.

4.11 Цикл Дизеля

Цикл
Дизеля

реализован в двигателях, работающих на
низкосортном, относительно медленно
сгорающем топливе. Он изображён на
рис.4.10. На участке 0-1 цикла Дизеля
происходит впрыскивание горючего, а
выброс – на участке 1-0. Участок 1-2
соответствует адиабатному сжатию, при
котором, как известно, повышается
температура. В состоянии 2 горючее
самовоспламеняется и относительно
медленно сгорает, так, что поршень
успевает прийти в движение. Поэтому
участок 2-3 можно считать изобарическом
процессом, причём за счёт сгорания
топлива, в систему поступает количество
теплоты QН
. Согласно первому началу термодинамики,
оно идёт на совершение поршнем работы
и на увеличение внутренней энергии
рабочего тела. Количество теплоты можно
выразить через теплоёмкость изобарического
процесса :


(4.53)

Участок 3-4 соответствует
быстрому расширению рабочего тела, то
есть адиабатному расширению. Рабочее
тело совершает работу за счёт собственной
внутренней энергии, при этом его
температура уменьшается. Охлаждение
рабочего тела до первоначальной
температуры происходит изохорически
(участок 4-1), при этом холодильнику
отдаётся количество теплоты:


(4.54)

КПД цикла Дизеля может
быть рассчитан по формуле (4.47), с учётом
формул (4.53) и (4.54), получим:


(4.55)

КПД цикла Дизеля также
меньше, чем КПД цикла Карно в том же
температурном интервале. КПД тепловых
двигателей невысок и при часто используемых
температурах нагревателя и холодильника
он равен 30 ÷ 40%.

Просмотров 1.7к. Опубликовано 30.12.2022

Большинство современных двигателей преобразуют внутреннюю энергию углеводородного топлива в механическую энергию. То есть являются тепловыми машинами. Первым ученым, который задался вопросом о создании самой эффективной тепловой машины стал французский физик Сади Карно. В 1824 в его работе – «Размышления о движущей силе огня и о машинах, способных развивать эту силу», предложен идеальный термодинамический цикл тепловой машины. Цикл, позволяющий получить максимальный теоретический КПД, затем назвали именем Карно. 

Цикл Карно: кратко и понятно

Главной характеристикой, на которую обращают внимание при проектировании любого двигателя является коэффициент полезного действия или КПД. Коэффициент КПД показывает, насколько эффективно протекает трансформация тепловой энергии в системе в полезную механическую работу. КПД любого цикла вычисляется путем отношения полезной работы к затраченной энергии (которую передают системе).

  • Полезная работа – та, которую получаем на выходе системы в результате выполнения цикла.
  • Затраченная энергия – та, что была подведена к системе за цикл.

Термодинамические процессы и циклы.

Цикл Карно состоит из двух изотермических и двух адиабатных процессов. Чтобы понять, что из себя представляют эти процессы, обратимся к первому закону термодинамики:

∆U = A + Q,

где ∆U – внутренняя энергия рабочего тела или системы,

A – совершаемая в цикле работа,

Q – количество теплоты, переданное за цикл, системе.

Формулировка первого закона термодинамики: при переходе системы из одного состояния в другое, изменение внутренней энергии системы равно сумме количества теплоты, переданного системе, и работы внешних сил.

Что такое изотермический и адиабатный процессы?

Изотермический процесс

Изотермический процесс – процесс, перехода рабочего тела из одного состояния в другое без изменения температуры ∆T=0.  

Цикл Карно: кратко и понятно

Например, изменение объёма и давления газа при неизменной температуре.

При постоянной температуре изменение внутренней энергии газа ∆U будет равно нулю, так как ∆T = 0.

Тогда, согласно первому закону термодинамики: Q = A.  Это значит:

  • получая теплоту, газ будет расширяться, совершая положительную работу. При этом всё количество тепла будет потрачено на совершение работы.
  • и наоборот, при отдаче теплоты объем газа будет уменьшаться.

Адиабатный процесс

Адиабатный процесс – такой процесс, который протекает без передачи или получения тепла Q от окружающей среды. То есть, процесс протекает в теплоизолированной системе или с бесконечно большой скоростью, при которой теплообменом можно пренебречь Q = 0.

Согласно первому закону термодинамики: A = -∆U.

Это значит:

  • работу газ совершает за счет уменьшения внутренней энергии;
  • и наоборот, приложенная к системе работа, затрачивается только на повышение внутренней энергии.
Цикл Карно: кратко и понятно

Из каких процессов состоит цикл Карно

Главная особенность всех круговых процессов или циклов состоит в том, что их работа невозможна, если приводить рабочее тело в контакт только с одним источником теплоты. Любой тепловой двигатель устроен таким образом, что за счет теплообмена между двумя источниками теплоты он способен преобразовать тепло в механическую работу. Температуры этих источников должны отличаться, но, при этом, быть постоянными.

Чтобы понять, как работает цикл Карно, нужно представить простой тепловой двигатель, например цилиндр с поршнем, внутри которого находится газ. К газу может подводиться и отводится тепло. Источники тепла, при этом, называются:

  • нагреватель – источник, имеющий высокую постоянную температуру TН
  • холодильник – с постоянной низкой температурой TХ.

Цикл Карно имеет четыре обратимых процесса – два изотермических, и два – адиабатных.

Цикл Карно: кратко и понятно

Изотермические процессы протекают при постоянной температуре T. Адиабатные процессы – при постоянной энтропии S, без теплообмена с окружающей средой.

Для удобства, цикл Карно представляют в:

  • T-S координатах – зависимость энтропии S от температуры T.
  • p-V координатах – зависимость давления p от удельного объёма V.
Цикл Карно: кратко и понятно

Изотермическое расширение

Изотермическое расширение или изотермический подвод тепла – показано процессом AB. В начале рабочее тело находится в точке A. На данном этапе рабочее тело или газ имеет начальную температуру TН. Затем, к телу подводится энергия в виде теплоты Q1. Снижение температуры при расширении отсутствует, так как подводится теплота Q1, от нагревателя. Увеличения температуры тоже не будет, так как совершается работа A1=Q1. Поэтому, при расширении рабочего тела его температура остается постоянной – изотермическое расширение TН=const. При этом, энтропия рабочего тела увеличивается, из-за увеличения его объема. Происходит это за счет совершения механической работы.

