Как найти полное ускорение если известно тангенциальное

Понятия о скорости, тангенциальном и нормальном ускорениях. Формулы

Чтобы уметь решать различные задачи на движение тел по физике, необходимо знать определения физических величин, а также формулы, с помощью которых они связаны. В этой статье будут рассмотрены вопросы, что такое тангенциальная скорость, что такое полное ускорение и какие компоненты его составляют.

Понятие о скорости

Двумя основными величинами кинематики перемещения тел в пространстве являются скорость и ускорение. Скорость описывает быстроту перемещения, поэтому математическая форма записи для нее имеет следующий вид:

Вам будет интересно: Что такое туча? Определение

Здесь l¯ — является вектором перемещения. Иными словами, скорость — это производная по времени от пройденного пути.

Как известно, всякое тело движется по воображаемой линии, которая называется траекторией. Вектор скорости всегда направлен по касательной к этой траектории, в какой бы точке не находилось движущееся тело.

Существует несколько названий величины v¯, если рассматривать ее совместно с траекторией. Так, поскольку направлена она по касательной, то ее называют тангенциальной скоростью. Также о ней могут говорить, как о линейной физической величине в противоположность угловой скорости.

Вычисляется скорость в метрах в секунду в СИ, однако на практике часто пользуются километрами в час.

Понятие об ускорении

В отличие от скорости, которая характеризует быстроту прохождения телом траектории, ускорение — это величина, описывающая быстроту изменения скорости, что математически записывается так:

Как и скорость, ускорение — это векторная характеристика. Однако его направление не связано с вектором скорости. Оно определяется изменением направления v¯. Если в процессе движения скорость не изменяет своего вектора, тогда ускорение a¯ будет направлено вдоль той же линии, что и скорость. Такое ускорение называют тангенциальным. Если же скорость будет менять направление, сохраняя при этом абсолютное значение, то ускорение будет направлено к центру кривизны траектории. Оно называется нормальным.

Измеряется ускорение в м/с2. Например, известное всем ускорение свободного падения является тангенциальным при вертикальном подъеме или падении объекта. Его величина вблизи поверхности нашей планеты составляет 9,81 м/с2, то есть за каждую секунду падения скорость тела увеличивается на 9,81 м/с.

Причиной появления ускорения является не скорость, а сила. Если сила F оказывает действие на тело массой m, то она неминуемо создаст ускорение a, которое можно вычислить так:

Эта формула является прямым следствием из второго закона Ньютона.

Полное, нормальное и тангенциальное ускорения

Скорость и ускорение как физические величины были рассмотрены в предыдущих пунктах. Теперь мы подробнее изучим, какие компоненты составляют полное ускорение a¯.

Предположим, что тело движется со скоростью v¯ по криволинейной траектории. Тогда будет справедливо равенство:

Вектор u¯ имеет единичную длину и направлен вдоль касательной линии к траектории. Воспользовавшись таким представлением скорости v¯, получим равенство для полного ускорения:

a¯ = dv¯/dt = d(v*u¯)/dt = dv/dt*u¯ + v*du¯/dt.

Полученное в правом равенстве первое слагаемое называется тангенциальным ускорением. Скорость связана с ним тем фактом, что она количественно определяет изменение абсолютного значения величины v¯, не принимая во внимание ее направление.

Второе слагаемое — это нормальное ускорение. Оно количественно описывает изменение вектора скорости, не принимая во внимание изменение ее модуля.

Если обозначить как at и an тангенциальную и нормальную составляющие полного ускорения a, тогда модуль последнего можно вычислить по формуле:

Связь тангенциального ускорения и скорости

Соответствующую связь описывают кинематические выражения. Например, в случае движения по прямой с постоянным ускорением, которое является тангенциальным (нормальная составляющая равна нулю), справедливы выражения:

В случае движения по окружности с постоянным ускорением эти формулы так же справедливы.

Таким образом, какой бы ни была траектория перемещения тела, тангенциальное ускорение через тангенциальную скорость рассчитывается, как производная по времени от ее модуля, то есть:

Например, если скорость изменяется по закону v = 3*t3 + 4*t, тогда at будет равно:

at = dv/dt = 9*t2 + 4.

Скорость и нормальное ускорение

Запишем в явном виде формулу для нормальной компоненты an, имеем:

an¯ = v*du¯/dt = v*du¯/dl*dl/dt = v2/r*re¯

Где re¯ — единичной длины вектор, который к центру кривизны траектории направлен. Это выражение устанавливает связь тангенциальной скорости и нормального ускорения. Видим, что последнее зависит от модуля v в данный момент времени и от радиуса кривизны r.

Нормальное ускорение появляется всегда, когда изменяется вектор скорости, однако оно равно нулю, если этот вектор сохраняет направление. Говорить о величине an¯ имеет смысл только тогда, когда кривизна траектории является конечной величиной.

Выше мы отмечали, что при движении по прямой линии нормальное ускорение отсутствует. Однако в природе существует тип траектории, при движении по которой an имеет конечную величину, а at = 0 при |v¯| = const. Этой траекторией является окружность. Например, вращение с постоянной частотой металлического вала, карусели или планеты вокруг собственной оси происходит с постоянным нормальным ускорением an и нулевым тангенциальным ускорением at.

§ 1.27. Тангенциальное, нормальное и полное ускорения

Ускорение при неравномерном криволинейном движении

Пусть в некоторый момент времени t точка занимает положение А (рис. 1.83, а) и имеет скорость v1, a спустя малое время Δt точка переместилась в положение В1 приобретя скорость v2.

Разложим вектор изменения скорости Δ на составляющие Δτ и Δn (рис. 1.83, б). Первая составляющая направлена по скорости 1 т. е. по касательной к траектории, проведенной в точке А. Она называется тангенциальной (касательной) составляющей вектора Δ. Составляющая Δn1. Поэтому Δn называется нормальной составляющей приращения скорости Δ. По правилу сложения векторов

Δ = Δτ + Δn.

