Как найти полную емкость конденсаторов

Расчёт ёмкости конденсатора

Содержание

  • 1 Конденсатор
  • 2 Емкость
  • 3 Зависимость
  • 4 Расчет
    • 4.1 Плоский конденсатор
    • 4.2 Электроемкость
    • 4.3 Сферический конденсатор
    • 4.4 Цилиндрический
  • 5 Проверка
  • 6 Заключение
  • 7 Видео по теме

Конденсаторы нашли в наше время очень широкое применение в электронике и электротехнике, ведь они являются основными элементами большинства электрических цепей и схем. Постараемся подробно в данной статье рассказать — что такое электроемкость конденсатора. Так же будут приведены применяемые формулы расчета, описаны различные виды таких устройств и рассказано об их маркировке. Кроме того будет затронуто влияние различных факторов на емкость конденсатора.

Конденсаторы

Конденсатор

Прежде чем разобраться с тем, что такое емкость простейшего конденсатора, необходимо определиться, что из себя представляет этот электроэлемент. Конденсатором является радиоэлектронная деталь, которая может накапливать и отдавать определенную порцию электрического заряда. Состоит устройство из следующих элементов:

  1. Корпуса. Зачастую выполняется из алюминия. По форме он может быть плоским, сферическим и цилиндрическим.
  2. Обкладок (2 и более). Их делают из металлических пластинок или фольги.
  3. Диэлектрической прокладки. Устанавливается между обкладками и служит в качестве изолятора.
  4. Двух или более выводных контактов для подключения устройства в электроцепь.

Устройство конденсатора

Работает такой накопитель электрического заряда следующим образом.

  1. В момент подключения элемента к источнику электрического тока, он выступает в роли проводника. В этот момент электроток имеет максимальное значение, а напряжение — минимальное.
  2. На обкладках элемента начинают скапливаться положительные и отрицательные заряды (электроны и ионы). Таким образом происходит зарядка самого устройства. На момент заряда сила электротока постепенно уменьшается, а напряжение наоборот — увеличивается.
  3. После того как количество заряда в конденсаторе станет больше допустимого предела, он разряжается и процесс опять начинает повторяться циклически.

Основой работоспособности данного устройства является его емкость. Именно от этого параметра зависит время накопления заряда и общая «вместимость» устройства. О том, как на схемах обозначается простейший конденсатор, поможет понять следующий рисунок ниже.

Обозначение конденсатора на схеме

Электрическая емкость, как и сами конденсаторы, нашли широкую область применения. Их используют в качестве:

  1. Частотных фильтров.
  2. Источника импульсов для различной фотоаппаратуры.
  3. Сглаживателей пульсирующих токов в выпрямителях.
  4. Фазосдвигающих элементов для электрических двигателей.

Применение конденсаторов в различных сферах основано именно на способности устройства накапливать электрический заряд. В более сложной электроаппаратуре эти устройства используются для бесперебойного поддержания определенного напряжения в разных накопителях данных.

Емкость

Емкостью конденсатора является физическая величина, которая определяет отношение между накопленным зарядом на обкладках и разностью потенциалов между ними.

В системе «СИ» емкость конденсатора и ее единица измерения — Фарад. В формулах для ее обозначения используется буква Ф (F). Однако емкость конденсатора редко измеряется в Фарадах, потому что это довольно большая величина. Чаще всего применяют ее кратные и дольные значения.

Кратные и дольные величины емкости

Значение электроемкости конденсатора всегда можно найти в маркировке устройства, которая нанесена на его корпус.

Маркировка конденсаторов

На схеме элемент обозначается буквой «С». Обозначение емкости является обязательным условием, ведь это позволит упростить процесс подбора необходимой электродетали для схемы.

Зависимость

Благодаря приведенному ранее описанию, мы узнали — что такое емкость. Далее попытаемся разобраться, от чего зависит эта характеристика. Емкость конденсатора зависит от расстояния между обкладками, их площади, а так же от самого материала диэлектрика. Благодаря этому можно сказать, от чего зависит емкость устройства: она прямопропорциональна площади пластины конденсатора и обратно пропорциональна расстоянию между пластинами.

Рассмотрим, как найти данную величину. Для плоского конденсатора формула расчета емкости выглядит следующим образом:

Формула плоского конденсатора

Зависимость способности устройства накапливать заряд от площади его обкладок и толщины диэлектрической прослойки так же указывает на то, что на данную величину оказывают влияние и общие размеры элемента.

Расчет

Расчет емкости конденсатора делается по довольно простой формуле:

Расчет емкости через заряд и разность потенциалов

В этой формуле:

  1. q — величина заряда, накопленного конденсатором.
  2. φ1−φ2 — разница потенциалов между его обкладками.

Данное выражение помогает довольно легко рассчитать емкость любого плоского конденсатора. Как и говорилось ранее в статье, этот величина электроёмкости конденсаторов всегда зависит от его геометрических размеров.