изотермическое расширение

Адиабатическое расширение

Адиабатическое расширение показано процессом BC. После окончания изотермического подвода тепла газ находится в состоянии, характеризуемом точкой B. Далее следует адиабатическое расширение рабочего тела. На этом этапе газ в двигателе изолирован от обоих тепловых источником – как от горячего, так и от холодного. Поэтому ни источники, ни рабочее тело получают и не теряют тепло. Такой процесс называется адиабатическим. Из-за отсутствия теплообмена с окружающей средой Q=0 энтропия рабочего тела остается постоянной S=const. Работа осуществляется только за счет внутренней энергии A = -∆U. Поэтому происходит снижение температуры газа.

Адиабатическое расширение

Рабочее тело, расширяясь, заставляет поршень двигаться вверх. Давление газа под поршнем постепенно снижается. Выталкивая подвижный поршень вверх, рабочее тело совершает механическую работу, в результате чего теряет определенное количество внутренней энергии. Количество этой энергии равно проделанной работе A = -∆U. В процессе расширения рабочего тела его температура уменьшается и становится равной TХ.

Изотермическое сжатие

Изотермическое сжатие – процесс CD. На данном этапе рабочее передаёт тепло холодному источнику при температуре TХ. К газу подводится работа сжатия путем перемещения поршня вниз. В результате этого процесса, рабочее тело передает холодильнику количество теплоты равное подводимой работе Q22. Изменения внутренней энергии не будет ∆U=0. Поэтому, этот процесс считается изотермическим сжатием TХ=const. Энтропия газа уменьшается.

Изотермическое сжатие

Адиабатическое сжатие

Адиабатическое сжатие – процесс DA. После завершения отвода тепла, газ находится в состоянии, характеризуемом точкой D. На последней стадии цикла рабочее тело снова остается изолированным обоих источников Q=0. Предполагается, что поршень движется без трения, а процесс является обратимым. Работа продолжает подводиться и поршень движется вниз, сжимая газ. В результате этого внутренняя энергия газа возрастает A = +∆U. Под давлением поршня температура рабочего тела поднимается до температуры нагревателя TН, но энтропия остается неизменной. Итогом этого этапа является то, что рабочее тело возвращается к своему изначальному состоянию в точку А.

Адиабатическое сжатие

Поскольку цикл Карно идеальный, то принято допущение, что температуры рабочего тела в процессах AB и CD равна температуре горячего и холодного источника или отличаются на бесконечно малую величину.

Формула расчета цикла Карно

Коэффициент КПД показывает, насколько совершенен цикл и входящие в него термодинамические процессы. Термический КПД любого термодинамического цикла рассчитывается по формуле:

Цикл Карно: кратко и понятно

Где Q1 – тепло, подведенное к рабочему телу от нагревателя;

Q2 – тепло, отведенное от рабочего тела к холодильнику.

Применительно для расчета КПД цикла Карно используется формула:

Цикл Карно: кратко и понятно

Где TН -температура горячего источника;

TХ -температура холодно источника.

Температура формуле вычисления КПД цикла Карно в кельвинах [К].

Обратный цикл Карно

Описанный выше цикл теплового двигателя Карно полностью обратим. Это значит, что можно пройти все процессы в обратном направлении:

  • процесс отвода тепла станет процессом подвода тепла
  • процесс сжатия – расширением.

При проходе процессов в обратном направлении получим циклом холодильной машины Карно или теплового насоса. Диаграммы остаются абсолютно такими же, измениться лишь направление процессов.

Единственное отличие обратного цикла Карно — это противоположные направления всех четырёх термодинамических процессов.

Цикл Карно: кратко и понятно

Тепло в обратном цикле Карно будет поглощаться из холодильника, и далее отводиться к нагревателю. Чтобы это осуществить, в соответствии со вторым законом термодинамики, необходимо затратить работу. Работа затрачивается на сжатие газа.

В результате того, что к данной системе прикладывается работа, тепло перемещается от холодного источника к горячему.

Подробнее про обратный цикл Карно и холодильные машины рекомендуем прочитать в статье.

Теорема Карно

Теорема Карно – это теорема, выявляющая некоторые ограничения для предела КПД реальных тепловых машин. Описал ее Сади Карно в своем труде о движущей силе огня. Но некоторые из современных авторов считают, что рассуждения Карно позволяют сформулировать сразу две теоремы. Звучат они так:

  1. КПД любого обратимого теплового двигателя, работающего по циклу Карно, не зависит от природы рабочего тела и конструкции самой машины, а является лишь функцией температур нагревателя и холодильника:

Из этой теоремы можно сделать вывод, что самую большую роль, определяющую КПД тепловой машины, играет разница температур горячего и холодного источников.

  1. КПД любого теплового двигателя, работающего по необратимому циклу, должен быть меньше КПД двигателя с обратимым циклом Карно, при условии равных температур нагревателей и холодильников.

Эта трактовка теоремы дает понять, что реальные двигатели неидеальны, в отличии от теоретической модели Карно. Поэтому, из-за наличия неизбежных потерь энергии, КПД реального двигателя будет снижаться в зависимости от объема этих потерь.

Исходя из этого, уравнение расчета КПД цикла Карно показывает максимальную эффективность работы для любого двигателя, в котором задействованы соответствующие температурные параметры.

Следствие теоремы Карно – все обратимые двигатели, которые работают между идентичными источниками тепла, имеют одинаковую эффективность.

Цикл Карно: кратко и понятно

Отсюда можно сделать вывод: понижение температуры холодного резервуара сильнее влияет на максимальный КПД тепловой машины, чем увеличение температуры горячего резервуара на такую же величину. На практике добиться этого довольно сложно, так как чаще всего источником для охлаждения является окружающая среда со своей температурой.

Максимальный КПД достигается только в том случае, когда значение энтропии не изменяется в течение цикла. Например, в течение цикла энтропия может изменяться при наличии трения, в результате которого при механической работе выделяется тепло. В данной ситуации цикл нельзя назвать обратимым.