Разделим почленно это равенство на Δt и перейдем к пределу при стремлении Δt -» 0:

Каждое слагаемое этого равенства есть составляющая ускорения (см. § 1.15). Левая часть равенства (1.27.1) является полным ускорением точки. Первое слагаемое в правой части называется тангенциальным (касательным) ускорением, второе слагаемое — уже знакомое нам нормальное ускорение.

Тангенциальное ускорение направлено по касательной к траектории, так как t ↑↑ . При ускоренном движении точки (модуль скорости возрастает) касательное ускорение имеет то же направление, что и скорость. При замедленном движении оно направлено противоположно скорости. Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение ап перпендикулярно скорости и характеризует быстроту изменения направления скорости.

Полное ускорение точки равно сумме тангенциального и нормального ускорений:

На рисунке 1.84, а изображен случай ускоренного движения, а на рисунке 1.84, б — замедленного движения точки.

Модуль нормального ускорения

Мы нашли, как направлены тангенциальное и нормальное ускорения. Выражение для модуля нормального ускорения при движении по окружности радиусом r нам известно:

Если движение происходит вдоль произвольной кривой, то под r надо понимать радиус кривизны траектории в данной точке. Выясним, что такое радиус кривизны кривой линии в точке. Выберем на кривой АВ вблизи точки М с обеих сторон от нее еще две точки: К и L (рис. 1.85). Через три точки К, М и L можно провести единственную окружность. Если точки К и L приближать к точке М, каждый раз проводя через эти три точки окружность, то мы получим серию окружностей разных радиусов, дуги которых вблизи точки М все меньше и меньше будут отличаться от кривой АВ.

В пределе, когда точки К и L сколь угодно близко подходят к точке М, радиус проходящей через них окружности также стремится к предельному значению. Это предельное значение радиусов окружностей и называется радиусом кривизны кривой АВ в точке М.

Модуль тангенциального и полного ускорений

Модуль тангенциального ускорения равен

где dv — приращение модуля скорости за бесконечно малый интервал времени dt. Модуль полного ускорения а. точки можно найти по теореме Пифагора (см. рис. 1.84, а, б):

Полное ускорение направлено по секущей в сторону вогнутости траектории.

Классификация движений

По значениям, которые принимают нормальное и тангенциальное ускорения, можно классифицировать различные движения точки.

Если аn = 0, то при любых значениях скорости движение точки происходит по прямой линии. Эту прямую можно рассматривать как окружность бесконечно большого радиуса (г —> ∞).

Если аt = 0 и аn = 0, но скорость отлична от нуля, то движение по прямой будет равномерным, так как не меняется модуль скорости.

В случае аn ≠ 0 движение точки криволинейное, так как меняется направление скорости. Когда аn ≠ 0, аt = 0, то при движении по кривой линии модуль скорости точки не изменяется — точка движется равномерно.

Если аt = 0, аn = const, то точка совершает равномерное движение по окружности.

И наконец, когда оба ускорения 1 и n отличны от нуля, то точка движется неравномерно по криволинейной траектории.

В заключение заметим, что если точка движется равномерно по криволинейной траектории, то можно вычислить путь, пройденный точкой, по формуле s = vt.

При произвольном движении вектор ускорения направлен внутрь траектории. Тангенциальная составляющая этого вектора характеризует изменение скорости по модулю, а нормальная составляющая — по направлению.

Тангенциальное ускорение — определение, формула и измерение

Общие сведения

Первая лекция для студентов, изучающих кинематику, начинается с рассмотрения тангенциального ускорения, характеризуемого произвольным движением. По сути, рассматривается неравномерное прямолинейное движение общего вида. Кинематика входит в механику и изучает перемещение объектов без учёта сил, вызвавших их движение. Под перемещением понимают изменение положения в пространстве по отношению к другому физическому телу, которое и считается точкой отсчёта. Если изменение положения связать с координатами и временем, то образуется система отсчёта. С её помощью можно определить положение объекта в любой момент.

В кинематике любые процессы принято рассматривать, приняв тело за материальную точку. То есть его размерами и формой пренебрегают. При изменении за какой-то промежуток времени точка проходит путь, описывающийся линией — траекторией. Она является скалярной величиной, а само перемещение — векторной. Движение материальной точки может происходить с разной скоростью и ускорением. Быстроту движения разделяют на среднюю и мгновенную. Вторая определяется как предел, к которому стремится скорость на бесконечно малом временном интервале: v = Δs / Δt (Δt → 0).

Перемещение может происходить с ускорением. Это физическая величина, определяющая изменение быстроты перемещения. Иными словами, показывает изменение положения за единицу времени. Измеряется она в метрах на секунду в квадрате. В кинематике существует три вида ускорения:

  • Тангенциальное — направленное вдоль касательного пути точки в определённый момент. Из-за происхождения слова его часто называют касательным.
  • Нормальное — совпадающее с нормалью траектории изменения положения.
  • Полное — определяющееся суммой тангенциального и нормального ускорений.

Но также используется понятие «вектор среднего ускорения тела». Определяется он как приращение вектора скорости за промежуток времени: aср = Δv / Δt. При этом он будет совпадать по направлению с вектором скорости, то есть направлен в сторону вогнутости траектории.

Угловое ускорение

Если имеется какая-то точка, находящаяся на вращающемся теле, то скорость её направлена по касательной. Когда движение равномерное, то линейная скорость связана с угловой равенством: v = w * r. А вот ускорение тела будет направлено по радиусу к центру окружности, причём модуль вычисляется как a = v / r либо если это точка на вращающемся теле: a = w2 * r.

В момент, когда тело поворачивается за небольшой промежуток времени на угол дельта фи, угловую скорость можно связать с условием поворота через формулу: w = Δ φ / Δ t. Если тело вращается равномерно, то промежуток времени может быть любым. В ином случае эта величина будет равна мгновенной угловой скорости.