Плоский конденсатор

Отличительная особенность плоского конденсатора — наличие двух параллельно расположенных обкладок. Такие устройства могут иметь квадратную, круглую или прямоугольную форму.

Плоские конденсаторы

Рассмотрим далее, как определить емкость данного вида конденсаторов. Найти емкость такого типа конденсаторов всегда поможет следующая формула:

Формула емкости плоского конденсатора

Электроемкость

Зачастую применение конденсаторов подразумевает подключение в цепь сразу нескольких таких элементов. Благодаря этому можно увеличить общую емкость. Формула для определения электроемкости плоского конденсатора при параллельном подключении выглядит следующим образом:

Параллельное соединение конденсаторов

Определение общей емкости для такой электроцепи делается следующим образом: C=C1+C2

Величина заряда и напряжение для такой схемы соединения определяется следующим образом:

qобщ=q1+q2

Uобщ=U1=U2

Определить емкость конденсатора для последовательного соединения элементов позволит формула:

Последовательное соединение конденсаторов

То есть в этом случае общую электроемкость плоского конденсатора находят с помощью выражения:

1/Cобщ=1/C1+1/C1

Благодаря данным выражениям найдем общее напряжение и определим величину заряда для последовательного соединения элементов:

qобщ=q1=q2

Uобщ=U1+U2

Емкость конденсатора и применяемые формулы расчетов для различных вариантов соединения плоских устройств приведены на рисунке ниже. Можно сказать, что она очень наглядная и удобная для использования:

Особенности соединения конденсаторов

Сферический конденсатор

Сферическое устройство имеет две обкладки в форме концентрических сфер, между которыми расположен диэлектрик. Емкость сферического конденсатора можно определить следующим образом:

Емкость сферического конденсатора

В данном выражении значение «4π» определяет коэффициент рассеивания зарядов на поверхности сферических плоскостей.

Расчет емкости сферического конденсатора можно сделать по формуле для плоского устройства в том случае, если зазор по сравнению с радиусом сферы имеет довольно маленькое значение.

Цилиндрический

Цилиндрическое устройство немного схоже с ранее описанным сферическим. В них применяются схожие по форме обкладки. Они имеют так же круглую форму, а значит на расчет емкости цилиндрического устройства так же будет влиять такой параметр, как радиус обкладок. Отличием заключается только в самой вытянутой форме пластин цилиндрического конденсатора. Емкость цилиндрического конденсатора определяется по формуле:

Емкость цилиндрического конденсатора

Сферические и цилиндрические типы элементов сильно зависимы от толщины слоя диэлектрика. Чем он толще, тем меньше будет объем заряда, а значит у него повысится устойчивость к воздействию пробивного напряжения.

Проверка

Как отмечалось ранее, емкость устройства проставляется на его корпусе. Проверить паспортную величину и имеющуюся емкость устройства можно при помощи тестера с режимом «СХ». Например, для этого подойдут популярные модели M890D, AM-1083, DT9205A, UT139C, другие. Далее надо будет:

  1. Выпаять и разрядить устройство. Разрядка проводится строго изолированным металлическим предметом.
  2. Вставить ножки конденсатора в пазы «СХ», соблюдая полярность.
  3. Прибор отобразит на табло результат измерений. Его нужно будет сравнить с тем, который прописан в маркировке на его корпусе. Если значения между собой сильно отличаются, то это говорит о том, что элемент неисправный и требует замены.

Проверка кондесатора мультиметром

Если мультиметр показал наличие бесконечной емкости, то это говорит о коротком замыкании внутри корпуса устройства и оно так же признается неисправным, требующим замены. Кроме того неисправность всегда можно определить визуально по трещинам или вздутию корпуса.

Заключение

В статье было описано — что такое конденсатор, как определить его емкость, от чего зависит этот параметр и основные формулы для расчета емкости различных типов таких устройств. Устройства всегда имеют на корпусе специальную маркировку, поэтому довольно просто выбрать наиболее подходящий по значению накопитель электрозаряда. Кроме того был приведен способ проверки устройства, который позволяет определить возможные его неисправности.

Видео по теме

Содержание

  1. От чего зависит и в чем измеряется емкость конденсатора
  2. Как узнать емкость конденсатора
  3. По маркировке
  4. Мультиметром
  5. Осциллографом
  6. Формулы для расчета емкости
  7. Электроемкость плоского конденсатора
  8. Электроемкость сферического конденсатора
  9. Электроемкость цилиндрического конденсатора
  10. Как изменится емкость при параллельном и последовательном соединении

Конденсатор – пассивный электронный компонент, главной характеристикой которого является емкость. Предназначен в основном для накопления энергии, разделения цепей постоянного тока, фильтрации помех, создания резонансных цепей и т.п. Чтобы применение конденсаторов на практике было осознанным, следует ознакомиться с их основными параметрами, методами измерения и изменения емкости.