Обобщенный цикл Карно

Согласно описанной ранее теореме Карно, КПД абсолютно любого реального цикла не может быть выше КПД в цикле Карно при идентичных температурных параметрах. Несмотря на это существуют примеры, термический КПД которых, при определенных условиях, равен циклу Карно. Такие циклы имеют отличия в изображении на T-S диаграмме. В данных циклах используется регенерация теплоты, поэтому они называются регенеративными.

Термодинамический цикл с регенерацией теплоты

Происходит процесс регенерации следующим образом. Доля тепла, отдаваемая рабочим телом холодильнику, переходит обратно к рабочему телу для его нагревания. Такой метод повышает термический КПД рабочего цикла, позволяя сделать расход теплоты более выгодным, и используется в теплосиловых устройствах. Например, в современных тепловых электрических станциях.

Рассмотрим T-S диаграмму регенеративного цикла.

Цикл Карно: кратко и понятно

Данный цикл состоит из двух изотермических (1-2) и (3-4) и двух политропных (произвольных) (2-3) и (4-1) обратимых и эквидистантных процессов.

  1. Горячий источник (нагреватель), имея начальную температуру T1, по изотерме (1-2) передает теплоту рабочему телу.
  2. В точке 2 начинается расширение рабочего тела в направлении (2-3) – политропный процесс. На данной кривой происходит отвод теплоты регенерации qрег.
  3. Точка 3 на диаграмме находится левее, чем в диаграмме для идеального цикла Карно, поскольку вследствие отвода теплоты регенерации уменьшается энтропия рабочего тела.
  4. Далее, на изотермической прямой (3-4) происходит сжатие рабочего тела и отведение теплоты к холодному источнику с температурой T2 (холодильник).
  5. В точке 4 начинается политропный процесс сжатия по кривой (4-1). Одновременно с этим к рабочему телу подводится теплота qрег.

Рабочее тело принимает и отдает равное количество теплоты qрег, значит в данном процессе происходит перенос теплоты из одной части цикла в другую, это и называется процессом регенерации.

Термический КПД регенеративного цикла

Термический КПД регенеративного цикла будет равен термическому КПД Карно при идентичных параметрах температуры. Поэтому такой регенеративный цикл так же называют обобщенным циклом Карно (только если он обратим). Подобные явления находят массовое практическое применение на различных промышленных объектах и предприятиях.

К примеру, по принципу регенерации происходит подогрев воды в паровых турбинах и подогрев воздуха в газовых турбинах. 

Говоря об обобщенном цикле Карно, стоит отметить, что его реализация в идеальном виде невозможна. Обусловлено это тем, что в идеале такая система должна содержать бесконечно большое количество промежуточных регенераторов. При этом, для каждого из них температура отводимой и подводимой теплоты должна быть определенной. Любые методы регенерации, которые используются на практике, являются в определенной мере приближенными к идеальному циклу.

Эффективность реальных тепловых двигателей.

Обратимые двигатели в реальности невозможны. Реальные машины имеют еще меньший КПД, чем КПД машины Карно. Помимо этого, реальные двигатели, работающие по принципу Карно, можно встретить крайне редко. Несмотря на это, данное уравнение не теряет своей актуальности для определения максимального КПД, который можно спрогнозировать для определенной пары источников теплоты. Двигатель, работающий по принципу Карно должен рассматриваться как теоретическая модель тепловых двигателей.

Цикл Карно: кратко и понятно

Важнейшей технической задачей является повышение КПД тепловых двигателей и приближение этого значение к максимально возможному. Сравним значения термических КПД некоторых тепловых двигателей:

  • Паровой двигатель – 8%
  • Газотурбинная установка – 25-38%
  • Паротурбинная установка – 40-50%

Начальные и конечные температуры пара для паровой турбины имеют такие приблизительные значения: Tн = 800 К, Tх = 300 К. Максимальное теоретическое значение КПД при данных температурах – 62%. Но, вследствие различных потерь энергии, в реальности экономичность достигает 45%.

На сегодня, КПД самых экономичных паротурбинных блоков на сверхперегретом паре с развитой системой регенерации и промежуточным перегревом пара достигает 52%.

Цикл Карно: кратко и понятно

Заключение

Модель работы идеального теплового двигателя, предложенная Сади Карно почти 200 лет назад, хоть и нереализуема на практике, но определенно остается актуальной и в нынешнее время.

Цикл Карно – теоретический инструмент, позволяющий рассчитать максимальную эффективность для любого теплового двигателя, что является немаловажной задачей для каждого инженера, занимающегося разработкой и моделированием термодинамических систем.

На этой странице вы узнаете

  • В чем прелесть фазовых переходов?
  • Что лучше выбрать: Mercedes или BMW?

Люди научились летать в космос, покорять недра Земли и погружаться в глубины океана. Эти и другие достижения возможны благодаря способности извлекать максимум пользы из имеющихся ресурсов,а именно получать тепловую энергию различными доступными способами. Сегодня мы разберем задачи, которые заставят тепловые процессы играть на нашей стороне. 

Тепловые машины и их КПД

Рекомендация: перед тем как приступить к выполнению задач неплохо было бы повторить тему «Уравнение состояния идеального газа» . Но ключевую теорию, на которой основано решение задач, сейчас разберем вместе.

В чем прелесть фазовых переходов?

Вспомним, что фазовые переходы — это переход из одного агрегатного состояния в другое. При этом может выделяться большое количество теплоты.

Именно благодаря этому они и стали такими полезными для нас. Например, в ядерных реакторах воду используют в качестве рабочего тела, то есть она нагревается вследствие энергии, полученной из ядерных реакций, доходит до температуры кипения, а затем под большим давлением уже в качестве водяного пара воздействует на ротор генератора, который вращается и дает нам электроэнергию! На этом основан принцип работы атомных электростанций. 

А самый простой пример фазового перехода — образование льда на лужах в морозные ноябрьские дни. Правда о выделении тепла здесь речи не идет.

Мы не почувствуем, как испарится капелька у нас на руке, потому что это не требует много тепла от нашего тела. Но мы можем наблюдать, как горят дрова в мангале, когда мы жарим шашлык, потому что выделяется огромное количество теплоты. А зачем мы вообще рассматриваем эти фазовые переходы? Все дело в том, что именно фазовые переходы являются ключевым звеном во всех процессах, где нас просят посчитать КПД, от них нашему рабочему телу и подводится теплота нагревателя.