Можно представить, что материальная точка движется неравномерно, то есть изменяется угловая скорость тела. Линейная скорость не будет представлять собой постоянную величину, в отличие от равномерного перемещения. Угол поворота равняется: w = v / r. Так как скорость не может быть константой, то отсюда следует, что и угловая скорость не будет постоянной величиной. Её изменение обозначают Δw. Она равняется разности конечной угловой скорости и начальной: Δw = wк — wн.

Изменение угловой скорости можно разделить на промежуток времени, за который оно поменяло значение: (wк — wн) / Δt. По сути, получается ускорение. Обозначается характеристика буквой эпсилон E и называется угловым ускорением. Измеряется характеристика в радианах на секунду в квадрате. Её смысл заключается в описании физической величины через отношение изменения угловой скорости тела за небольшой промежуток времени к длительности этого промежутка.

Пусть есть дуга окружности с центром. В начальный момент времени у тела есть скорость, направленная по касательной к траектории v0. Через некоторое время точка переместится по окружности на небольшое расстояние. Так как движение неравномерное, модуль скорости изменится v ≠ v0. Для того чтобы найти ускорение тела, нужно воспользоваться следующей формулой: a = Δv / Δt, при этом Δv = v — v0.

Чтобы найти эту разность, нужно воспользоваться правилом треугольника. Для этого следует перенести вектор V0 к V и соединить их линией. Радиус от центра к материальной точке можно обозначить R. Дельта V можно представить, как сумму взаимно перпендикулярных векторов. Один из них будет направленных тангенциально к радиусу, в физике обозначают его Δ Vτ, а другой радиально Δ Vr. В итоге: ΔV = Δ Vτ + Δ Vr.

Вывод формулы

Для доказательства формулы необходимо рассмотреть плоскую систему координат, в которой материальная точка изменяет своё положение по криволинейной траектории. В начальный момент её скорость будет равняться V0. Через некоторое время она изменится и станет V. На графике в плоском измерении это можно представить в виде синусоиды. В определённый момент времени скорость превышает начальную: V > V0. На схеме вектор нулевой скорости направлен из точки t0 вверх по касательной, а вектор V с нижней точки синусоиды параллельно оси ординаты.

Исходя из графика, можно сделать два вывода:

  • Через промежуток времени Δt скорость изменяется как по направлению, так и по модулю: Δt = t — t0.
  • Вектор изменения скорости, определяемый по правилу треугольника, будет равняться разности существующей скорости на данный момент и начальной: Δv = v — v0.

Для того чтобы построить вектор изменения Δv, нужно из конечной точки отрезка V0 провести линию к рассматриваемой точки, характеризующейся во времени скоростью V. Вершины полученного треугольника можно обозначить буквами ABD. Из верхнего угла B на сторону AD можно опустить медиану. Точка пересечения со стороной пусть будет C. Получается, что вектор Δv можно разложить на две составляющие — отрезки BC и СD. Причём медиана равняется Δvn, а изменение по оси ординаты Δvt.

Для разложения необходимо использовать вектор АС, длина которого совпадает с Vo по модулю: |AC| = |AB| = V0. Так как Δvn — результирующий вектор, то его можно вычислить через сумму: Δv = Δvn + Δvt. Причём первый член в равенстве характеризует изменение быстроты за промежуток времени по направлению, а второй — по модулю. Исходя из того, что t не равняется нулю, на него можно разделить левую и правую часть равенства: Δv / Δt = Δvn / Δt + Δvt / Δt. Если дельта-времени стремится к нулю, то формулу можно переписать в виде: lim Δv / Δt = lim Δvn / Δt + lim Δvt / Δt.

Учитывая связь между ускорениями и то, что полное значение состоит из суммы изменения быстроты движения по модулю и направлению, можно утверждать о верности формулы: a = at + an. Так как направление векторов ускорения и скорости всегда совпадают, то последний можно представить, как параметр, состоящий из двух взаимно перпендикулярных компонент:

  • at — тангенциальной составляющей, совпадающей с отрезком V;
  • an — перпендикулярным по отношению расположения V вектором.

Используя теорему Пифагора, можно сказать, что модуль полного ускорения равняется корню квадратному из суммы квадратов тангенциального и нормального ускорения: a = √at 2 + an 2 .

Решение простых примеров

В школьном курсе на уроках физики учащимся для закрепления материала предлагается решить определённый тип задач, используя определение тангенциального ускорения. Это типовые примеры, объясняющие суть характеристики и её применение в реальной практике. Вот некоторые из них.

  1. Вычислить все ускорения точки, лежащей на окружности, через десять секунд после воздействия на диск вращателя. При этом учесть, что радиус окружности составит 20 см, а угол между валом и радиус вектором тела соответствует закону: j =3-t+0.2t 3 . Для решения примера необходимо использовать формулы для нахождения угловой скорости и ускорения. Подставив заданные значения, можно получить: w = d φ / dt = -1 + 0,2 * 3t 2 и e = dw / dt = 0,6 * 2t. Применив формулу связи, легко найти ускорение: at = R * E * (0,6 * 2t) = 1,2 * Rt = 24 м 2 /с. Подставив в формулу нормального ускорения значения, можно вычислить и его an = V 2 / R = R * (0,6 * 10 2 — 1) 2 / 0,2 = 696 м/с 2 . Отсюда полное ускорение будет равняться: a = √ 24 2 + 696 2 = 697 м/с 2 .
  2. Материальное тело перемещается по окружности, имеющей радиус 20 см. При этом тангенциальное ускорение равняется 5 см на секунду в квадрате. Определить, сколько понадобится времени, чтобы ускорения сравнялись и нормальное стало больше тангенциального в два раза. Исходя из условия, можно утверждать, что движение является равноускоренным. Поэтому можно применить формулы: an = V2 / t; at = V / t. Отсюда: t = V / at, а V = √an * R. Подставив второе выражение в первое, получится: t = (√an * R) / at. При равенстве ускорений an = at, будет верной запись: t = √R / at = √20 / 5 = 2 с. Для второго случая an = 2at, поэтому: t = (√2 * 20) / 5 = 2,8 c.

