Как найти полную мощность потерь

Определение потерь мощности и электроэнергии в линии и в трансформаторе

При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.

При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.

В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.

Потери мощности в линии.

Потери активной мощности (кВт) и потери реактивной мощности  (кВАр) можно найти по следующим формулам:

Формулы для расчета потери мощности в линии

Формулы для расчета потери мощности в линии

где Iрасч – расчетный ток данного участка линии, А;

Rл – активное сопротивление линии, Ом.

Потери мощности в трансформаторах.

Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:

Определение потерь мощности и электроэнергии в линии и в трансформаторе

Потери активной мощности в трансформаторе

где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают  ?Рх;

?Рх— потери холостого хода трансформатора;

?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают  ?Рк.

?Рк– потери короткого замыкания;

?=S/Sном – коэффициент загрузки трансформатора равен отношению фактической нагрузки трансформатора к его номинальной мощности;

Потери реактивной мощности трансформатора (кВАр) можно определить по следующей формуле:

Потери реактивной мощности в трансформаторе

Потери реактивной мощности в трансформаторе

где ?Qст – потери реактивной мощности на намагничивание, кВАр. ?Qст приравнивают ?.

? – намагничивающая мощность холостого хода трансформатора;

?Qрас – потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке.

Значения ?Рст(?Рх) и ?Роб(?Рк) приведения в каталогах производителей силовых трансформаторов. Значения ?Qст(?Qх) и ?Qрас  определяют по данным каталогов из следующих выражений:

Формулы для расчета потери реактивной мощности

Формулы для расчета потери реактивной мощности

где  – ток холостого хода трансформатора, %;

– напряжение короткого замыкания, %;

Iном – номинальный ток трансформатора, А;

Xтр – реактивное сопротивление трансформатора;

Sном – номинальная мощность трансформатора, кВА.

Потери электроэнергии.

На основании потерь мощности можно посчитать потери электроэнергии. Здесь следует быть внимательными. Нельзя посчитать потери электроэнергии умножив потери мощности при какой либо определенной нагрузке на число часов работы линии. Этого делать не стоит, т.к в течение суток или сезона потребляемая нагрузка изменяется и таким образом мы получим необоснованно завышенное значение.

Чтобы правильно посчитать потери электроэнергии используют метод, основанный на понятиях времени использования потерь и времени использовании максимума нагрузки.

Время максимальных потерь – условное число часов, в течение которых максимальный ток, протекающий в линии, создает потери энергии, равные действительным потерям энергии в год.

Временем использования максимальной нагрузки или временем использования максимума Тмах называют условное число часов, в течение которых линия, работая с  максимальной нагрузкой, могла бы передать потребителю за год столько энергии, сколько при работе по действительному переменному графику. Пусть W(кВт*ч) – энергия  переданная по линии за некоторый промежуток времени,  Рмах(кВт) -максимальная нагрузка, тогда время использования  максимальной нагрузки:

Тмах=W/Рмах

На основании статистических данных для отдельных групп электроприемников были получены следующие значения Тмах:

  • Для внутреннего освещения – 1500—2000 ч;
  • Наружного освещения – 2000—3000 ч;
  • Промышленного предприятия односменного – 2000—2500 ч;
  • Двухсменного – 3000—4500 ч;
  • Трехсменного   – 3000—7000 ч;

Время потерь можно найти по графику, зная Тмах и коэффициент мощности.

Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки

Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки

Теперь зная ? можно посчитать потери электроэнергии в линии и в трансформаторе.

Потери энергии в линии:

Потери энергии в линии

Потери энергии в линии

Потери энергии в трансформаторе:

Потеря энергии в трансформаторе

Потери энергии в трансформаторе

где ?Wатр –общая потеря активной энергии (кВт*ч) в трансформаторе;

?Wртр –общая потеря реактивной энергии (кВАр*ч) в трансформаторе.

Советую почитать:

Расчет потерь мощности в трансформаторах

Потери активной
и реактивной мощности в трансформаторах
и автотрансформаторах разделяются на
потери в стали и потери в меди (нагрузочные
потери). Потери в стали – это потери в
проводимостях трансформаторов. Они
зависят от приложенного напряжения.
Нагрузочные потери – это потери в
сопротивлениях трансформаторов. Они
зависят от тока нагрузки.

Потери активной
мощности в стали трансформаторов – это
потери на перемагничивание и вихревые
токи. Определяются потерями холостого
хода трансформатора
,
которые приводятся в его паспортных
данных.

Потери реактивной
мощности в стали определяются по току
холостого хода трансформатора, значение
которого в процентах приводится в его
паспортных данных:

Потери мощности
в обмотках трансформатора можно
определить двумя путями:

  • по параметрам
    схемы замещения;

  • по паспортным
    данным трансформатора.

Потери мощности
по параметрам схемы замещения определяются
по тем же формулам, что и для ЛЕП:

,

где S
– мощность нагрузки;

U– линейное напряжение на вторичной
стороне трансформатора.

Для трехобмоточного
трансформатора или автотрансформатора
потери в меди определяются как сумма
потерь мощности каждой из обмоток.

Получим выражения
для определения потерь мощности по
паспортным данным двухобмоточного
трансформатора.