Человечество придумало такие устройства, которые могут переработать тепловую энергию в механическую.

Тепловые двигатели, или тепловые машины, — устройства, способные преобразовывать внутреннюю энергию в механическую. 

Их устройство довольно просто: они на входе получают какую-то энергию (в основном — энергию сгорания топлива), а затем часть этой теплоты расходуется на совершение работы механизмом. Например, в автомобилях часть энергии от сгоревшего бензина идет на движение. Схематично можно изобразить так:

Рабочее тело — то, что совершает работу — принимает от нагревателя количество теплоты Q1, из которой A уходит на работу механизма. Остаток теплоты Q2 рабочее тело отдает холодильнику, по сути — это потеря энергии.

Физика не была бы такой загадочной, если б все в ней было идеально. Как и в любом процессе или преобразовании, здесь возможны потери, зачастую очень большие. Поэтому «индикатором качества» машины является КПД, с которым мы уже сталкивались в механике:

Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.

(eta = frac{A}{Q_1}) , где

(eta) —  КПД,
A — работа газа (Дж),
Q1 — количество теплоты, полученное от нагревателя (Дж).

Мы должны понимать, что КПД на практике никогда не получится больше 1, поскольку всегда будут тепловые потери. 

Полезную работу можно расписать как Q1 — Q2 (по закону сохранения энергии). Тогда формула примет вид:

(eta = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1})

Давайте попрактикуемся в применении данной формулы на задаче номер 9 из ЕГЭ.

Задача. Тепловая машина, КПД которой равен 60%, за цикл отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях).

Решение:

Давайте сначала вспомним нашу формулу для КПД:

(eta = frac{Q_1 — Q_2}{Q_1}),

где (Q_1) — это теплота, которую тело получает от нагревателя, (Q_2) — теплота, которая подводится к холодильнику.

Тогда отсюда можно вывести искомую теплоту нагревателя:

(eta Q_1 =Q_1-Q_2)
(eta Q_1 — Q_1= -Q_2)
(Q_1=frac{- Q_2}{eta-1}=frac{-100}{0,6-1}=250 Дж).

Ответ: 250 Дж

Цикл Карно

Мы знаем, что потери — это плохо, поэтому должны предотвращать их. Как это сделать? Нам ничего делать не нужно, за нас уже все сделал Сади Карно, французский физик, разработавший цикл, в котором машины достигают наивысшего КПД. Этот цикл носит его имя и состоит из двух изотерм и двух адиабат. Рассмотрим, как этот цикл выглядит в координатах p(V).

  • Температура верхней изотермы 1-2 — температура нагревателя (так как теплота в данном процессе подводится).
  • Температура нижней изотермы 3-4 — температура холодильника (так как теплота в данном процессе отводится).
  • 2-3 и 4-1 — это адиабатические расширение и сжатие соответственно, в них газ не обменивается теплом с окружающей средой.

Цикл Карно — цикл идеальной тепловой машины, которая достигает наивысшего КПД. 

Формула, по которой можно рассчитать ее КПД выражается через температуры:

(eta = frac{T_1 — T_2}{T_1} = 1 — frac{T_2}{T_1}), где 

T1 — температура нагревателя,  
T2 — температура холодильника.

Что лучше выбрать: Mercedes или BMW?

Не то круто, что красиво, а то, что по Карно работает! Поэтому присматривайте такой автомобиль, у которого высокий КПД.

Интересно, что максимальный уровень КПД двигателя внутреннего сгорания автомобилей на данный момент всего около 43%. По официальным заявлениям компания Nissan Motor с 2021 года испытывает прообраз двигателя нового поколения с планируемым КПД 50%.

Приступим к задачам

Задачи на данную тему достаточно часто встречаются в задании 27 из КИМа ЕГЭ. Давайте разберем некоторые примеры.

Задание 1. Одноатомный газ совершает циклический процесс, как показано на рисунке. На участке 1–2 газ совершает работу A12 = 1520 Дж. Участок 3–1 представляет собой адиабатный процесс. Количество теплоты, отданное газом за цикл холодильнику, равно |Qхол| = 4780 Дж. Найдите работу газа |A13| на адиабате, если количество вещества постоянно.

Решение:

Шаг 1. Первое, с чего лучше начинать задачи по термодинамике — исследование процессов. 

Посмотрим на участок 1-2 графика: продолжение прямой проходит через начало координат, поэтому график функционально можно записать, как p = aV, где a — какое-то число, константа. Графиком является не изотерма, поскольку график изотермы в координатах p-V — гипербола. Из уравнения Менделеева-Клапейрона следует: (frac{pV}{T} = const). Отсюда можно сделать вывод, что возрастает температура, так как растут давление и объем.  Температура и объем растут, значит, увеличивается и внутренняя энергия и объем соответственно.

Участок 2-3: процесс изохорный, поскольку объем постоянен, следовательно, работа газом не совершается. Рассмотрим закон Шарля: (frac{p}{T} = const). Давление в этом процессе растет, тогда растет и температура, поскольку дробь не должна менять свое значение. Делаем вывод, что внутренняя энергия тоже увеличивается.

Участок 3-1: адиабата по условию, то есть количество теплоты в этом переходе равна нулю из определения адиабатного процесса. Работа газа отрицательна, так как газ уменьшает объем. 

Оформим все данные в таблицу. 

Определим знаки Q, используя первый закон термодинамики: Q = ΔU + A.

Из этих данных сразу видно, что количество теплоты, отданное холодильнику — это количество теплоты в процессе 2-3.

Шаг 2. Первый закон термодинамики для процесса 1-2 запишется в виде: 

Q12 = ΔU12 + A12

Работа A12 — площадь фигуры под графиком процесса, то есть площадь трапеции: 

(A_{12} = frac{p_0 + 2p_0}{2} * V0 =frac{3p_0V_0}{2}). 

Запишем изменение внутренней энергии для этого процесса через давление и объем. Мы выводили эту формулу в статье «Первое начало термодинамики»:

(Delta U_{12} = frac{3}{2}(2p_0 * 2V_0 — p_0V_0) = frac{9p_0V_0}{2}). 