От чего зависит и в чем измеряется емкость конденсатора

Конденсатор в общем случае состоит из двух проводящих обкладок, разделенных диэлектриком. Если к обкладкам приложить напряжение, такое устройство запасает электрическую энергию путем накопления заряда. (говорят, что конденсатор заряжается). Количественно запасенная конденсатором электрическая энергия выражается формулой Как рассчитывается электроемкость конденсатора, где W – величина энергии, U – напряжение между обкладками, а С – емкость, то есть, величина, характеризующая способность конденсатора запасать энергию. В целом ёмкость зависит от площади обкладок, расстояния между ними и свойствами разделяющего диэлектрика.

Единицей измерения емкости в СИ является фарад (1 Ф) (устаревшее название – фарада). Для практических целей это слишком большая единица. Так, земной шар имеет ёмкость менее 1 Ф, поэтому в технике используют, в основном, дольные единицы:

  • пикофарады – 1 пФ (1 pF) =10-12 Ф;
  • нанофарады – 1 нФ (1 nF) =10-9 Ф;
  • микрофарады – 1мкФ (1 µF) = 10-6 Ф.

Более крупные единицы до недавнего времени не использовались, так как емкости порядка больших дольных единиц были труднодостижимыми. Лишь с появлением ионисторов появилась возможность оперировать величинами порядка единиц и даже десятков фарад.

Как узнать емкость конденсатора

Чтобы использовать конденсатор для практических целей, надо знать его емкость. Выяснить эту величину можно различными способами.

По маркировке

В первую очередь, надо попробовать определить параметры конденсатора по его маркировке. На оксидные конденсаторы, имеющие емкость которых составляет от долей до нескольких тысяч микрофарад, эта характеристика наносится на корпус в виде цифры, обозначающей емкость в микрофарадах, с индексом uF (для отечественных изделий предыдущих годов выпуска после цифры стоит индекс мкФ).

Конденсаторы, обладающие емкостью от единиц пикофарад до единиц микрофарад маркируют тремя цифрами:

  • первые два символа — мантисса;
  • третья цифра – множитель.

Попросту говоря, к первым двум цифрам надо приписать количество нулей, обозначаемое третьей цифрой.

Как рассчитывается электроемкость конденсатора

Конденсатор, маркированный цифрами 473, обладает емкостью 0,047 мкф.

Например, на конденсатор на рисунке нанесено обозначение 473. К цифрам 47 надо приписать три нуля, тогда получится 47000 пФ. Удобнее представить это значение в виде 47нФ или 0,047 мкФ.

Такое обозначение применяется не всегда (особенно, на старых типах отечественных изделий). Иногда на корпусе наносят явное значение ёмкости с единицей измерения.

Как рассчитывается электроемкость конденсатора

Явное значение ёмкости и единицы измерения

Но и единицу измерения указывают не всегда. Принцип таков:

  • если нет множителя или не указана единица, считается, что ёмкость в пикофарадах;
  • если есть множитель, он указывается одной буквой (n – нанофарады, µ — микрофарады и т.п.).

На зарубежных конденсаторах выпуска до 70-х годов можно встретить обозначение µµF. Так маркировалась ёмкость в пикофарадах («микро-микрофарады»).

Если емкость неизвестна, надпись но корпусе отсутствует или есть сомнения, лучше провести измерения одним из известных способов.

Как рассчитывается электроемкость конденсатора

Конденсаторы ёмкостью 47 пФ (слева) и 100 нФ (справа)

Мультиметром

Как рассчитывается электроемкость конденсатора

Измерение параметров конденсатора мультиметром

Сделать это можно, например, с помощью цифрового тестера. Многие современные мультиметры имеют функцию измерения емкости конденсаторов. Надо всего лишь выбрать соответствующий режим, обычно обозначаемый символом конденсатора или буквами Cx, и подключить конденсатор к щупам или специально выделенным гнездам. При измерении надо иметь в виду, что:

  1. Нижний предел измеряемой величины довольно большой, и для большинства распространенных приборов составляет не менее 1000 пФ.
  2. Измерительные провода со щупами имеют собственную ёмкость (до 100 пФ), и ее надо учитывать при измерениях.

Поэтому тестеры, у которых для измерения ёмкости предназначен отдельный выход, измеряют параметры более точно.

Чтобы обмерить конденсатор с меньшей ёмкостью, лучше воспользоваться специализированным тестером (можно приобрести на интернет-площадках, расположенных в Юго-Восточной Азии). Они позволяют измерять ёмкость от десятков или даже единиц пикофарад.