Потери короткого
замыкания, приведенные в паспортных
данных, определены при номинальном токе
трансформатора

(7.1)

При любой другой
нагрузке потери в меди трансформатора
равны

(7.2)

Разделив выражение
(7.1) на (7.2), получим

Откуда найдем
:

Если в выражение
для расчета
,
подставить выражение для определения
реактивного сопротивления трансформатора,
то получим:

Таким образом,
полные потери мощности в двухобмоточном
трансформаторе равны:

Если на подстанции
с суммарной нагрузкой S
работает параллельноnодинаковых трансформаторов, то их
эквивалентные сопротивления вn
раз меньше, а проводимости вn
раз больше. Тогда,

Для n
параллельно работающих одинаковых
трехобмоточных трансформаторов
(автотрансформаторов) потери мощности
рассчитываются по формулам:

где Sв,Sс,Sн– соответственно мощности, проходящие
через обмотки высшего, среднего и низшего
напряжений трансформатора.

Приведенные и расчетные нагрузки потребителей

Расчетная схема
замещения участка сети представляет
собой довольно сложную конфигурацию,
если учитывать полную схему замещения
ЛЕП и трансформаторов. Для упрощения
расчетных схем сетей с номинальным
напряжением до 220 кВ включительно вводят
понятие “приведенных”,
“расчетных” нагрузок.

Приведенная к
стороне высшего напряжения нагрузка
потребительской ПС представляет собой
сумму заданных мощностей нагрузок на
шинах низшего и среднего напряжений и
потерь мощности в сопротивлениях и
проводимостях трансформаторов.
Приведенная к стороне высшего напряжения
нагрузка ЭС представляет собой сумму
мощностей генераторов за вычетом
нагрузки местного района и потерь
мощности в сопротивлениях и проводимостях
трансформаторов.

Расчетная нагрузкка
ПС или ЭС определяется как алгебраическая
сумма приведенной нагрузки и половин
зарядных мощностей ЛЕП, присоединенных
к шинам высшего напряжения ПС или ЭС.

Зарядные мощности
определяются до расчета режима по
номинальному, а не реальному напряжению,
что вносит вполне допустимую погрешность
в расчет.

Возможность
упрощения расчетной схемы при использовании
понятий “при-веденных”
и “расчетных” нагрузок показано на
рис. 7.3:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Потери мощности в трансформаторе определяются по формулам:

потери активной мощности

потери реактивной мощности

где — потери холостого хода трансформатора (потери в стали), квт;
— потери к. з. трансформатора (потери в обмотках) при номинальной нагрузке, квт;
— ток холостого хода трансформатора, %;
— падение напряжения в реактивном сопротивлении трансформатора, %;
— номинальная мощность трансформатора, ква;
— коэффициент загрузки трансформатора;

где S — фактическая нагрузка трансформатора, ква.
Формула (9-4) для определения потерь реактивной мощности в трансформаторе может быть представлена в виде:

где — потери реактивной мощности в трансформаторе при холостом ходе (потери на намагничивание), квар:


— потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке, квар:

Падение напряжения в реактивном сопротивлении трансформатора определяется по формуле

где Uк — напряжение к. з. трансформатора, %;
U
r — падение напряжения в активном сопротивлении трансформатора, определяемое из выражения

Для трансформаторов мощностью более 10 Мва можно принять


Некоторые значения величин
для понижающих трансформаторов приведены в табл. 9-2. В табл. 9-2 уровень Б потерь активной мощности холостого хода относится к трансформаторам, в которых использована электротехническая сталь толщиной 0,35 мм марки Э 330 А по ГОСТ 802-58 с жаростойким покрытием и отжигом пластин. В табл. 9-2 даны значения активных и реактивных сопротивлений трансформаторов, приведенные по отношению к номинальному напряжению обмотки ВН.