Заметим, что это в 3 раза больше работы газа на этом участке: 

(Delta U_{12} = 3A_{12} rightarrow Q_{12} = 4A_{12}).

Шаг 3. Работа цикла — площадь фигуры, которую замыкает график, тогда . A = A12 — |A31|. С другой стороны, работа цикла вычисляется как разность между энергиями нагревателя и холодильника: A = Q12 — |Q31|.

 Сравним эти формулы:

Q12 -|Q31| = A12 — |A31|,

подставим выражения из предыдущего пункта:

4A12 — |Q31| = A12 — |A31| (rightarrow) |A31| = -3A12 + |Q31| = -31520 + 4780 = 220 Дж.

Ответ: 220 Дж

Задание 2. Найти КПД цикла для идеального одноатомного газа.

Решение:

Шаг 1. КПД цикла определим по формуле: (eta = frac{A}{Q}), где Q — количество теплоты от нагревателя, а А — работа газа за цикл. Найдем А как площадь замкнутой фигуры: A = (2p1 — p1)(3V1 — V1) = 2p1V1.

Шаг 2. Найдем процесс, который соответствует получению тепла от нагревателя. Воспользуемся теми же приемами, что и в прошлой задаче:

Посмотрим на участок 1-2 графика: давление растет, объем не меняется. По закону Шарля (frac{p}{T} = const) температура тоже растет. Работа газа равна 0 при изохорном процессе, а изменение внутренней энергии положительное.

2-3: давление не меняется, растет объем, а значит, работа газа положительна. По закону Гей-Люссака (frac{V}{T} = const) температура тоже растет, растет и внутренняя энергия.

3-4: давление уменьшается, следовательно, и температура уменьшается. При этом процесс изохорный и работа газа равна 0.

4-1: давление не меняется, объем и температура уменьшаются — работа газа отрицательна и внутренняя энергия уменьшается.

Оформим данные в таблицу: 

Отметим, что  необходимое Q = Q12 + Q23.

Шаг 3. Запишем первый закон термодинамики для процессов 1-2 и 2-3:

(Q_{12} = U_{12} + A_{12} = Delta U_{12} = frac{3}{2}(2p_1V_1 -p_1V_1) = frac{3}{2}p_1V_1).
(Q_{23} = Delta U_{23} + A_{23}), работу газа найдем как площадь под графиком: A23 = 2p1(3V1 — V1) = 4p1V1.
(Delta U_{12} = frac{3}{2}(2p_1 * 3V_1 — 2p_1V_1) = 6p_1V_1).
(Q_{23} = Delta U_{23} + A_{23} = 10p_1V_1).

Шаг 4. Мы готовы считать КПД: (eta = frac{A}{Q} = frac{A}{Q_{12} + Q_{23}} = frac{2p_1V_1}{frac{3}{2}p_1V_1 + 10p_1V_1} = frac{4}{23} approx 0,17).

Ответ: 17%

Теперь вас не должно настораживать наличие графиков в условиях задач на расчет КПД тепловых машин. Продолжить обучение решению задач экзамена вы можете в статьях «Применение законов Ньютона» и «Движение точки по окружности».

Фактчек

  • Тепловые двигатели — устройства, способные преобразовывать внутреннюю энергию в механическую. 
  • Тепловая машина принимает тепло от нагревателя, отдает холодильнику, а рабочим телом совершает работу.
  • Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.
    (eta = frac{A}{Q_1} = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1})  
  • Цикл Карно — цикл с максимально возможным КПД: (eta = frac{T_1 — T_2}{T_1} = 1 — frac{T_2}{T_1})
  • Не забываем, что работа считается, как площадь фигуры под графиком.

Проверь себя

Задание 1. 
1 моль идеального газа переходит из состояния 1 в состояние 2, а потом — в состояние 3 так, как это показано графике. Начальная температура газа равна T0 = 350 К. Определите работу газа при переходе из состояния 2 в состояние 3, если k = 3, а n = 2.

  1. 5672 Дж
  2. 4731 Дж
  3. 5817 Дж
  4. 6393 Дж

Задание 2. 
1 моль идеального одноатомного газа совершает цикл, который изображен на pV-диаграмме и состоит из двух адиабат, изохоры, изобары. Модуль отношения изменения температуры газа при изобарном процессе ΔT12 к изменению его температуры ΔT34 при изохорном процессе равен 1,5. Определите КПД цикла.

  1. 0,6
  2. 0,5
  3. 0,8
  4. 1

Задание 3.
В топке паровой машины сгорело 50 кг каменного угля, удельная теплота сгорания которого равна 30 МДж/кг. При этом машиной была совершена полезная механическая работа 135 МДж. Чему равен КПД этой тепловой машины? Ответ дайте в процентах.

  1. 6%
  2. 100%
  3. 22%
  4. 9%

Задание 4.
С двумя молями одноатомного идеального газа совершают циклический процесс 1–2–3–1 (см. рис.). Чему равна работа, совершаемая газом на участке 1–2 в этом циклическом процессе?

  1. 4444 Дж
  2. 2891 Дж
  3. 4986 Дж
  4. 9355 Дж

Ответы:1 — 3; 2 — 1; 3 — 4; 4 — 3.

Тепловые машины

  • Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

  • Тепловые двигатели

  • Холодильные машины

  • Тепловая машина Карно

  • Тепловые двигатели и охрана окружающей среды

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: принципы действия тепловых машин, КПД тепловой машины, тепловые двигатели и охрана окружающей среды.

Коротко говоря, тепловые машины преобразуют теплоту в работу или, наоборот, работу в теплоту.
Тепловые машины бывают двух видов — в зависимости от направления протекающих в них процессов.

1. Тепловые двигатели преобразуют теплоту, поступающую от внешнего источника, в механическую работу.

2. Холодильные машины передают тепло от менее нагретого тела к более нагретому за счёт механической работы внешнего источника.

Рассмотрим эти виды тепловых машин более подробно.

к оглавлению ▴

Тепловые двигатели

Мы знаем, что совершение над телом работы есть один из способов изменения его внутренней энергии: совершённая работа как бы растворяется в теле, переходя в энергию беспорядочного движения и взаимодействия его частиц.