Как рассчитывается электроемкость конденсатора

Замер с помощью специального тестера

Осциллографом

Если есть два резистора – один с известным сопротивлением R, а другой с неизвестным Rx, их можно соединить последовательно (сделать делитель напряжения), подать на него напряжение, и измерить падение на каждом элементе или на общей цепи. Измерения можно провести тестером в режиме вольтметра. Тогда Rx можно вычислить по одной из формул, указанных на рисунке.

Как рассчитывается электроемкость конденсатора

Определение сопротивления резистора путем сравнения падения напряжения с эталонным элементом

Известно, что конденсатор обладает сопротивлением переменному току, которое зависит от частоты по формуле Xc=1/(2*π*f*C), где:

  • f – частота тока в Герцах;
  • С – ёмкость конденсатора в Фарадах.

Можно сделать подобный делитель из конденсаторов, и сравнить сопротивление неизвестного прибора Xcx с сопротивлением эталонного конденсатора Xc, откуда легко вычислить неизвестную ёмкость: Как рассчитывается электроемкость конденсатора

откуда Как рассчитывается электроемкость конденсатора

Далее несложно найти С.

При этом возникают две проблемы:

  1. Измерения нельзя проводить на постоянном токе – сопротивление реального конденсатора при f=0 близко к бесконечности.
  2. При измерении переменного напряжения достаточно высокой частоты тестер будет давать значительную погрешность.

Поэтому в качестве источника тока надо использовать генератор сигнала высокой частоты (чем меньше предполагаемая ёмкость, тем выше должна быть частота, в противном случае точность замеров будет невысокой), а в качестве измерительного прибора – осциллограф.

Как рассчитывается электроемкость конденсатора

Схема измерения ёмкости с помощью эталонного конденсатора

В качестве эталонного элемента для делителя можно взять резистор с известным сопротивлением (вместо Xc в формулу надо подставить R) или катушку (дроссель) с известной индуктивностью. В этом случае вместо Xc в формулу надо подставить XL (вычисляется, как XL=2* π*f*L).

Если имеется эталонная индуктивность, можно найти емкость, составив колебательный контур. Его надо подключить по указанной схеме, а затем, перестраивая генератор, найти резонансную частоту (при ней амплитуда сигнала на осциллографе будет максимальной). Ёмкость можно рассчитать по известной формуле Томсона Как рассчитывается электроемкость конденсатора.

Как рассчитывается электроемкость конденсатора

Нахождение ёмкости методом резонанса

Мнение эксперта

Становой Алексей

Инженер-электроник. Работаю в мастерской по ремонту бытовых приборов. Увлекаюсь схемотехникой.

Задать вопрос

При подключении щупов генератора и осциллографа к измерительным цепям, надо учитывать влияние кабелей (собственная емкость может составлять несколько десятков пикофарад). Чтобы исключить это влияние, измеряемую цепь лучше подключать к щупам через конденсаторы маленькой емкости.

Формулы для расчета емкости

Хотя общая зависимость ёмкости от геометрических размеров и свойств диэлектрика определена выше, для конкретных типов конденсаторов удобнее пользоваться приведенными формулами.

Электроемкость плоского конденсатора

Самый распространённый тип конденсатора, применяемый в технике – плоский. Его обкладки состоят из двух параллельных пластин, между которыми находится диэлектрик. Чтобы уменьшить габариты такого прибора, обкладки с диэлектриком между ними сворачивают в рулон или складывают в прямоугольный пакет. Емкость такого конденсатора рассчитывается по формуле Как рассчитывается электроемкость конденсатора, где:

  • С – ёмкость, Ф;
  • S – площадь обкладок, кв.м;
  • d – расстояние между обкладками;
  • ε – диэлектрическая проницаемость диэлектрика;
  • ε0 – электрическая постоянная, равная 8.85*10-12 Кл2/Н*м2.

Очевидно, что емкость тем больше, чем больше площадь обкладок и меньше расстояние между ними. Кроме того, можно выбрать диэлектрик с высоким ε и пропорционально увеличить ёмкость в тех же габаритах.

Как рассчитывается электроемкость конденсатора

Устройство плоского конденсатора

Электроемкость сферического конденсатора

Сферическим конденсатором называется устройство, состоящее из двух проводящих сфер – большой радиусом R1 и малой радиусом R2. Малая сфера вложена в большую. Поверхности сфер служат обкладками. Пространство между сферами может заполняться твердым, жидким диэлектриком или воздухом (воздушный сферический конденсатор). Такие приборы используются для лабораторных исследований (например, для изучения фотоэлектрических явлений).

Как рассчитывается электроемкость конденсатора

Устройство сферического конденсатора

Формула емкости для такого прибора выглядит, как Как рассчитывается электроемкость конденсатора, где:

  • С – ёмкость, Ф;
  • R1 – радиус внутренней сферы;
  • R2 – радиус внешней сферы;
  • ε – диэлектрическая проницаемость диэлектрика;
  • ε0 – электрическая постоянная, равная 8.85*10-12 Кл2/Н*м2.