Таблица 9-2 Технические данные трехфазных двухобмоточных силовых масляных трансформаторов общего назначения (ГОСТ 12022-66)
Номинальная мощность, ква Верхний предел номиналього напряжения обмотки, кв Схема и группа соединений обмоток Потери активной мощности, квт Напряжение к.з., % Ток холостого хода Сопротивления обмоток трансформатора, ом Потери реактивной мощности, квар
холостого хода к.з.
уровень А уровень Б активное реактивное холостого хода к.з.
25 10
10
У/Ун-0
У/Zн-11
0,105
0,105
0,125
0,125
0,6
0,69
4,5
4,7
3,2
3,2
96,0
110
152
152
0,80
0,80
0,95
0,95
40 10
10
У/Ун-0
У/Zн-11
0,15
0,15
0,18
0,18
0,88
1,0
4,5
4,7
3,0
3,0
55,0
62,5
98,1
99,5
1,20
1,20
1,57
1,59
63 10
10
20
20
У/Ун-о
У/Zн-11
У/Ун-0
У/Zн-11
0,22
0,22
0,245
0,245
0,265
0,265
0,29
0,29
1,28
1,47
1,28
1,47
4,5
4,7
5,0
5,3
2,8
2,8
2,8
2,8
32,3
37,0
129
148
63,7
64,8
290
302
1,76
1,76
1,76
1,76
2,53
2,57
2,88
3,00
100 10
10
35
35
У/Ун-0
У/Zн-11
У/Ун-0
У/Zн-11
0,31
0,31
0,39
0,39
0,365
0,365
0,465
0,465
1,97
2,27
1,97
2,27
4,5
4,7
6,5
6,8
2,6
2,6
2,6
2,6
19,7
22,7
241
278
40,5
41,2
759
785
2,60
2,60
2,60
2,60
4,05
4,12
6,19
6,41
160 10
10
10
35
35
35
У/Ун-0
У/Д-11
У/Zн-11
У/Ун-0
У/Д-11
У/Zн-11
0,46
0,46
0,46
0,56
0,56
0,56
0,54
0,54
0,54
0,66
0,66
0,66
2,65
2,65
3,1
2,65
2,65
3,1
4,5
4,5
4,7
6,5
6,5
6,8
2,4
2,4
2,4
2,4
2,4
2,4
10,4
10,4
12,1
127
127
148
26,2
26,2
26,8
481
481
499
3,84
3,84
3,84
3,84
3,84
3,84
6,69
6,69
6,85
10,1
10,1
10,4
250 10
10
10
35
35
35
У/Ун-0
У/Д-11
У/Zн-11
У/Ун-0
У/Д-11
У/Zн-11
0,66
0,66
0,66
0,82
0,82
0,82
0,78
0,78
0,78
0,96
0,96
0,96
3,7
3,7
4,2
3,7
3,7
4,2
4,5
4,5
4,7
6,5
6,5
6,8
2,3
2,3
2,3
2,3
2,3
2,3
5,92
5,92
6,72
72,5
72,5
82,3
17,0
17,0
17,6
310
310
322
7,25
5,75
5,75
5,75
5,75
5,75
10,6
10,6
11,0
15,8
15,8
16,5
400 10
10
10
35
35
У/Ун-0
Ун/Д-11
Д/Ун-11
У/Ун-0
У/Д-11
0,62
0,92
0,92
1,15
1,15
1,08
1,08
1,08
1,35
1,35
5,5
5,5
5,9
5,5
5,5
4,5
4,5
4,5
6,5
6,5
2,1
2,1
2,1
2,1
2,1
3,44
3,44
3,69
42,1
42,1
10,7
10,7
10,6
195
195
8,40
8,40
8,40
8,40
8,40
17,1
17,1
17,0
25,4
25,4
630 10
10
10
10
35
35
У/Ун-0
Ун/Д-11
Д/Ун-11
У/Ун-0
У/Ун-0
У/Д-11
1,42
1,42
1,42
1,42
1,7
1,7
1,68
1,68
1,68
1,68
2,0
2,0
7,6
7,6
8,5
8,5
7,6
7,6
5,5
5,5
5,5
5,5
6,5
6,5
2,0
2,0
2,0
2,0
2,0
2,0
1,91
1,91
2,14
2,14
23,5
23,5
8,52
8,52
8,46
8,46
124
124
12,6
12,6
12,6
12,6
12,6
12,6
33,8
33,8
33,6
33,6
40,2
40,2

Для других номинальных напряжений обмоток сопротивления пересчитываются по формулам:

где U
н — номинальное напряжение обмотки, указанное в табл. 9-2, кв;
— номинальное напряжение обмотки, по отношению к которому пересчитываются сопротивления, кв;
R и X — соответственно активное и реактивное сопротивления трансформатора, определяемые по табл. 9-2, ом.
Потери электроэнергии в сети определяются по формуле

где — наибольшие потери мощности в сети, кет;
— число часов максимальных потерь, определенное в зависимости от годового графика нагрузки.
Потери электроэнергии в трансформаторе определяются по формуле

где tТ — число часов работы трансформатора.
Число часов максимальных потерь, если известен годовой график нагрузки, может быть определено по формуле


где
— сумма произведений квадратов полных нагрузок на годовую продолжительность каждой из них, вычисленная для всего годового графика нагрузок рассматриваемого элемента сети;
S
б — наибольшая полная нагрузка элемента сети. Для типичного графика, имеющего сниженные нагрузки ночью и утренний и вечерний максимумы, число часов максимальных потерь согласно в зависимости от числа часов использования максимума может определяться по табл. 9-7.

Таблица 9-7 Число часов максимальных потерь
Число часов использования максимума 3000 3500 4000 4500 5000
Число часов максимальных потерь 1300 1650 2000 2500 3000
Число часов использования максимума 5500 6000 6500 7000 7500
Число часов максимальных потерь 3650 4300 5000 5700 6450

Пример 9-1.
Определить годовые потери электроэнергии в трансформаторе типа ТМ мощностью 6,3 Мва с напряжением высшей стороны 10 кв, если трансформатор включен постоянно и годовой график его нагрузки представлен на рис. 9-1.
Решение.
Годовые потери электроэнергии в трансформаторе определяем по (9-10).
По справочным данным находим потери активной мощности в трансформаторе при холостом ходе для уровня Б: Δ
Рс=9 квт
и нагрузочные потери (потери к. з.) при номинальной нагрузке трансформатора:
ΔРк.з=46,5 квт
По условию примера годовое число часов работы трансформатора
tТ = 8 760.
Коэффициент загрузки трансформатора при наибольшей нагрузке составляет:

Число часов максимальных потерь определяем из графика на рис. 9-1, подставив в (9-11) значения
нагрузок трансформатора в мегавольт-амперах и соответствующие им продолжительности работы в тысячах часов:

Подставив числовые значения в (9-10), определим годовые потери энергии в трансформаторе:

p157_1_00

Рис. 9-1.