Рис. 1. Тепловой двигатель

Тепловой двигатель — это устройство, которое, наоборот, извлекает полезную работу из «хаотической» внутренней энергии тела. Изобретение теплового двигателя радикально изменило облик человеческой цивилизации.

Принципиальную схему теплового двигателя можно изобразить следующим образом (рис. 1). Давайте разбираться, что означают элементы данной схемы.

Рабочее тело двигателя — это газ. Он расширяется, двигает поршень и совершает тем самым полезную механическую работу.

Но чтобы заставить газ расширяться, преодолевая внешние силы, нужно нагреть его до температуры, которая существенно выше температуры окружающей среды. Для этого газ приводится в контакт с нагревателем — сгорающим топливом.

В процессе сгорания топлива выделяется значительная энергия, часть которой идёт на нагревание газа. Газ получает от нагревателя количество теплоты Q_1. Именно за счёт этого тепла двигатель совершает полезную работу A.

Это всё понятно. Что такое холодильник и зачем он нужен?

При однократном расширении газа мы можем использовать поступающее тепло максимально эффективно и целиком превратить его в работу. Для этого надо расширять газ изотермически: первый закон термодинамики, как мы знаем, даёт нам в этом случае A=Q_1.

Но однократное расширение никому не нужно. Двигатель должен работать циклически, обеспечивая периодическую повторяемость движений поршня. Следовательно, по окончании расширения газ нужно сжимать, возвращая его в исходное состояние.

В процессе расширения газ совершает некоторую положительную работу A_1. В процессе сжатия над газом совершается положительная работа A_2 (а сам газ совершает отрицательную работу -A_2). В итоге полезная работа газа за цикл: A=A_1-A_2.

Разумеется, должно быть A>0, или A_2 < A_1 (иначе никакого смысла в двигателе нет).

Сжимая газ, мы должны совершить меньшую работу, чем совершил газ при расширении.

Как этого достичь? Ответ: сжимать газ под меньшими давлениями, чем были в ходе расширения. Иными словами, на pV-диаграмме процесс сжатия должен идти ниже процесса расширения, т. е. цикл должен проходиться по часовой стрелке (рис. 2).

Рис. 2. Цикл теплового двигателя

Например, в цикле на рисунке работа газа при расширении равна площади криволинейной трапеции V_11a2V_2. Аналогично, работа газа при сжатии равна площади криволинейной трапеции V_11b2V_2 со знаком минус. В результате работа A газа за цикл оказывается положительной и равной площади цикла 1a2b1.

Хорошо, но как заставить газ возвращаться в исходное состояние по более низкой кривой, т. е. через состояния с меньшими давлениями? Вспомним, что при данном объёме давление газа тем меньше, чем ниже температура. Стало быть, при сжатии газ должен проходить состояния с меньшими температурами.

Вот именно для этого и нужен холодильник: чтобы охлаждать газ в процессе сжатия.

Холодильником может служить атмосфера (для двигателей внутреннего сгорания) или охлаждающая проточная вода (для паровых турбин). При охлаждении газ отдаёт холодильнику некоторое количество теплоты Q_2.

Суммарное количество теплоты, полученное газом за цикл, оказывается равным Q_1-Q_2. Согласно первому закону термодинамики:

Q_1 - Q_2 = A + Delta U,

где Delta U — изменение внутренней энергии газа за цикл. Оно равно нулю: Delta U = 0, так как газ вернулся в исходное состояние (а внутренняя энергия, как мы помним, является функцией состояния). В итоге работа газа за цикл получается равна:

A = Q_1 - Q_2. (1)

Как видите, A < Q_1: не удаётся полностью превратить в работу поступающее от нагревателя тепло. Часть теплоты приходится отдавать холодильнику — для обеспечения цикличности процесса.

Показателем эффективности превращения энергии сгорающего топлива в механическую работу служит коэффициент полезного действия теплового двигателя.

КПД теплового двигателя — это отношение механической работы A к количеству теплоты Q_1, поступившему от нагревателя:

С учётом соотношения (1) имеем также

eta = frac{displaystyle A}{displaystyle Q_1 vphantom{1^a}}. (2)

КПД теплового двигателя, как видим, всегда меньше единицы. Например, КПД паровых турбин приблизительно 25 %, а КПД двигателей внутреннего сгорания около 40 %.

к оглавлению ▴

Холодильные машины

Житейский опыт и физические эксперименты говорят нам о том, что в процессе теплообмена теплота передаётся от более нагретого тела к менее нагретому, но не наоборот. Никогда не наблюдаются процессы, в которых за счёт теплообмена энергия самопроизвольно переходит от холодного тела к горячему, в результате чего холодное тело ещё больше остывало бы, а горячее тело — ещё больше нагревалось.

Рис. 3. Холодильная машина

Ключевое слово здесь — «самопроизвольно». Если использовать внешний источник энергии, то осуществить процесс передачи тепла от холодного тела к горячему оказывается вполне возможным. Это и делают холодильные
машины.

По сравнению с тепловым двигателем процессы в холодильной машине имеют противоположное направление (рис. 3).

Рабочее тело холодильной машины называют также хладагентом. Мы для простоты будем считать его газом, который поглощает теплоту при расширении и отдаёт при сжатии (в реальных холодильных установках хладагент — это летучий раствор с низкой температурой кипения, который забирает теплоту в процессе испарения и отдаёт при конденсации).

Холодильник в холодильной машине — это тело, от которого отводится теплота. Холодильник передаёт рабочему телу (газу) количество теплоты Q_2, в результате чего газ расширяется.

В ходе сжатия газ отдаёт теплоту Q_1 более нагретому телу — нагревателю. Чтобы такая теплопередача осуществлялась, надо сжимать газ при более высоких температурах, чем были при расширении. Это возможно лишь за счёт работы {A}, совершаемой внешним источником (например, электродвигателем (в реальных холодильных агрегатах электродвигатель создаёт в испарителе низкое давление, в результате чего хладагент вскипает и забирает тепло; наоборот, в конденсаторе электродвигатель создаёт высокое давление, под которым хладагент конденсируется и отдаёт тепло)). Поэтому количество теплоты, передаваемое нагревателю, оказывается больше количества теплоты, забираемого от холодильника, как раз на величину {A}:

Q_1 = Q_2 + {A}

Таким образом, на pV-диаграмме рабочий цикл холодильной машины идёт против часовой стрелки. Площадь цикла — это работа {A}, совершаемая внешним источником (рис. 4).