Но не всегда решаемые задания можно решить, обойдясь одной формулой. При этом значения тех или иных величин могут быть довольно сложными для проведения вычислений. В таких случаях есть резон использовать так называемые онлайн-калькуляторы. Это специализированные сайты, выполняющие подсчёт в автоматическом режиме. Из таких сервисов можно выделить: сalc, widgety, webmath. Указанные интернет-решители работают на русском языке, так что вопросов, как с их помощью выполнять расчёты, возникнуть не должно.

Сложная задача

Пусть имеется физическое тело, которое движется, замедляясь по окружности радиусом R так, что в каждый момент времени её тангенциальное и нормальное убыстрение равны друг другу по модулю. Необходимо найти зависимость скорости и полного ускорения от времени и пройденного пути. В начальный момент скорость равняется V0.

Согласно условию, тангенциальное ускорение будет отрицательным, так как точка движется, замедляясь. Для понимания задачи можно изобразить схему движения. Для этого необходимо нарисовать окружность и указать на ней вектор начальной скорости, тангенциального и нормального ускорения. Изобразить вектор полного ускорения как сумму векторов.

Нормальное ускорение можно выразить через скорость и радиус: an = V 2 / R. Затем необходимо записать формулу для тангенциального ускорения: at = dV / dt. Так как они равны, то справедливым будет равенство: V 2 / R = dV / dt. Анализируя уравнение, можно сделать вывод, что так как скорость и радиус положительный, то слева будет стоять величина со знаком плюс. Но, с другой стороны, со временем скорость убывает, поэтому с правой стороны нужно поставить знак минус: V 2 / R = — dV / dt.

Полученное уравнение является дифференциальным и показывает зависимость скорости от времени. Равенство можно преобразовать, умножив на отношение dt / V 2 . В итоге должно получиться выражение: dV / V 2 = — dt / R. Это уравнение можно проинтегрировать. При этом пределами интеграла с левой стороны будет V0 и V, а с правой — 0 и t. Получился обыкновенный степенной интеграл, который будет равняться: 1 / V = dt / R.

Подставив пределы, можно получить равенство: (1 / V) — (1 / V0) = t / R. Из полученной формулы следует выразить скорость: V = (V0 * R) / (R + V0 * t). Поделив числитель и знаменатель на радиус, ответ примет вид: V (t) = V0 / (1 + (V0 * t / R)).

Теперь можно найти тангенциальное убыстрение, так как оно представляет производную от скорости. После взятия производной получится: at = dV / dt = — V02 / R (1 + V0 * t / R)2 = — V2 / R. Отсюда можно написать, что модуль полного ускорения будет равняться: a = √2 *|ar| = (√2 * V2) / R. Осталось найти путь. Он совпадает с длиной дуг и равняется интегралу модуля скорости от времени. После решения должно получиться равенство: S (t) = R * ln (1 + V0 * t / R). Задача решена.

источники:

http://tepka.ru/fizika_10/36.html

http://nauka.club/fizika/tangentsialno%D0%B5-uskoreni%D0%B5.html

Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, скорость – это векторная величина).

Среднее ускорение

Среднее ускорение> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

uskor-01

Рис. 1.8. Среднее ускорение.В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с2, то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

uskor-02

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

v2 > v1

а направление вектора ускорения совпадает с вектором скорости uskor-03

Если скорость тела по модулю уменьшается, то есть

v2 < v1

то направление вектора ускорения противоположно направлению вектора скорости uskor-03 Иначе говоря, в данном случае происходит замедление движения, при этом ускорение будет отрицательным (а < 0). На рис. 1.9 показано направление векторов ускорения при прямолинейном движении тела для случая ускорения и замедления.

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения uskor-05 (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой uskor-06Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

uskor-04

В прошлой статье мы немножко разобрались с тем, что такое механика  и зачем она нужна. Мы уже знаем, что такое система отсчета,  относительность движения и материальная точка. Что ж, пора двигаться дальше!  Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики  и приведем практический пример решения задачи.

Присоединяйтесь к нам в телеграм и получайте ежедневную рассылку с полезной информацией по актуальным студенческим вопросам.

Траектория, радиус-вектор, закон движения тела

Кинематикой занимался еще Аристотель. Правда, тогда это не называлось кинематикой. Затем очень большой вклад  в развитие механики, и кинематики в частности, внес Галилео Галилей, изучавший свободное падение и инерцию тел.

Итак, кинематика решает вопрос: как тело движется. Причины, по которым оно пришло в движение, ее не интересуют. Кинематике не важно, сама поехала машина, или ее толкнул гигантский динозавр. Абсолютно все равно.

Сейчас мы будем рассматривать самую простую кинематику – кинематику точки. Представим, что тело (материальная точка) движется. Не важно, что это за тело, все равно мы рассматриваем его, как материальную точку. Может быть, это НЛО в небе, а может быть, бумажный самолетик, который мы запустили из окна. А еще лучше, пусть это будет новая машина, на которой мы едем в путешествие. Перемещаясь из точки А в точку Б, наша точка описывает воображаемую линию, которая называется траекторией движения. Другое определение траектории – годограф радиус вектора, то есть линия, которую описывает конец радиус-вектора материальной точки при движении.

Радиус-вектор – вектор, задающий положение точки в пространстве.

Для того, чтобы узнать положение тела в пространстве в любой момент времени, нужно знать закон движения тела – зависимость координат  (или радиус-вектора точки) от времени.

Перемещение и путь

Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

Перемещение и путь

 

В системе СИ перемещение и длина пути измеряются в метрах.

Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.