Годовой график нагрузки

Пример 9-2.
На рис. 9-2 представлена схема линии 6 кв с указанием длин участков линии (км) и расчетных (наибольших) нагрузок (Мва). Магистраль АБ выполнена кабелем с алюминиевыми жилами сечением 3X70 мм.кв, а ответвления БВ и БГ — воздушной линией с алюминиевыми проводами сечением 35 мм.кв.
Определить годовые потери электроэнергии в сопротивлениях проводов и кабелей линии, если годовая продолжительность использования максимума нагрузок составляет 3000 ч и график нагрузок является типичным (имеются утренний и вечерний максимумы и снижение нагрузки в ночное время).
Решение.
Наибольшие потери мощности в сопротивлениях проводов и кабелей линии находим по (9-1), в которой значение коэффициента определяется из табл. 9-1:

Удельные сопротивления участков линии находим по табл. 5-1: для алюминиевого кабеля сечением 70 мм.кв — 0,46 ом/км; для алюминиевого провода сечением 35 мм.кв — 0,92 ом/км.
Определяем значение величины N для магистрали АБ:

для ответвлений БВ и БГ

Из (9-1) находим наибольшие потери мощности в сети:

По табл. 9-7 в зависимости от продолжительности использования максимума Т=3000 ч находим значение числа часов максимальных потерь τ=1300. Величину потерь электроэнергии определяем по (9-9):

p157_1_01

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Потери мощности в трансформаторе

КПД трансформатора никогда не достигает 100 %, поскольку в нём всегда присутствуют потери электроэнергии. Потери в трансформаторах принято разделять на два вида: потери в меди (медные витки обмоток) и потери в стали (материал сердечника).
Потери в меди возникают из-за собственного сопротивления медного проводника. Ток, протекая по обмотке, обуславливает некоторое падение напряжения, которое и является потерей мощности. При этом электрическая энергия преобразуется в тепловую, которая разогревает обмотку.

Потери в стали в свою очередь состоят из потерь, вызванных вихревыми токами, и обусловленых циклическим перемагничиванием (гистерезис).

сердечник трансформатора

Величина потерь, вызванных необходимостью циклического перемагничивания определяется в первую очередь качеством стали, из которой сделан сердечник. В сердечнике как бы находится большое количество диполей, которые под действием переменного магнитного поля периодически изменяют своё направление (поворачиваются с периодичностью изменения магнитного поля). В ходе пространственного изменения положения диполей возникают механические силы трения между ними, что вызывает дополнительный нагрев сердечника. Таким образом происходит преобразование магнитной энергии в тепловую (потери мощности на гистерезис).

Чтобы снизить эти потери, применяется ряд мер. Потери, вызванные циклическим перемагничиванием, могут быть уменьшены, если использовать специальный структурированный особым образом магнитомягкий материал для изготовления сердечника (электротехническая сталь). Такой материал обладает большой магнитной проницаемостью, но при этом малой коэрцитивной силой.

Для снижения потерь в меди применяется увеличение сечения проводников обоих обмоток, при этом электросопротивление их уменьшается. С другой стороны, это вызывает увеличение стоимости и веса трансформатора, поэтому достаточным считается такое сечение, при котором не возникает заметного нагрева обмоток.

Чтобы уменьшить вихревые токи, сердечник выполняется не в виде единого монолитного блока, а собирается из множества электроизолированных пластин. Толщина каждой из них может равняться всего нескольким десятым долям миллиметра. Также электрическую проводимость сильно снижает специально вводимый в сталь легирующий элемент — кремний.

Комплексное использование мер по снижению потерь мощности позволяет довести КПД трансформаторов до 85-90%.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

потери электроэнергии в трансформаторах

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

  1. Магнитные.
  2. Электрические.

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Пример_расчета_потерь_в_трансформаторе

7. Расчёт потерь мощности в трансформаторе

Потери мощности в трансформаторах состоят из потерь активной и реактивной мощности.

Потери активной мощности состоят из двух составляющих: потерь, идущих на нагрев обмоток трансформатора, зависящих от тока нагрузки и потерь, идущих на нагревание стали, зависящих от тока нагрузки.

Потери реактивной мощности состоят из двух составляющих: потерь, вызванных рассеянием магнитного потока в трансформаторе, зависящих от квадрата тока нагрузки и потерь, идущих на намагничивание трансформатора, независящих от тока нагрузки, которые определяются током холостого хода.

Расчёт потерь мощности в трансформаторе необходим для более точного выбора сетей высокого напряжения, а также для определения стоимости электроэнергии.

Определяем потери активной мощности в трансформаторе ΔP, кВт, по формуле

где Pкз – потери активной мощности в трансформаторе при проведении опыта короткого замыкания

Рхх – потери активной мощности в трансформаторе при проведении опыта холостого хода, кВт.