Рис. 4. Цикл холодильной машины

Основное назначение холодильной машины — охлаждение некоторого резервуара (например, морозильной камеры). В таком случае данный резервуар играет роль холодильника, а нагревателем служит окружающая среда — в неё рассеивается отводимое от резервуара тепло.

Показателем эффективности работы холодильной машины является холодильный коэффициент, равный отношению отведённого от холодильника тепла к работе внешнего источника:

alpha  = frac{displaystyle Q_2}{displaystyle {A}

Холодильный коэффициент может быть и больше единицы. В реальных холодильниках он принимает значения приблизительно от 1 до 3.

Имеется ещё одно интересное применение: холодильная машина может работать как тепловой насос. Тогда её назначение — нагревание некоторого резервуара (например, обогрев помещения) за счёт тепла, отводимого от окружающей среды. В данном случае этот резервуар будет нагревателем, а окружающая среда — холодильником.

Показателем эффективности работы теплового насоса служит отопительный коэффициент, равный отношению количества теплоты, переданного обогреваемому резервуару, к работе внешнего источника:

beta  = frac{displaystyle Q_1}{displaystyle {A}

Значения отопительного коэффициента реальных тепловых насосов находятся обычно в диапазоне от 3 до 5.

к оглавлению ▴

Тепловая машина Карно

Важными характеристиками тепловой машины являются наибольшее и наименьшее значения температуры рабочего тела в ходе цикла. Эти значения называются соответственно температурой нагревателя и температурой холодильника.

Мы видели, что КПД теплового двигателя строго меньше единицы. Возникает естественный вопрос: каков наибольший возможный КПД теплового двигателя с фиксированными значениями температуры нагревателя T_1 и температуры холодильника T_2?

Пусть, например, максимальная температура рабочего тела двигателя равна 1000 K, а минимальная — 300 K. Каков теоретический предел КПД такого двигателя?

Ответ на поставленный вопрос дал французский физик и инженер Сади Карно в 1824 году.

Он придумал и исследовал замечательную тепловую машину с идеальным газом в качестве рабочего тела. Эта машина работает по циклу Карно, состоящему из двух изотерм и двух адиабат.

Рассмотрим прямой цикл машины Карно, идущий по часовой стрелке (рис. 5). В этом случае машина функционирует как тепловой двигатель.

Рис. 5. Цикл Карно

Изотерма 1rightarrow 2. На участке 1rightarrow 2 газ приводится в тепловой контакт с нагревателем температуры T_1 и расширяется изотермически. От нагревателя поступает количество теплоты Q_1 и целиком превращается в работу на этом участке: A_{12} = Q_1.

Адиабата 2rightarrow 3. В целях последующего сжатия нужно перевести газ в зону более низких температур. Для этого газ теплоизолируется, а затем расширяется адиабатно на учатке 2rightarrow 3.

При расширении газ совершает положительную работу A_{23}, и за счёт этого уменьшается его внутренняя энергия: Delta U_{23} = -A_{23}.

Изотерма 3rightarrow 4. Теплоизоляция снимается, газ приводится в тепловой контакт с холодильником температуры T_2. Происходит изотермическое сжатие. Газ отдаёт холодильнику количество теплоты Q_2 и совершает отрицательную работу A_{34} = -Q_2.

Адиабата 4rightarrow 1. Этот участок необходим для возврата газа в исходное состояние. В ходе адиабатного сжатия газ совершает отрицательную работу A_{41}, а изменение внутренней энергии положительно: Delta U_{41} = -A_{41}. Газ нагревается до исходной температуры T_1.

Карно нашёл КПД этого цикла (вычисления, к сожалению, выходят за рамки школьной программы):

eta  = frac{displaystyle T_1 - T_2}{displaystyle T_1 vphantom{1^a}}. (3)

Кроме того, он доказал, что КПД цикла Карно является максимально возможным для всех тепловых двигателей с температурой нагревателя T_1 и температурой холодильника T_2.

Так, в приведённом выше примере (T_1 = 1000 K, T_2 = 300 K) имеем:

eta_{max}  = frac{displaystyle 1000 - 300}{displaystyle 1000 vphantom{1^a}}=0,7(=70 %).

В чём смысл использования именно изотерм и адиабат, а не каких-то других процессов?

Оказывается, изотермические и адиабатные процессы делают машину Карно обратимой. Её можно запустить по обратному циклу (против часовой стрелки) между теми же нагревателем и холодильником, не привлекая другие устройства. В таком случае машина Карно будет функционировать как холодильная машина.

Возможность запуска машины Карно в обоих направлениях играет очень большую роль в термодинамике. Например, данный факт служит звеном доказательства максимальности КПД цикла Карно. Мы ещё вернёмся к этому в следующей статье, посвящённой второму закону термодинамики.

к оглавлению ▴

Тепловые двигатели и охрана окружающей среды

Тепловые двигатели наносят серьёзный ущерб окружающей среде. Их повсеместное использование приводит к целому ряду негативных эффектов.

• Рассеяние в атмосферу огромного количества тепловой энергии приводит к повышению температуры на планете. Потепление климата грозит обернуться таянием ледников и катастрофическими бедствиями.
• К потеплению климата ведёт также накопление в атмосфере углекислого газа, который замедляет уход теплового излучения Земли в космос (парниковый эффект).
• Из-за высокой концентрации продуктов сгорания топлива ухудшается экологическая ситуация.

Это — проблемы в масштабе всей цивилизации. Для борьбы с вредными последствиями работы тепловых двигателей следует повышать их КПД, снижать выбросы токсичных веществ, разрабатывать новые виды топлива и экономно расходовать энергию.

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Тепловые машины» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Вычисление полезной работы через КПД

Определение

Коэффициентом полезного действия (при сокращённом написании КПД) именуют безразмерную физическую величину, характеризующую отношение энергии, которую система потратила с пользой для нас, к полному количеству полученной энергии.