Очевидно, что зависимость емкости от геометрии подобна плоскому конденсатору. Емкость увеличивается при увеличении площади поверхностей сфер (которые зависят от квадрата радиусов) и уменьшается при увеличении расстояния между обкладками (R2-R1).

Электроемкость цилиндрического конденсатора

У цилиндрического конденсатора обкладки представляют собой два коаксиальных (расположенных на общей оси) цилиндра длиной l каждый с радиусами R1 (меньший) и R2 (больший). Пространство между ними также может быть заполнено либо воздухом, либо другим диэлектриком. Такие приборы используют в масс-спектрометрии и в некоторых типах счетчиков заряженных частиц. Формула для емкости будет выглядеть, как Как рассчитывается электроемкость конденсатора.

Как рассчитывается электроемкость конденсатора

Устройство цилиндрического конденсатора

Здесь также прослеживается зависимость от площади (при росте длины увеличивается площадь обкладок, следовательно, растет емкость) и расстояния между обкладками. При росте отношения R2/R1 расстояние увеличивается, а ёмкость падает.

Как изменится емкость при параллельном и последовательном соединении

В реальных схемах конденсаторы могут быть включены последовательно или параллельно. При этом суммарная емкость будет разной.

Как рассчитывается электроемкость конденсатора

Параллельное включение элементов

Если включить n конденсаторов параллельно, то в этом случае:

  • к каждой ячейке прикладывается одно и то же напряжение (U1=U2=..=Un=U);
  • запасенные в каждом конденсаторе заряды складываются.

Тогда общая емкость равна С=U*q=U*(q1+q2+..+qn)=U*q1+U*q2+..+ U*qn=C1+C2+..+Cn. То есть, при параллельном включении ёмкость батареи равна сумме ёмкостей всех элементов. Это эквивалентно сложению площадей всех пластин.

Батарею можно собрать и последовательно, при этом одна обкладка каждого элемента подключается к выводу соседнего конденсатора, а другая – к выводу другой ячейки. Напряжение подается на свободные выводы крайних элементов.

Как рассчитывается электроемкость конденсатора

Последовательное соединение элементов

При этом действуют следующие соотношения (в качестве примера рассмотрена батарея из трех элементов):

  • заряды –q1 и q2, -q2 и q3 равны, так как обкладки с этими зарядами соединены между собой;
  • заряды q1 и –q1, q2 и –q2, q3 и –q3 равны между собой по модулю, но их знак противоположен.

Заряды каждого конденсатора одинаковы и равны q, но при различной емкости разности потенциалов между обкладками каждого элемента определяются из соотношений:

  • U1=q/ C1;
  • U2=q/ C2;
  • U3= q/ C3.

Следовательно, напряжения на ячейках батареи распределяются пропорционально емкостям. Суммарная емкость равна С=q/(U1+U2+U3), следовательно 1/С=(U1+U2+U3)/q=1/С1+1/С2+1/С3.

Для n элементов, включенных последовательно, выполняется равенcтво:

1/С=1/С1+1/С2+..+1/Сn.

Формула достаточно громоздка, но если последовательная цепь состоит из двух элементов, соотношение приводится к виду С= С1* С2/( С1+ С2).

Как рассчитывается электроемкость конденсатора

Распределение напряжений и зарядов при последовательном соединении

Последовательное соединение на практике обычно применяется не для снижения общей ёмкости, а для уменьшения напряжения на каждом элементе при использовании конденсаторов в высоковольтных цепях.

Разобравшись с факторами, влияющими на ёмкость конденсатора и способами изменения этого параметра, можно научиться анализировать не только пассивные, но и активные (содержащие полупроводниковые приборы) цепи. Это позволит сделать шаг на пути к развитию навыков и повышению квалификации специалиста.

Содержание:

  1. Последовательное соединение конденсаторов
  2. Параллельное соединение конденсаторов
  3. Смешанное соединение конденсаторов
  4. Пример расчета

В данной статье приведены различные схемы соединения конденсаторов, а так же формулы их расчета с примером.

  1. Последовательное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы последовательное соединение конденсаторов будет выполняется следующим образом: второй вывод первого конденсатора соединяется с первым выводом второго конденсатора, второй вывод второго конденсатора, соединяется с первым выводом третьего и так далее. Таким образом мы получим группу (блок) последовательно соединенных конденсаторов с двумя свободными выводами — первым выводом первого конденсатора в блоке и вторым выводом последнего конденсатора, через которые данный конденсаторный блок и подключается в электрическую цепь.