ΔP = 7,3 · 0,6 2 +2 = 4,6 кВт.

Рассчитываем потери реактивной мощности в трансформаторе ΔQ, кВар

где Uк.з. – напряжение при опыте короткого замыкания в процентах от номинального

Iх.х. – ток при опыте холостого хода в процентах от номинального

ΔQ = 0,01 · (5,5 · 0,6 2 +3) · 630 = 31,4 кВар.

Определяем потери полной мощности в трансформаторе ΔS, кВА

ΔS = ,

ΔS = = 31,7 кВА.

Все полученные данные сводим в таблицу 4.

Таблица 4 – Потери мощности в трансформаторе

Итак, потери мощности в трансформаторе будут зависеть от коэффициента загрузки трансформатора, от его конструктивного исполнения и полной номинальной мощности. Для уменьшения потерь необходимо правильно выбрать трансформатор и оптимально загрузить его.

8. Расчёт и выбор сетей напряжением выше 1 кВ

Критерием для выбора сечения кабельных линий является минимум приведённых затрат. В практике проектирования линий массового строительства выбор сечения производится не по сопоставительным технико-экономическим расчётам в каждом конкретном случае, а по нормируемым обобщённым показателям.

Т.к. сети напряжением выше 1 кВ не входят в перечень [4, пункта 1.3.28], то выбор сетей до цеховой трансформаторной подстанции осуществляем по экономической плотности тока jэк, .Рассчитываем максимальную активную мощность, проходящую по высоковольтному кабелю, Рm(10), кВт с учётом потерь мощности в трансформаторе

Определяем максимальную реактивную мощность, проходящую по кабелю U=10 кВ с учётом потерь мощности в трансформаторе Qm(10), кВар, по формуле

Определяем полную мощность в сетях высокого напряжения Sm(10), кВА

Sm(10)= =783,6 кВА.

Рассчитываем коэффициенты активной (cosφ(6)) и реактивной (tgφ(6)) мощности высоковольтной линии

cosφ(10)= = 0,94,

tgφ(10)= = 0,37.

Рассчитываем силу тока, проходящую по линии напряжением U=10 кВ Im(10), A

Im(10)= =22,6 А.

По справочнику [4, таблица 1.3.36] определяем экономическую плотность тока, учитывая, что число часов использования максимума нагрузки в год Тm=3000-5000 тысяч час/год и прокладываемый кабель марки ААШв

Определяем экономически целесообразное сечение кабеля Fэк, мм 2

Fэк=,

Fэк= =16,14 мм 2 .

Принимаем к прокладке кабель ближайшего стандартного сечения 16 мм 2 , т.е. ААШв 3х16 с допустимым током Iд, А, определяемым по каталогу [4, таблица 1.3.16]

Определяем допустимую величину тока с учётом поправочных коэффициентов

где Kп – поправочный коэффициент на параллельную прокладку двух кабелей

в траншее, принимаемый по каталогу по [4, таблица 1.3.26], Kп=0,9;

Kт – поправочный коэффициент на температуру земли, принимаемый по каталогу [4, таблица 1.3.3], Kт=1, т.к. принята температура t=15 ºC.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

потери в трансформаторе

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Таблица потерь в трансформаторе

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

потери мощности в трансформаторе

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

Обозначение Расшифровка Значение
НН Номинальное напряжение, кВ 6
Эа Активная электроэнергия, потребляемая за месяц, кВи*ч 37106
НМ Номинальная мощность, кВА 630
ПКЗ Потери короткого замыкания трансформатора, кВт 7,6
ХХ Потери холостого хода, кВт 1,31
ОЧ Число отработанных часов под нагрузкой, ч 720
cos φ Коэффициент мощности 0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

К² = 4,3338

П = 0,38 кВТ*ч

% потерь составляет 0,001. Их общее число равняется 0,492%.

Диаграмма потерь в трансформаторе

Одноэлементный расчет потерь электроэнергии

Пример Расчета технологических потерь электроэнергии при ее передаче из сетей Сетевой организации в сети Потребителя:

Наименование организации Потребителя: ОАО «***» Адрес объекта:________ ТП №453 (счетчик №797198)

Расчет потерь в силовом трансформаторе и кабельной линии

1. Потери электроэнергии в трансформаторе рассчитываются по формуле:

∆Wт = ∆Wхх + (∆Wн1 х Wт/100) , кВт*час, где∆Wxx = ∆Рxx х То х (Ui /Uном)2 — потери холостого хода силового трансформатора, кВт*час; ∆Wн1 = (∆Wн / Wт) х 100% — относительные нагрузочные потери силового трансформатора, %;∆Wн = Кк х ∆Рср х Тр х Кф2 — нагрузочные потери силового тр-ра, кВт*час; Кф2 = (1+2Кз)/3Кз ― квадрат коэффициента формы графика за расчетный период, у.е.; Кз = [Wт / (Sн х Тр х cosφ)] х 10-3 — коэффициент загрузки тр-ра ( заполнения графика), у.е.; ∆Рср = 3 х I2ср х R х 10-3 — потери мощности в силовом тр-ре, кВт; Iср=Wт /(√3 х Uср х Тр х cos φ) – средняя нагрузка за расчетный период, А; R = (∆Ркз х U2ном /S2ном) х 10-3 — активное сопротивление силового тр-ра, Ом; Кк ― коэффициент, учитывающий различие конфигураций графиков активной и реактивной нагрузки (справочная величина, принимается равным 0,99), у.е.