Скорость и ускорение

Средняя скорость – векторная физическая величина, равная отношению вектора перемещения к промежутку времени, за которое оно произошло

Скорость и ускорение

А теперь представим, что промежуток времени уменьшается, уменьшается, и становится совсем коротким, стремится к нулю. В таком случае о средней скорости говорить на приходится, скорость становится мгновенной. Те, кто помнит основы математического анализа, тут же поймут, что в дальнейшем нам не обойтись без производной.

Мгновенная скорость – векторная физическая величина, равная производной  от радиус вектора по времени. Мгновенная скорость всегда направлена по касательной к траектории.

Мгновенная скорость формула

В системе СИ скорость измеряется в метрах в секунду

Если тело движется не равномерно и прямолинейно, то у него есть не только скорость, но и ускорение.

Ускорение (или мгновенное ускорение) – векторная физическая величина, вторая производная от радиус-вектора по времени, и, соответственно, первая производная от мгновенной скорости

Мгновенное ускорение формула

Ускорение показывает, как быстро изменяется скорость тела. В случае прямолинейного движения, направления векторов скорости и ускорения совпадают. В случае же криволинейного движения, вектор ускорения можно разложить на две составляющие: ускорение тангенциальное, и ускорение нормальное.

Тангенциальное ускорение показывает, как быстро изменяется скорость тела по модулю и направлено по касательной к траектории

Тангенциальное ускорение формула

Нормальное же ускорение характеризует быстроту изменения скорости по направлению. Векторы нормального и тангенциального ускорения взаимно перпендикулярны, а вектор нормального ускорения направлен к центру окружности, по которой движется точка.

Нормальное ускорение как найти

Здесь R – радиус окружности, по которой движется тело.

Векторы нормального, тангенциального и полного ускорения

 

Закон равноускоренного движения

Рассмотрим далее закон равноускоренного движения, то есть движения с постоянным ускорением. Будем рассматривать простейший случай, когда тело движется вдоль оси x.

Закон равноускоренного движения

Здесь  — x нулевое- начальная координата. v нулевое — начальная скорость. Продифференцируем по времени, и получим скорость

Закон равноускоренного движения

Производная по скорости от времени даст значение ускорения a, которое является константой.

Пример решения задачи

Теперь, когда мы рассмотрели физические основы кинематики, пора закрепить знания на практике и решить какую-нибудь задачу. Причем, чем быстрее, тем лучше.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Кинематика пример решения задачи

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Экзамен по физике

  1. Перемещение.
    Скорость. Ускорение. Нормальное,
    тангенциальное и полное ускорения.

Перемеще́ние (в кинематике) —
изменение местоположения физического
тела в пространстве относительно
выбранной системы
отсчёта.
Также перемещениемназывают вектор,
характеризующий это изменение. Обладает
свойством аддитивности.

Ско́рость (часто
обозначается ,
от англ. velocity или фр. vitesse) — векторная физическая величина,
характеризующая быстротуперемещения и
направления движения материальной
точки в
пространстве относительно выбранной системы
отсчёта (например, угловая
скорость).

Ускоре́ние (обычно
обозначается ,
в теоретической
механике )
— производная скорости по
времени, векторная величина,
показывающая, насколько изменяется
вектор скорости точки
(тела) при её движении за единицу времени
(т.е. ускорение учитывает не только
изменение величины скорости, но и её
направления).

Тангенциальное
(касательное) ускорение
 –
это составляющая вектора ускорения,
направленная вдоль касательной к
траектории в данной точке траектории
движения. Тангенциальное ускорение
характеризует изменение скорости по
модулю при криволинейном движении.

Рис.
1.10. Тангенциальное ускорение.

Направление вектора
тангенциального ускорения τ (см.
рис. 1.10) совпадает с направлением линейной
скорости или противоположно ему. То
есть вектор тангенциального ускорения
лежит на одной оси с касательной
окружности, которая является траекторией
движения тела.

Нормальное ускорение

Нормальное
ускорение
 –
это составляющая вектора ускорения,
направленная вдоль нормали к траектории
движения в данной точке на траектории
движения тела. То есть вектор нормального
ускорения перпендикулярен линейной
скорости движения (см. рис. 1.10). Нормальное
ускорение характеризует изменение
скорости по направлению и обозначается
буквой n.
Вектор нормального ускорения направлен
по радиусу кривизны траектории.

Полное ускорение

Полное
ускорение
 при
криволинейном движении складывается
из тангенциального и нормального
ускорений по правилу
сложения векторов и
определяется формулой:

(согласно теореме
Пифагора для прямоугольно прямоугольника).

Направление полного
ускорения также определяется правилом
сложения векторов:

=
τ
+
n

  1. Сила. Масса. Законы
    Ньютона.

Си́ла — векторная физическая
величина,
являющаяся мерой интенсивности
воздействия на данное тело других
тел, а также полей.
Приложенная к массивному телу
сила является причиной изменения
его скорости или
возникновения в нём деформаций.[1]

Ма́сса (от греч. μάζα) —
скалярная физическая
величина,
одна из важнейших величин в физике.
Первоначально (XVII—XIX
века)
она характеризовала «количество
вещества» в физическом объекте, от
которого, по представлениям того времени,
зависели как способность объекта
сопротивляться приложенной силе
(инертность),
так и гравитационные свойства — вес.
Тесно связана с понятиями «энергия»
и «импульс»
(по современным представлениям —
масса эквивалентна энергии
покоя).

Первый закон Ньютона

Существуют
такие системы
отсчёта,
называемые инерциальными,
относительно которых материальная
точка при
отсутствии внешних воздействий сохраняет
величину и направление
своей скорости неограниченно
долго.

Второй закон Ньютона

В инерциальной
системе отсчёта ускорение, которое
получает материальная точка, прямо
пропорционально равнодействующей всех
приложенных к ней сил и обратно
пропорционально её массе.