Схема последовательного соединения конденсаторов будет иметь следующий вид:

схема последовательного соединения конденсаторов

Фактически последовательное соединение конденсаторов имеет следующий вид:

последовательное соединение конденсаторов

При данной схеме соединения заряды на конденсаторах будут одинаковы:

Qобщ=Q1=Q2=Q3

где: Q1, Q2, Q3 — соответственно заряд на первом, втором, третьем и т.д. конденсаторах

Напряжение на каждом конденсаторе при такой схеме зависит от его емкости:

U1=Q/C1; U2=Q/C2; U3=Q/C3, где:

  • U1, U2, U3 — соответственно напряжение на первом, втором, третьем конденсаторах
  • C1, C2, C3 — соответственно емкости первого, второго, третьего конденсаторов

При этом общее напряжение составит:

Uобщ=U1+U2+U3+…+Un

Рассчитать общую емкость конденсаторов при последовательном соединении можно по следующим формулам:

  • При последовательном соединении двух конденсаторов:

Собщ=(C1*C2)/(C1+C2)

  • При последовательном соединении трех и более конденсаторов:

1/Собщ=1/C1+1/C2+1/C3+…+1/Cn

  1. Параллельное соединение конденсаторов

Если условно разделить выводы каждого из конденсаторов на первый и второй выводы параллельное соединение конденсаторов будет выполняется следующим образом: первые выводы всех конденсаторов соединяются в одну общую точку (условно — точка №1) вторые выводы всех конденсаторов соединяются в другую общую точку (условно — точка №2). В результате получается группа (блок) параллельно соединенных конденсаторов подключение которой к электрической цепи производится через условные точки №1 и №2.

Схема параллельного соединения конденсаторов будет иметь следующий вид:

схема параллельного соединения конденсаторов

Таким образом параллельное соединение конденсаторов будет иметь следующий вид:

параллельное соединение конденсаторов

При данной схеме напряжение на всех конденсаторах будет одинаково:

U=U1=U2=U3

Заряд же на каждом из конденсаторов будет зависеть от его емкости:

Q1=U*C1; Q2=U*C2; Q3=U*C3

При этом общий заряд цепи будет равен сумме зарядов всех параллельно подключенных конденсаторов:

Qобщ=Q1+Q2+Q3…+…Qn.

Рассчитать общую емкость конденсаторов при параллельном соединении можно по следующей формуле:

Собщ=C1+C2+C3+…+Cn

  1. Смешанное соединение конденсаторов

Схема в которой присутствует две и более группы (блока) конденсаторов с различными схемами соединения называется схемой смешанного соединения конденсаторов.

Приведем пример такой схемы:

схема смешанного соединения конденсаторов

Для расчетов такие схемы условно разделяются на группы одинаково соединенных конденсаторов, после чего расчеты ведутся для каждой группы по формулам приведенным выше.

Для наглядности приведем пример расчета общей емкости данной схемы.

  1. Пример расчета

Условно разделив схему на группы получим следующее:

1 этап расчета емкости при смешанном соединении конденсаторов

Как видно из схемы на первом этапе мы выделили 3 группы (блока) конденсаторов, при этом конденсаторы в первой и второй группе соединены последовательно, а конденсаторы в третьей группе — параллельно.

Произведем расчет каждой группы:

  • Группа 1 — последовательное соединение трех конденсаторов:

1/C1,2,3 = 1/C1+1/C2+1/C3 = 1/5+1/15+1/10=0,2+0,067+0,1 = 0,367 → C1,2,3 = 1/0,367 = 2,72 мкФ

  • Группа 2 — последовательное соединение двух конденсаторов:

С4,5 = (C4*C5)/(C4+C5)= (20*30)/(20+30) = 600/50 = 12 мкФ

  • Группа 3 — параллельное соединение трех конденсаторов:

С6,7,8 = C6+C7+C8 = 5+25+30 = 60 мкФ

В результате расчета схема упрощается:

2 этап расчета емкости при смешанном соединении конденсаторов

Как видно в упрощенной схеме осталась еще одна группа из двух параллельно соединенных конденсаторов, произведем расчет ее емкости:

  • Группа 4 — параллельное соединение двух групп конденсаторов:

С1,2,3,4,5 = C1,2,3+C4,5 = 2,72+12 = 14,72 мкФ

В конечном итоге получаем простую схему из двух последовательно соединенных групп конденсаторов:

3 этап расчета емкости при смешанном соединении конденсаторов

Теперь можно определить общую емкость схемы:

Собщ = (C1,2,3,4,5*C6,7,8)/(C1,2,3,4,5+C6,7,8) = 14,72*60/14,72+60 = 883,2/74,72 = 11,8 мкФ



Была ли Вам полезна данная статья? Или может быть у Вас остались вопросыПишите в комментариях!

Не нашли на сайте ответа на интересующий Вас вопросЗадайте его на форуме! Наши специалисты обязательно Вам ответят.

↑ Наверх

Capacitance — Definition

The ability of a capacitor to store charge is known as its capacitance. In other word, the capacitance can also be defined as the property of a material by virtue of it opposes the any change in voltage applied across it.