ТМ 630/6/0,4 Тип трансформатора
Sнт номинальная мощность трансформатора, МВА; 0,63
Uном номинальное напряжение, кВ; 6
потребленная активная электроэнергия за месяц, кВт*час; 37108
∆Рхх потери мощности холостого хода трансформатора, кВт; 1,31
∆Ркз потери мощности короткого замыкания, кВт; 7,6
Тр число часов работы трансформатора под нагрузкой за расчетный период, час; 720
То время присоединения трансформатора за расчетный период к сети, час; 720
Кк коэффициент различия конфигураций; 0,99
cosφ среднезвешенный коэффициент мощности для трансформатора. 0,9

Расчет потерь в трансформаторе: ∆Wхх =1001 кВт*ч; Кф2 =4,3338; Кз = 0,0909; R =0,6893 Ом; ∆Wн = 182,2 кВт*час; Iср=5,3407; ∆Рср = 0,0590; %потерь ∆Wн1 =0,49 Итого: ∆Wт = 1001 кВт*час +0,491%

2. Потери электроэнергии в линии электропередачи (Тип силового кабеля — 6кВ АСБ 3*240мм2) рассчитываются по формуле:

Wкл =1,1*n*p*I2*L/g*0,001*T , гдеn — число фаз линии = 3p — удельное сопротивление материала, Ом*мм2/м = 0,0271I — среднеквадратичный ток линии, А =5,3407L — длина линии, м =50g — сечение провода, мм2 = 240T — время работы за расчетный период, час-=7201,1 — коэфф. учитывающий сопрот конт.,скрутку жил и способ прокладки линийСправочно удельные сопративления меди, алюминия и стали:

р Cu 0,0189 Ом*мм2/м
р Al 0,0271 Ом*мм2/м
р Сталь 0,14 Ом*мм2/м

Потери ∆Wкл =0,38 кВт*ч; %потерь ∆Wкл =0,001

ИТОГО: общий % потерь=0,492; ВСЕГО ∆W = 1001 кВт*час +0,492%

Произвести расчет можно с помощью удобного калькулятора, выполненного в формате Exel-таблицы

Произвести более сложный расчет с большим количеством объектов электросетевого хозяйства, можно осуществить с помощью специализированного программного комплекса (РТП-3, либо Програсс++), оставив заявку в форме обратной связи с приложением необходимых первичных документов.

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

Всем доброго времени суток! В прошлой статье я рассказал об эквивалентной схеме трансформатора. В данной статье я расскажу, как рассчитать потери мощности в трансформаторе. От потерь мощности в трансформаторе зависит температура его нагрева, поэтому они значительно влияют на расчётные параметры. При расчёте трансформатора следует ограничивать потери мощности путем правильного выбора параметров и величин, влияющих на потери.

Для сборки радиоэлектронного устройства можно преобрески DIY KIT набор по ссылке.

Составляющие потерь мощности в трансформаторе

Полные или суммарные потери мощности в трансформаторе ∆р состоят в основном из двух частей: потерь в сердечнике ∆рс и потерь в катушках ∆рк. Присутствующие потери мощности в элементах конструкций трансформатора имеют достаточно малое значение и обычно не учитываются.

При расчёте трансформатора, кроме вышеназванных величин, важное значение имеет соотношение потерь мощности ν и отношение суммарных потерь мощности ∆р к выходной мощности Р2, называемое коэффициентом потерь kпот

Довольно часто потери мощности ∆рс и ∆рк называют потерями «в стали» и потерями «в меди», однако это не совсем правильно, так как в качестве материала сердечника используются не только стали, но и различные сплавов, а в качестве материала проводов обмоток – не только медные, но и алюминий.

Потери мощности в катушках ∆рк, кроме основной части – потерь в обмотках – включает в себя потери в диэлектрике: изоляции проводника, межслоевой и межобмоточной ∆рд. Однако, данный компонент потерь мощности начинает влиять на общие потери, только у высоковольтных высокочастотных трансформаторов. Рассмотрим составляющие потерь мощности трансформатора.

Потери мощности в сердечнике трансформатора

В сердечнике ∆рс трансформатора потери мощности обусловлены затратами энергии магнитного поля на перемагничивание материала из которого сделан сердечник.

Энергия магнитного поля в общем случае определяется следующим выражением

где EC(t) – изменение напряжения за один период,

i(t) – изменение тока за один период.

В соответствие с законом электромагнитной индукции и теоремой о циркуляции вектора напряженности магнитного поля получим

где S – площадь поперечного сечения магнитопровода,

lcp – средняя длина магнитной силовой линии.

Так как ферромагнитные сердечники обладают гистерезисом, то однозначной функциональной зависимости между напряженностью Н и индукцией В магнитного поля в нем не существует. Однако при перемагничивании сердечника от –Нmax до Нmax можно считать, что любой величине напряженности магнитного поля Н соответствует только два значения магнитной индукции В: на восходящей и нисходящей ветвях. То есть, после полного цикла перемагничивания ферромагнетик вернётся в тоже состояние, из которого начинался процесс. Тогда подынтегральное выражение имеет физический смысл теплоты, отданной сердечником за один цикл перемегничивания.