Третий закон Ньютона

Материальные точки
попарно действуют друг на друга с силами,
имеющими одинаковую природу, направленными
вдоль прямой, соединяющей эти точки,
равными по модулю и противоположными
по направлению:

  1. Импульс. Закон
    сохранения импульса. Упругие и неупругие
    удары.

И́мпульс (Количество
движения) — векторная физическая
величина,
характеризующая меру механического
движения тела. В классической механике
импульс тела равен произведению массы m этого
тела на его скорость v,
направление импульса совпадает с
направлением вектора скорости:

.

Зако́н сохране́ния
и́мпульса (Зако́н
сохране́ния количества движения)
утверждает, что векторная сумма импульсов всех
тел (или частиц) замкнутой
системы есть
величина постоянная.

В классической
механике закон
сохранения импульса обычно выводится
как следствие законов Ньютона. Из законов
Ньютона можно
показать, что при движении в пустом
пространстве импульс сохраняется во
времени, а при наличии взаимодействия
скорость его изменения определяется
суммой приложенных сил.

Как и любой из
фундаментальных законов
сохранения,
закон сохранения импульса описывает
одну из фундаментальных
симметрий, — однородность
пространства.

Абсолютно неупругим
ударом называют
такое ударное взаимодействие, при
котором тела соединяются (слипаются)
друг с другом и движутся дальше как одно
тело.

При абсолютно
неупругом ударе механическая энергия
не сохраняется. Она частично или полностью
переходит во внутреннюю энергию тел
(нагревание).

Абсолютно упругим
ударом называется
столкновение, при котором сохраняется
механическая энергия системы тел.

Во многих случаях
столкновения атомов, молекул и элементарных
частиц подчиняются законам абсолютно
упругого удара.

При абсолютно
упругом ударе наряду с законом сохранения
импульса выполняется закон сохранения
механической энергии.

4. Виды механической
энергии. Работа. Мощность. Закон сохранения
энергии.

В механике различают
два вида энергии: кинетическую и
потенциальную. 

Кинетической
энергией называют
механическую энергию всякого свободно
движущегося тела и измеряют ее той
работой, которую могло бы совершить
тело при его торможении до полной
остановки.

Итак, кинетическая
энергия поступательно движущегося тела
равна половине произведения массы этого
тела на квадрат его
скорости:

                                                        

    Потенциальная
энергия –
это механическая энергия системы тел,
определяемая их взаимным расположением
и характером сил взаимодействия между
ними.
      Численно
потенциальная энергия системы в данном
ее положении равна работе, которую
произведут действующие на систему силы
при перемещении системы из этого
положения в то, где потенциальная энергия
условно принимается равной нулю (En =
0). Понятие «потенциальная энергия»
имеет место только для консервативных
систем, т.е. систем, у которых работа
действующих сил зависит только от
начального и конечного положения
системы. 

Так, для груза
весом P,
поднятого на высоту h,
потенциальная энергия будет равна En =
Ph (En =
0 при h =
0); для груза, прикрепленного к пружине, En =
kΔl2 /
2, где Δl —
удлинение (сжатие) пружины, k –
ее коэффициент жесткости (En =
0 при l =
0); для двух частиц с массами m1 и m2,
притягивающимися по закону всемирного
тяготения, ,
где γ –
гравитационная постоянная, r –
расстояние между частицами (En =
0 при r →
∞).

Термин «работа»
в механике имеет два смысла: работа как
процесс, при котором сила перемещает
тело, действуя под углом, отличном от
90°; работа — физическая величина, равная
произведению силы, перемещения и косинуса
угла между направлением действия силы
и перемещением:

А = Fs cos a.

Работа равна нулю,
когда тело движется по инерции (F = 0),
когда нет перемещения (s = 0) или когда
угол между перемещением и силой равен
90° (cos а
= 0).
Единицей работы в СИ служит джоуль (Дж).

1 джоуль — это такая
работа, которая совершается силой 1 Н
при перемещении тела на 1 м по линии
действия силы. Для определения быстроты
совершения работы вводят величину
«мощность».

Мо́щность — физическая
величина,
равная отношению работы,
выполняемой за некоторый промежуток
времени, к этому промежутку времени.

Различают среднюю
мощность за промежуток времени :

и мгновенную
мощность в данный момент времени:

Так как работа
является мерой изменения энергии,
мощность можно определить также как
скорость изменения энергии системы.

В
системе СИ единицей
измерения мощности является ватт,
равный одному джоулю,
делённому на секунду.

Зако́н
сохране́ния эне́ргии —
фундаментальный закон природы,
установленный эмпирически и
заключающийся в том, что
для изолированной физической
системыможет
быть введена скалярная физическая
величина,
являющаяся функцией параметров
системы и называемая энергией,
которая сохраняется с течением времени.
Поскольку закон сохранения энергии
относится не к конкретным величинам и
явлениям, а отражает общую, применимую
везде и всегда, закономерность, то его
можно именовать не законом,
а принципом сохранения
энергии.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как найти нормальное ускорение зная тангенциальное

Содержание

  • Этот видеоурок доступен по абонементу
  • На этом уроке мы вспомним, что такое ускорение. Рассмотрим две его составляющие, тангенциальную и нормальную, и пример нахождения этих составляющих. А также решим две задачи из сборника для подготовки к Единому государственному экзамену на нахождение радиуса траектории в наивысшей точке.
  • Ускорение. Нормальная и тангенциальная составляющие ускорения
  • Пример нахождения тангенциальной и нормальной составляющей ускорения
  • Задача 1
  • Задача 2
  • Нахождение закона изменения скорости от времени
  • В физике
  • Траектория движения и компоненты полного ускорения
  • Ускорение тангенциальное
  • Ускорение нормальное
  • Ускорение полное, нормальное и тангенциальное
  • Решение задачи

Тангенциальным (касательным) ускорением называют ту составляющую вектора ускорения, которая направлена по касательной к траектории в данной точке траектории движения. Тангенциальное ускорение описывает степень изменения скорости по модулю при совершении криволинейного движения.