Измерять КПД принято в процентах. Например, КПД 35%, означает, что почти две трети энергии пошли на ненужные траты, стали рассеянным в пустую теплом, были потрачены на истирание деталей машины, образование искр и т. п.

Важно. 35% совсем не плохой КПД. У паровозов первой половины 20 века он составлял всего 10%. Лишь одна десятая образующегося при сгорании топлива тепла шла на перемещение состава, остальное рассеивалось в атмосфере. Среднеэксплуатационный КПД у современных тепловозов 20-22%. КПД машин на бензиновом ДВС равен 25%. КПД дизеля – 33%. Хорошо на этом фоне выглядит КПД электромобилей. Он у них около 90%.

В формуле нахождения полезной работы да в физике в основном КПД обозначают буквой из греческого алфавита η (эта).

Полезная работа в физике и ненужные траты энергии

Прежде чем говорить о том, как найти полезную работу в физике, следует сказать о ней самой. Дело в том что полезная работа в физике – величина очень даже субъективная. Она напрямую связана с человеческим восприятием, с тем, чего нам нужно получить от системы. Поэтому часто, когда говорят о КПД, имеют в виду различные технические устройства, а не природные объекты.

Хотя технологии постоянно развиваются избежать значительных потерь энергии всё же не удаётся. Получается, что:

Aзатр > Aполез

Aзатр – затраченная работа, Aполез – полезная работа, та что идёт на осуществление нужного нам процесса.

Как бы мы ни пытались уменьшить ненужные потери энергии, полностью от них избавиться не получиться. Непреодолимой преградой для этого является первый закон термодинамики. Из него явственно следует, что КПД любого устройства и механизма ни при каких обстоятельствах не может быть больше единицы и даже стать равным ей.

Формула

Общая формула КПД:

[η = (Aполез/Aзатр) * 100%].

Мощность представляет собой работу, совершённую за единицу времени. В связи с этим КПД можно посчитать как отношение входной мощности системы к выходной. Т. е.

η = Pвх/Pвых.

Как найти полезную работу в физике используя формулы для разных физических процессов

Вид формул, как найти полезную работу в физике, зависит от природы физических явлений, использующихся для преобразования затраченной энергии в нужную.

Нет времени решать самому?

Наши эксперты помогут!

Как найти полезную работу в физике механической системы

Лучше всего это показать на конкретном примере. Допустим, нам требуется найти КПД процесса, при котором мальчик вкатывает санки весом 4 кг на горку длиной 12, высотой 2 м. Он прикладывает для этого силу, равную 15 Н.

Решение:

Напомним, что общая формула для КПД

η = (Aполез/Aзатр) * 100%

Aполез в нашем случае равна потенциальной энергии (Eп), которую нужно потратить на то, чтобы поднять санки на высоту, т. е.  Aполез = m*g*h.

Затраченная мальчиком работа равна произведению силы на перемещение, т. е. Aзатр = F*S.

Подставляем в общую формулу для КПД

η = (m*g*h*100)/(F*S)

При подстановке численных значений получаем

η = 4*9,8*2/15*12 * 100% = 78,4/180 * 100% ≃ 43,6 %

Из этого примера ясно, чему равна полезная работа в физике механической системы, выраженная через КПД.

Формула

[Aполез = (η*F*S)/100]

Формула полезной работы в физике термодинамической системы

Именно по ней судят об эффективности тепловых машин. Допустим, нам нужно отыскать КПД тепловой машины, рабочее тело которой берёт от нагревателя 20кДж, а холодильнику отдаёт 10кДж.

Решение:

Тепловая машина работает следующим образом: нагреватель передаёт определённое количество теплоты рабочему телу, оно из-за этого расширяется, совершая тем самым механическую работу. Однако в последнюю переходит далеко не вся часть переданной тепловой энергии. Чтобы вернуть систему в исходное состояние и начать новый цикл приходится использовать холодильник.

Из выше сказанного можно сделать вывод, что Aполез равна разности энергии взятой от нагревателя и энергии, забранной холодильником, т. е.

Aполез = Qнагревателя – Qхолодильника

Затраченная работа равняется количеству той теплоты, которая была сообщена нагревателю.

Если всё это подставим в формулу для КПД, то получим

[eta=(text { Qнагревателя }-text { Qхолодильника })^{*} 100 / text { Qнагревателя }]

После подстановки численных значений будем иметь

η = (20 – 10)/20*100% = 50%

Теперь ясно, как определить полезную работу в физике термодинамической системы.

Формула

[eta=(text { Qнагревателя }-text { Qхолодильника })^{*} 100 / text { Qнагревателя }]

Формула полезной работы в физике электродинамической системы

Очень важный класс явлений. Каждый день все пользуются самыми разными электрическими устройствами: телевизором, компьютером, телефоном и т. д. Но мы рассмотрим случай попроще. Вычислим КПД электрического чайника. Допустим воде было передано 22176 Дж тепла за 2 мин. Напряжение в электросети стандартное 220 В. Сила тока равняется 1,4 А.

Решение:

Aполез будем считать работу, которая пошла на нагрев воды. Хотя она нам и дана из условия, формулу вспомнить всё равно не будет лишним.

  • Q = cm(tконечная-tначальная)
  • Q — количество теплоты [Дж]
  • c — удельная теплоёмкость вещества [Дж/кг*˚C]
  • m — масса [кг]
  • tконечная — конечная температура [˚C]
  • tначальная — начальная температура [˚C]
  • Работа тока вычисляется по формуле
  • A = (I^2)*Rt = (U^2)/R *t = UIt
  • A — работа электрического тока [Дж]
  • I — сила тока [А]
  • U — напряжение [В]
  • R — сопротивление [Ом]
  • t — время [c]

В нашем примере она примет вид

η = Q/A *100% = Q/UIt *100%

Переводим минуты в секунды и, подставляя численные значения, получаем

η = 22176/220*1,4*120 *100% = 60%

Формула полезной работы электродинамической системы будет:

Формула

[Aполез = (η*U*I*t)/100%]

Понравилась статья? Поделить с друзьями:
  • Как найти классическую музыку по отрывку
  • Как найти телефон на местности
  • Как найти скорость звуковых волн в среде
  • Как найти фио по названию организации
  • Как мне найти циан