Физический смысл магнитных потерь в сердечнике
Физический смысл магнитных потерь в сердечнике.

Так как потери мощности в сердечнике ∆рс определяется, как работа за единицу времени, то преобразовав предыдущую формулу, получим выражение для вычисления потерь мощности в сердечнике

где f – частота перемагничивания магнитопровода.

Подынтегральное выражение численно равно площади заштрихованного участка петли гистерезиса. Таким образом, вычисление данного интеграла является вычислением удельных потерь.

На практике нет необходимости в вычислении удельных потерь, так как для разработанных ферромагнитных материалов существуют справочные данные. Поэтому используют различные формулы в зависимости от известных справочных данных.

Достаточно широко распространено следующее выражение для высокочастотных материалов, где удельные потери имеют размерность Вт/(см3Гц)

PSV – удельные объемные потери в магнитопроводе,

Ve – эквивалентный объем сердечника магнитопровода,

f – частота перемагничивания.

Так для отечественных ферритов значение удельных объемных потерь составляют

Марка феррита PSV, мкВт/(см3*Гц), на частоте 10-20кГц При индукции В, Тл
Т, °С
+25 +100 +120
2500НМС1 10,5 8,7 0,2
2500НМС2 8,5 6 0,2
2500НМС5 9,0 7,6 0,2 (при 100 кГц)
3000НМС 2,5 2,5 0,1

Кроме данного выражения существуют более сложные способы вычисления потерь мощности в сердечнике трансформатора. Часто в справочниках приводятся удельные объемные потери PSV в Вт/см3 или удельные массовые потери PSM в Вт/кг. В этом случае потери мощности рассчитываются по следующим выражениям

где ρ – плотность материала,

f1, B1 – базовые расчётные параметры, при которых были измерены потери мощности в сердечнике,

α и β – степенные параметры, зависящие от конкретного материала, их значение можно найти в справочниках.

Материал PSV Вт/см3 α β
2000НМ-А 0,142 1,2 2,4
2000НМ-17 0,272 1,2 2,8
3000НМ-А 0,208 1,2 2,8
1500НМ3 0,093 1,2 2,2
2000НМ3 0,178 1,3 2,7

Для данных материалов В1 = 1 Тл, f1 = 1 кГц.

Материал Толщина, мм PSM, Вт/кг α β
34НКМП 0,1 2,2 1,65 1,7
40НКМП 0,05 2,8 1,5 1,3
50НП 0,1 5 1,4 1,5
79НМ 0,1 1,4 1,65 2,0
68НМП 0,05 2,2 1,55 1,7
80НХС 0,05 1,2 1,5 2,0

Для данных материалов В1 = 0,5 Тл, f1 = 1 кГц.

Для ферритов иностранного производства выпускаются довольно подробные справочные материалы. Для расчета потерь в сердечниках из этих ферритов используется коэффициент удельных объемных потерь PV (Relative core losses) измеряемый в кВт/м3. Для этого параметра приводятся подробные графические зависимости от частоты f, магнитной индукции В и температуры Т.

Зависимость удельных потерь PV для феррита N72 от различных параметров
Зависимость удельных потерь PV для феррита N72 от различных параметров.

Поэтому для нахождения потерь мощности для сердечников из таких материалов достаточно воспользоваться следующим выражением

где PV – удельные объемные потери в конкретных условиях,

Ve – эффективный объем сердечника.

Как рассчитать потери мощности в наборных сердечниках?

Удельные потери магнитного материала в наборных сердечниках превышают аналогичные у прессованных. Причиной увеличения потерь является негативное влияние технологических операций при изготовлении сердечников. Для учета данного влияния вводят коэффициент увеличения потерь kp:

где Рсн – удельные потери мощности в наборном (ленточном или шихтованном) сердечнике,

РV/ – удельные потери материала, из которого изготовлены пластины или ленты сердечника,

kp – коэффициент увеличения потерь.

Значения данного коэффициента зависят от технологии изготовления, вида материала, рабочей частоты и вида сердечника. Так для наборных сердечников (ЛС и ШС) из электротехнической стали определяется следующим выражением

А для разрезных ленточных сердечников из железоникелевых сплавов

где ψа – параметр учитывающий тип сердечника. Для разъёмных сердечников (СТ, БТ) ψа = 3, а для замкнутых (ТТ) составляет ψа = 1.

В таблице ниже приведены типовые значения коэффициента увеличения потерь

Тип сердечника Материал Значения kp при частоте в Гц
Вид Толщина 50 400 2000 10000
ШС и замкнутые ЛС Стали и сплавы 0,15-0,35 1,15 1,2 1,25 1,3
0,05 1,25 1,35 1,4
Разрезные ЛС Эл. тех. стали 0,15-0,35 1,3 1,4 1,5 1,6
0,05 1,5 1,6 1,7
50Н, 33НКМС 0,05-0,1 1,7 1,8 1,9
80НХС, 79НМ 0,05-0,1 2,5 2,8 3

Значение коэффициента добавочных потерь kp даны для сердечников средних размеров (несколько десятков Вт). Для сердечников меньших размеров значение данного коэффициента необходимо увеличить в 1,2 – 1,3 раза, а для больших сердечников уменьшить в 1,2 – 1,3 раза.