Если тело движется по криволинейной траектории, то его скорость направлена по касательной к этой траектории.

Так как направление скорости все время меняется, значит, в таком случае криволинейное движение всегда происходит с ускорением, также, если модуль скорости не меняется.

В большинстве случаев ускорение направлено под некоторым углом к скорости. Составляющую ускорения, которая направлена вдоль скорости, называют тангенциальным ускорением . Тангенциальное ускорение описывает степень изменения скорости по модулю:

Нормальное ускорение – это составляющая ускорения, которая направлена к центру кривизны траектории, то есть она является нормалью (направлена перпендикулярно) к скорости. Нормальное ускорение описывает степень изменения скорости по направлению:

Здесь R – это радиус кривизны траектории в заданной точке.

Тангенциальное и нормальное ускорение всегда имеют перпендикулярное направление, откуда получаем модуль полного ускорения:

.

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы вспомним, что такое ускорение. Рассмотрим две его составляющие, тангенциальную и нормальную, и пример нахождения этих составляющих. А также решим две задачи из сборника для подготовки к Единому государственному экзамену на нахождение радиуса траектории в наивысшей точке.

Ускорение. Нормальная и тангенциальная составляющие ускорения

Механическое движение по характеру подразделяется на поступательное, вращательное и колебательное; по виду траектории – прямолинейное и криволинейное. Также механическое движение можно подразделять по характеру изменения скорости.

Физическая величина, которая определяет быстроту изменения скорости, называется ускорением. Математически ускорение определяется отношением изменения скорости к промежутку времени, за которое оно произошло (производная от скорости по времени):

Рис. 1. Тангенциальная и нормальная составляющие полного ускорения

Тангенциальная составляющая ускорения характеризует быстроту изменения величины (модуля) скорости. Тангенциальное ускорение всегда коллинеарно скорости.

1) Если тангенциальная составляющая ускорения сонаправлена со скоростью, то движение будет ускоренное (см. рис. 2).

Рис. 2. Тангенциальная составляющая ускорения сонаправлена со скоростью

2) Если тангенциальная составляющая ускорения противонаправлена скорости, то движение будет замедленным (см. рис. 3).

Рис. 3. Тангенциальная составляющая ускорения противонаправлена скорости

Нормальная составляющая ускорения характеризует быстроту изменения скорости по направлению. Нормальное ускорение всегда перпендикулярно скорости и направлено к центру по радиусу траектории, по которой движется тело (см. рис. 4).

Рис. 4. Направление нормального ускорения

Величина нормального ускорения связана с радиусом траектории и со скоростью движения следующим соотношением:

При прямолинейном движении тело имеет только тангенциальное ускорение. Нормальное ускорение отсутствует, так как скорость тела по направлению остаётся неизменной (см. рис. 5).

Рис. 5. Прямолинейное движение

При криволинейном движении, как правило, тело имеет тангенциальную и нормальную составляющую ускорения (см. рис. 6).

Рис. 6. Криволинейное движение

Пример нахождения тангенциальной и нормальной составляющей ускорения

Рассмотрим движение тела, брошенного под углом к горизонту (см. рис. 7). Найдём составляющие ускорения в тот момент, когда скорость тела направлена под углом к горизонту.

Рис. 7. Траектория движения тела

Касательная к траектории в точке A – это направление скорости

Рис. 8. Проекции ускорения

На рисунке видно, что тангенциальная составляющая ускорения направлена против скорости, то есть скорость тела в данный момент уменьшается (см. рис. 8). Нормальная составляющая ускорения направлена перпендикулярно скорости, следовательно, скорость в следующий момент наклонится в сторону .

Величины составляющих ускорения находим геометрически.

Рис. 9. Геометрическое определение величины составляющих ускорения

Угол A в треугольнике разложения на составляющие (треугольник выделен жёлтым на рисунке) имеет взаимно перпендикулярные стороны с углом Следовательно, тангенциальная составляющая равна: .

Нормальная составляющая ускорения равна: .

Задача 1

Обод радиусом 1 метр катится по горизонтальной поверхности со скоростью 10 м/с. Найти радиус траектории точки поверхности обода при прохождении наивысшего положения.

Дано: Найти: .

Решение

Рис. 10. Иллюстрация к задаче

На рисунке изображён обод, который катится по горизонтальной поверхности со скоростью Скорость точки A относительно горизонтальной поверхности при движении обода без проскальзывания равна нулю. Это объясняется тем, что она движется вместе с ободом по горизонтали со скоростью Скорости точек в верхней части обода равны: . Эта скорость будет направлена по горизонтали в сторону движения обода.

С центром обода у всех точек, лежащих на её поверхности, связано нормальное ускорение, так как оно направлено перпендикулярно скорости движения точки по окружности в любой момент времени.

Ускорение остаётся неизменным для всех точек поверхности обода, так как при переходе к системе отсчёта, связанной с Землёй, центр обода движется равномерно: .

Тогда для точки

В этой задаче заданное значение начальной скорости было лишним. Избыточные данные часто включают в задания ЕГЭ по физике.

Ответ: .

Задача 2

После удара футбольный мяч за 2 с пролетел 40 м и упал на землю. Чему равен радиус траектории мяча в верхней точке траектории?

Дано: Найти: .

Решение

Рис. 11. Иллюстрация к задаче

На рисунке изображена траектория полёта мяча (см. рис. 11). Точка A – верхняя точка траектории, скорость мяча в которой Скорость в точке A – это горизонтальная составляющая скорости, которая в процессе всего движения остаётся неизменной. Поэтому скорость в точке A равна отношению всего пути, пройденного по горизонтали, ко времени: .

Следовательно, радиус траектории в верхней точке равен: .

Ответ: .

