Как найти полную мощность трансформатора зная активную

Понятие полной мощности используется в электротехники для определения фактической нагрузки на элементы сети. Величина полной мощности силового трансформатора является основой для проектирования его конструкции.

Полная мощность превосходит по абсолютной величине активную и зависит от характеристик нагрузки.

Содержание

  1. Понятие мощности трансформатора
  2. Активная
  3. Реактивная
  4. Полная
  5. Номинальная
  6. Методика расчета мощностей трансформатора
  7. Примеры реальных расчетов
  8. Эскиз конструкции трансформатора

Понятие мощности трансформатора

Трансформатор переменного тока не производит электрическую энергию, а лишь преобразовывает ее по величине. Поэтому его мощность полностью зависит от ее величины  нагрузки (тока потребления) вторичной цепи.  При наличии нескольких потребителей должна учитываться суммарная нагрузка, которая может быть подключена одновременно. Для цепей переменного тока учитывается активный и реактивный характер потребления.

трансформатор переменного тока

Активная

Данная составляющая часть характеристики определяется как среднее значение мгновенной за определенный период времени. Для цепей синусоидального переменного тока в качестве отрезка времени используется значение периода колебания:

T=1/f,

где f – частота.

Активная часть  зависит от характера нагрузки, то есть от сдвига фаз между током и напряжением и определяется по формуле:

P=i∙U∙cosϕ,

где ϕ – угол сдвига фаз.

Активная составляющая  устройств переменного тока выражается в Ваттах, как и для цепей постоянного тока.

Реактивная

Реактивная нагрузка отличается от активной тем, что в течение одного периода колебаний напряжения электрическая энергия реально не потребляется, но возвращается назад. В результате того, что к питающему устройству подключены устройства с большой емкостью или индуктивностью (электродвигатели), между током и напряжением возникает сдвиг фаз.

Реактивная составляющая потребления определяется выражением:

Q= i∙U∙sinϕ

Единица измерения – вар (вольт-ампер реактивный).

Полная

Полная мощность трансформатора учитывает всю потребленную и  возвращенную энергию и находится из выражения:

S= i∙U

Все составляющие связаны соотношением:

S2=P2+Q2.

Единица измерения – ВА (вольт-ампер).

Полная мощность равняется активной только в случае полностью активной нагрузки.

Мощность трансформатора

Номинальная

Номинальная мощность трансформатора учитывает возможность работы конструкции с учетом подключения потребителей разного характера, то есть аналогична полной. При этом гарантируется исправная работа устройства весь заявленный срок службы при  оговоренных условиях эксплуатации.

Номинальная мощность, как и полная, учитывает активный и реактивный характер потребления, которое может изменяться во время эксплуатации.

Выражается в вольт-амперах.

Методика расчета мощностей трансформатора

При расчете силового  трансформатора питающей подстанции учитывается среднесуточная нагрузка и длительность периода максимальной потребления. При этом должно учитываться соотношение:

Sном≥∑Pмакс

Режим пикового потребления также должен учитывать время воздействия, поскольку при кратковременных всплесках (до 1 часа), устройство будет работать в недогруженном режиме, что экономически не выгодно.

В таких случаях нужно брать в расчет перегрузочную способность конструкции, которая зависит от конструктивных особенностей, температуры окружающего воздуха  и условий охлаждения. Это диктуется условиями допустимого нагрева составляющих элементов (обмоток, коммутирующих цепей).

Понятие коэффициента загрузки определяет отношение среднесуточного и максимального потребления электрической энергии. Коэффициент загрузки всегда меньше единицы. Его величина связана с требованиями к надежности электроснабжения. Чем меньше требуемая надежность, тем больше коэффициент может приближаться к единице.

Примеры реальных расчетов

В качестве примера можно выбрать питающую подстанцию жилого района. Нагрузка подстанции является III  категории, поэтому коэффициент загрузки допустимо выбирать из большего значения – 0.9-0.95.