Как рассчитать потери мощности в обмотках трансформатора?

Потери мощности в обмотках трансформатора ∆рк напрямую зависят от их активного сопротивления Ri. Кроме того необходимо учитывать увеличение сопротивления из-за дополнительных факторов (увеличение температуры и скин-эффект). В общем случае потери мощности в обмотках определяются следующим выражением

где N – количество вторичных обмоток,

рki – потери в i-й обмотке,

Ii – сила тока в i-й обмотке,

Ri – сопротивление i-й обмотки.

Сопротивление обмотки рассчитывается по известной формуле, через удельное сопротивление

где lw – средняя длина витка обмотки, см,

w – число витков обмотки,

q – сечение проводника, мм2,

ρ – удельное сопротивление материала проводника, Ом*мм2/м.

Данное выражение достаточно неудобно использовать на практике. Чаще всего известны размеры сердечника, а также его основные параметры (площади и объёмы). Поэтому можно использовать следующее выражение для потерь мощности в обмотках трансформатора

где koki – коэффициент заполнения окна для i-й обмотки,

Vki – геометрический объем, занятый i-й обмоткой, см3,

ji – плотность тока для i-й обмотки, а/мм2,

Soki – площадь сечения i-й обмотки, мм2,

Если параметры ρ, j, kok одинаковы для всех обмоток либо взяты их средние значения, то получим следующее выражение

где Vk – геометрический объем, занятый всей катушкой, см3.

Как уже было сказано, при работе трансформатор нагревается. Вместе с этим изменяется активное сопротивление обмоток. Рассчитать удельное сопротивление проводника при увеличении температуры можно по следующим выражениям

где kτ — коэффициент учитывающий увеличение сопротивления из-за роста температуры,

ρ20 – удельное сопротивление проводника при температуре 20°С,

αρ – температурный коэффициент сопротивления, для меди и алюминия αρ = 0,004 1/°С,

tp – рабочая температура трансформатора, °С.

Так как в большинстве случаев в справочниках указывают удельное сопротивление материалов при температуре 20°С, то выражение можно упростить

где τ – перегрев трансформатора.

Влияние температуры на сопротивление обмотки трансформатора необходимо всегда учитывать при расчете падения напряжения на них.

Как влияет переменное напряжение на потери мощности в обмотках?

При протекании переменного электрического тока по проводнику возбуждаются вихревые токи или токи Фуко. Они направленны так, что ослабляют ток внутри провода и усиливают вблизи поверхности. В результате переменный ток оказывается неравномерно распределённым по сечению провода – он как бы вытесняется на поверхность проводника. Данное явление называется скин-эффектом или поверхностным эффектом.

Вследствие этого эффекта плотность тока у поверхности проводника максимальна, а на глубине ∆ становится меньше в е раз (примерно на 70%). Глубину скин-слоя можно определить по следующему выражению

где ρ – удельное сопротивление проводника, для меди ρ = 0,0172 Ом*мм2/м,

μα — абсолютная магнитная проницаемость проводника,  для меди μα = 4*π*10-7 Гн/м,

μ0 — относительная магнитная проницаемость проводника,  для меди μ0 ≈ 1,

f – частота переменного тока.

Кроме скин-эффекта в проводниках, в обмотках трансформатора, проявляется так называемый катушечный эффект и эффект близости проводников, заключающегося в том что переменное напряжение за счет токов Фуко вытесняется во внешнюю часть обмотки. Данные эффекты также увеличивают сопротивление обмотки трансформатора. Для учета данный факторов вводят поправочный коэффициент kf

где m – число слоёв в обмотке.

Для определения коэффициентов M и D необходимо воспользоваться следующими выражениями

где χ – высота одного слоя обмотки, отнесённая к глубине скин-слоя,

∆ — глубина скин-слоя,

h – высота проводника,

sinh и cosh – гиперболические синус и косинус, соответственно.

Высота проводника h не эквивалентна его диаметру d. Только если производится намотка фольгой, параметр высота проводника h равен толщине фольги, в случае круглого провода высота проводника h равна

где d – диаметр проводника,

р – расстояние между центрами соседних проводников.

При использовании многожильного обмоточного провода (литцендрата), выражение для поправочного коэффициента kf будет иметь следующий вид

где mР – приведённое количество слоев обмотки,

m – реальное количество слоев обмотки,

n – количество элементарных жил в «литцендрате».

Кроме рассмотренных потерь при высокочастотном напряжении в обмотках, необходимо учитывать, что из-за наличия зазоров в сердечнике происходит искривление магнитного поля, что вызывает дополнительные вихревые токи в проводниках

Понравилась статья? Поделить с друзьями:
  • Ошибка 0х6133 документ открыт атол 91ф как исправить
  • Что делать если кисель получился жидким как исправить
  • Как найти производную если в степени икс
  • Как найти отклонение бюджета
  • Как легко найти дырку в надувном матрасе