Нахождение закона изменения скорости от времени

Сведения об ускорении необходимы для того, чтобы найти закон изменения скорости от времени. Например, зависимость скорости от времени находится как неопределённый интеграл от ускорения по времени: , где C – постоянная интегрирования.

При равноускоренном движении При

  1. Вопросы в конце параграфа 13 (стр. 46); — Касьянов В.А. Физика. 10 кл. (см. список рекомендованной литературы) (Источник)
  2. Камень брошен со скоростью 20 м/c под углом Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

    В кинематике для однозначного определения характеристик движения тела в любой точке траектории необходимо знать его скорость и ускорение. Зависимость от времени этих величин предоставляет всю необходимую информацию для вычисления пройденного телом пути. Рассмотрим подробнее в статье, что такое ускорение тангенциальное и нормальное ускорение.

    В физике

    Прежде чем рассматривать для механического движения ускорение нормальное и тангенциальное ускорение, познакомимся с самим физическим понятием. Определение ускорения является достаточно простым. В физике под ним понимают характеристику изменения скорости. Последняя является векторной величиной, определяющей быстроту изменения координат движущегося объекта в пространстве. Скорость измеряется в метрах в секунду (расстояние, пройденное за единицу времени). Если ее обозначить символом v¯, тогда математическое определение ускорения a¯ будет выглядеть так:

    Это равенство определяет так называемое полное мгновенное ускорение. Мгновенным оно называется потому, что характеризует изменение скорости лишь в данный момент времени.

    Если движение является равноускоренным, то есть в течение длительного времени ускорение не меняет своего модуля и направления, тогда можно записать следующую формулу для его определения:

    Где Δt>>dt. Величина a¯ здесь называется средним ускорением, которое в общем случае отличается от мгновенного.

    Ускорение измеряется в системе СИ в метрах в квадратную секунду (м/с 2 ).

    Траектория движения и компоненты полного ускорения

    Чаще всего тела в природе движутся по кривым траекториям. Примерами такого перемещения являются: вращение по своим орбитам планет, параболическое падение камня на землю, поворот автомобиля. В случае криволинейной траектории в любой момент времени скорость направлена по касательной к рассматриваемой точке траектории. Как при этом направлено ускорение?

    Чтобы ответить на поставленный выше вопрос, запишем скорость тела в следующей форме:

    Здесь ut¯ — вектор скорости единичный, индекс t означает, что он направлен по касательной к траектории (тангенциальная компонента). Символом v обозначен модуль скорости v¯.

    Теперь, следуя определению ускорения, можно провести дифференцирование скорости по времени, имеем:

    Таким образом, полное ускорение a¯ представляет собой векторную сумму двух компонент. Первое и второе слагаемое называются нормальным и тангенциальным ускорением точки. Подробнее рассмотрим каждую из этих компонент.

    Ускорение тангенциальное

    Запишем еще раз формулу для этой компоненты полного ускорения:

    Это выражение позволяет описать свойства величины at¯:

    • Она направлена точно так же, как и сама скорость или противоположно ей, то есть по касательной к траектории. Об этом свидетельствует элементарный вектор ut¯.
    • Она характеризует изменение скорости по абсолютной величине, что отражает множитель dv/dt.

    Эти свойства позволяют сделать важный вывод: для прямолинейного движения полное и тангенциальное ускорения — это одна и та же величина. В случае криволинейного перемещения полное ускорение всегда больше по модулю, чем тангенциальное. Когда рассматривают физические задачи на прямолинейное равноускоренное движение, то ведут речь именно об этой компоненте ускорения.

    Ускорение нормальное

    Рассматривая тему скорости, ускорения тангенциального и ускорения нормального, дадим характеристику последней величине. Запишем формулу для нее:

    Чтобы записать явно правую часть равенства, воспользуемся следующими соотношениями:

    Здесь dL — это пройденный телом путь за промежуток времени dt, r — радиус кривизны траектории. Первое выражение соответствует определению скорости, второе равенство следует из геометрических соображений. Пользуясь этими формулами, получаем конечное выражение для нормального ускорения:

    То есть величина an¯ не зависит от изменения скорости, как тангенциальная компонента, а определяется исключительно ее модулем. Нормальное ускорение вдоль нормали к данному участку траектории направлено, то есть к центру кривизны. Например, во время движения по окружности вектор an¯ направлен к ее центру, поэтому нормальное ускорение называют часто центростремительным.

    Если за изменение абсолютной величины скорости ответственно ускорение тангенциальное, то нормальная компонента ответственна за изменение вектора скорости, то есть она определяет траекторию перемещения тела.

    Ускорение полное, нормальное и тангенциальное

    Разобравшись с понятием ускорения и с его компонентами, приведем теперь формулу, которая позволяет определить полное ускорение. Поскольку рассмотренные компоненты направлены под углом 90 o друг к другу, то для определения абсолютной величины их векторной суммы можно использовать теорему Пифагора. Формула для полного ускорения имеет вид:

    Направление величины a¯ можно определить по отношению к вектору любой из компонент. Например, угол между a¯ и an¯ вычисляется так:

    Учитывая приведенную выше формулу для модуля a¯, можно сделать вывод: при равномерном движении по окружности полное ускорение совпадает с центростремительным.

    Решение задачи

    Пусть тело движется по окружности радиусом 1 метр. Известно, что его скорость изменяется по следующему закону:

    Необходимо определить ускорение тангенциальное и нормальное ускорение в момент t = 4 секунды.

    Для тангенциального имеем:

    Для того чтобы найти модуль ускорения нормального, сначала следует вычислить значение скорости в заданный момент времени. Имеем:

    Теперь можно воспользоваться формулой для an:

    Таким образом, мы определили все величины, которые требовалось найти для решения задачи.

Понравилась статья? Поделить с друзьями:
  • Как найти концентрацию сахара в сиропе
  • Мужчина тиран как исправить
  • Как составить формулу соединения с хлором калия
  • Как составить концепцию продукта
  • Как найти радостное число