Capacitance: Formula

Experimentally, it has been found that, the charge Q stored in a capacitor is directly proportional to the voltage across it, i.e.

$$Qpropto:V$$

$$Q=CV$$

Where, C is a constant and is called as capacitance of the capacitor.

$$Rightarrow:C=frac{Q}{V}$$

Thus, the capacitance (C) of a capacitor can also be defined as the ratio of the charge on the either plate to the voltage across it.

Unit of Capacitance

We have seen that,

$$C=frac{Q}{V}=frac{Coulomb}{Volt}=Farad$$

The SI unit of capacitance is coulomb/volt which is also known as farad and denoted by F.

Equivalent Capacitance

Case 1 – When capacitors are connected in series

By referring the circuit, we can write,

$$V=V_{1}+V_{2}+V_{3}=(frac{Q}{C_{1}}+frac{Q}{C_{2}}+frac{Q}{C_{3}})=Q(frac{1}{C_{1}}+frac{1}{C_{2}}+frac{1}{C_{3}})$$

$$Rightarrow:frac{V}{Q}=(frac{1}{C_{1}}+frac{1}{C_{2}}+frac{1}{C_{3}})$$

$$Rightarrowfrac{1}{C_{r}}=frac{1}{C_{1}}+frac{1}{C_{2}}+frac{1}{C_{3}}$$

From this equation, the total equivalent capacitance of series connected capacitors can be determined.

Case 2 – When capacitors are connected in parallel

By referring the circuit, it can be written,

$$Q=Q_{1}+Q_{2}+Q_{3}=C_{1}V+C_{2}V+C_{3}V=V(C_{1}+C_{2}+C_{3})$$

$$Rightarrow:frac{Q}{V}=(C_{1}+C_{2}+C_{3})$$

$$Rightarrow:C_{r}=C_{1}+C_{2}+C_{3}$$

The above equation gives the total capacitance of parallel connected capacitors.

Capacitance of a Parallel Plate Capacitor

Case 1 – With uniform dielectric medium

Consider a parallel plate capacitor consisting of two plates, each of surface area A. The plates are separated by a distance d. Air is present in between the plates as the dielectric medium.

Therefore, the capacitance of a parallel plate capacitor is,

  • Directly proportional to the surface area (A) of each plate.

  • Inversely proportional to the distance (d) between the plates.

Thus,

$$Capacitance,Cpropto:frac{A}{d}$$

$$Rightarrow:C=varepsilon_{0}frac{A}{d}$$

Where, ε0 is the constant of proportionality and is known as absolute permittivity of vacuum or air and its value is equal to 8.854 × 10−12 F/m .

If there is a uniform dielectric material is placed between the plates of the capacitor, then capacitance of the capacitor becomes,

$$C=varepsilon_{0}varepsilon_{r}frac{A}{d}$$

Where, εr  is the relative permittivity of the dielectric material.

Case 2 – With composite dielectric medium

Consider the space between the plates of the capacitor is occupied by three dielectric materials of thickness d1, d2 and d3 and the relative permittivity εr1, εr2 and εr3 respectively. Then, the capacitance of individual section is given as,

$$C_{1}=varepsilon_{0}varepsilon_{r1}frac{A}{d_{1}}:;:C_{2}=varepsilon_{0}varepsilon_{r2}frac{A}{d_{2}}:and:C_{3}=varepsilon_{0}varepsilon_{r3}frac{A}{d_{3}}$$

As from the figure, the three capacitances are appearing as they are connected in series, so

$$frac{1}{C}=frac{1}{C_{1}}+frac{1}{C_{2}}+frac{1}{C_{3}}=frac{1}{(varepsilon_{0}varepsilon_{r1}frac{A}{d_{1}})}+frac{1}{(varepsilon_{0}varepsilon_{r2}frac{A}{d_{2}})}+frac{1}{(varepsilon_{0}varepsilon_{r3}frac{A}{d_{3}})}$$

$$Rightarrowfrac{1}{C}=frac{d_{1}}{varepsilon_{0}varepsilon_{r1}A}+frac{d_{2}}{varepsilon_{0}varepsilon_{r2}A}+frac{d_{3}}{varepsilon_{0}varepsilon_{r3}A}=frac{1}{varepsilon_{0}A}(frac{d_{1}}{varepsilon_{r1}}+frac{d_{2}}{varepsilon_{r2}}+frac{d_{3}}{varepsilon_{r3}})$$

$$C=frac{varepsilon_{0}A}{(frac{d_{1}}{varepsilon_{r1}}+frac{d_{2}}{varepsilon_{r2}}+frac{d_{3}}{varepsilon_{r3}})}$$

$$In:general,C=frac{varepsilon_{0}A}{sum(frac{d}{varepsilon_{r}})}$$

Capacitance of Multiplate Capacitor

In order to obtain larger capacitance value, multiplate construction is employed. In this construction, the capacitor is built of alternate metal plates and thin sheets of dielectric. The odd numbered of plates are connected together to form one terminal A and even numbered plates are connected together to form the second terminal B.

Refer the figure of a multiplate (in this case 7 plates) capacitor, which is equivalent to 6 capacitors in parallel. Therefore, the total capacitance will be 6 times the capacitance of a single capacitor. If there are n plates, then (n – 1) capacitors will be in parallel. Therefore,

$$Capacitance:of:n-plate:capacitor=(n-1)frac{varepsilon_{0}varepsilon_{r}A}{d}$$

Where,

  • A is the area of each plate,

  • d is the distance between any two adjacent plates.

Capacitance of a Cylindrical Capacitor

A cylindrical capacitor (e.g. a cable) consists of two coaxial cylinders separated by a dielectric medium.

By referring the figure, the capacitance per unit length of cylindrical capacitor is given by,

$$C=frac{2pi:varepsilon_{0}varepsilon_{r}}{log_{e}(frac{D}{d})}:F/m$$

If the length of cable (cylindrical capacitor) is l meters, then the capacitance of the cable is

$$C=frac{2pi:varepsilon_{0}varepsilon_{r}l}{log_{e}(frac{D}{d})}:Farad$$

Формула емкости конденсатора

Если q – величина заряда одной из обкладок конденсатора, а U={varphi }_1-{varphi }_2 – разность потенциалов между его обкладками, то величина C, равная:

    [ C=frac{q}{U}=frac{q}{{varphi }_1-{varphi }_2} qquad(1) ]

называется емкостью конденсатора. Это постоянная величина, которая зависит то размеров и устройства конденсатора.

Рассмотрим два одинаковых конденсатора, разница между которым заключается только в том, что между обкладками одного вакуум (или часто говорят воздух), между обкладками другого находится диэлектрик. В таком случае при равных зарядах на конденсаторах разность потенциалов воздушного конденсатора будет в varepsilon раз меньше, чем между обкладками второго. Значит емкость конденсатора с диэлектриком (C) в varepsilon раз больше, чем воздушного (C_0):

    [C=varepsilon C_0 qquad(2)]

где varepsilon – диэлектрическая проницаемость диэлектрика.

За единицу емкости конденсатора принимают емкость такого конденсатора, который единичным зарядом (1 Кл) заряжается до разности потенциалов, равной одному вольту (в СИ). Единицей емкости конденсатора (как и любой эклектической емкости) в международной системе единиц (СИ) служит фарад (Ф).

Формула электрической емкости плоского конденсатора

Поле между обкладками плоского конденсатора обычно считают однородным. Его однородность нарушается только около краев. При вычислении емкости плоского конденсатора этими краевыми эффектами часто пренебрегают. Это следует делать, если расстояние между пластинами мало в сравнении с их линейными размерами. Для расчета емкости плоского конденсатора применяют формулу:

    [C=frac{varepsilon {varepsilon }_0S}{d} qquad(3)]

где {varepsilon }_0 – электрическая постоянная; S – площадь каждой (или наименьшей) пластины; d – расстояние между пластинами.

Электрическая емкость плоского конденсатора, который содержит N слоев диэлектрика толщина каждого d_i, соответствующая диэлектрическая проницаемость i-го слоя {varepsilon }_i, равна:

    [C=frac{{varepsilon }_0S}{sum^N_{i=1}{frac{d_i}{{varepsilon }_i}}} qquad(4)]

Формула электрической емкости цилиндрического конденсатора

Цилиндрический конденсатор представляется собой две соосных (коаксиальных) цилиндрические проводящие поверхности, разного радиуса, пространство между которыми заполняет диэлектрик. Электрическая емкость цилиндрического конденсатора вычисляется как:

    [C=frac{2pi varepsilon {varepsilon }_0l}{lnleft(frac{R_2}{R_1}right)} qquad(5)]

где l – высота цилиндров; R_2 – радиус внешней обкладки; R_1 – радиус внутренней обкладки.

Формула электрической емкости сферического конденсатора

Сферическим конденсатором называют конденсатор, обкладками которого являются две концентрические сферические проводящие поверхности, пространство между ними заполнено диэлектриком. Емкость такого конденсатора находят как:

    [C=frac{4pi varepsilon {varepsilon }_0R_1R_2}{R_2-R_1} qquad(6)]

где R_1{;R}_2 – радиусы обкладок конденсатора.

Примеры решения задач по теме «Емкость конденсатора»

Понравилась статья? Поделить с друзьями:
  • Как найти пещеры на карте в раст
  • Как на ноутбуке найти корзину удаленных файлов
  • Ssd диск медленно работает как исправить
  • Как найти среднюю ошибку выборочной средней
  • Как правильно составить смету на водопровод