Характер потребления тока бытового сектора зависит от времени суток и сезона, но с учетом высокого коэффициента загрузки допустимо учитывать среднее значение потребляемой мощности. Для повышения надежности работы в период максимального потребления рекомендуется использование маслонаполненных трансформаторов, которые отличаются большой перегрузочной способностью в течение длительного периода времени (30% перегрузки в течение 2-х часов).

Эскиз конструкции трансформатора

Конструкция мощного силового трансформатора состоит из нескольких частей:

  1. Остов.
  2. Выемная часть.

В состав выемной части входит, собственно сердечник и обмотки с активной частью, которая включает переключатели с приводами, вводы высокого и низкого напряжений, предохранительные устройства.

Остов  – основная составляющая конструкции активной части. В состав остова входит магнитная система (сердечник) со всеми обмотками, а также конструктивные элементы для крепления и соединения обмоток и частей магнитной системы.

конструкция силового трансформатора

При выборе
трансформаторов, сечения кабелей,
выключающей аппаратуры и т. п. необходимо
знать, на какой ток они должны быть
рассчитаны. Для этого недостаточно,
если известны только напряжение и
активная мощность Р, следует еще
определить cosнагрузки. При наличии нескольких
приемников энергии с различным cosэти расчеты существенно усложняются.
Для облегчения подобных расчетов введены
две вспомогательные величины: полнаяS=U Iи реактивнаяQ=U
I sin=U Iмощности.

Соотношения между
ними и активной мощностью наглядно
показывает треугольник мощностей. Чтобы
построить его, можно взять треугольник
напряжений и все стороны его умножить
на ток I(рис. 2.11).
Полученный таким путем треугольник
мощностей будет подобен треугольнику
напряжений. Его гипотенуза будет
изображать полную мощностьS, а
катеты — активнуюРи реактивнуюQмощности. Соотношения между ними

(2.1)

На щитках генераторов
и трансформаторов указывается пол
мощность. Изоляция генераторов и
трансформаторов рассчитывается
определенное номинальное напряжение,
а сечение проводов обмоток — определенный
номинальный ток. Тем самым отдельно
ограничивай напряжение и ток, причем
эти ограничения не зависят от сдвига
фаз между
напряжением и током. Таким образом,
произведение действующих значений
напряжения и тока определяет полную
номинальную мощностьSнгенератора, трансформатора и других
устройств переменного тока, Как показано
выше, активная мощностьР=SH
cos
. Следовательно,
значение допустимой активной мощности
при неизменной полной мощности уменьшается
с уменьшениемcos .

Рис.2.11
Построение треугольника мощностей: а-
треугольник напряжений, б — треугольник
мощностей

Единицей полной
мощности служит вольт-ампер (ВА) и
киловольт-ампер (кВА). Это изменение
наименования упрощает указания мощности
в каталогах, расчетах и т. п.: достаточно
написать, например, 500кВА, чтобы тем
самым показать, что рассматривается
полная, а не активная мощность.

Понятие реактивной
мощности Qиспользуется для расчета
полной мощности установки, например,
при определении мощности трансформатора,
необходимого для промышленного
предприятия. Различные приемники
электроэнергии потребляют как активную,
так и реактивную мощности. Полная
мощность, на которую должен быть
установлен трансформатор, определяется
на основании суммы активных мощностей
всех приемниковPи суммы их реактивных мощностейQпо формуле:

(2.2)

Реактивная мощность
измеряется в вольт-амперах реактивных
(ВАр) и киловольт-амперах реактивных
(кВАр).

Условно принято
считать реактивную емкостную мощность
отрицательной, в соответствии с чем
конденсаторы нужно считать генераторами
реактивной мощности Qc, а индуктивные
приемникиQL— ее
потребителями. При наличии среди
приемников конденсаторов и индуктивных
катушек общая полная мощность установки


(2.3)

Посредством
емкостной реактивной мощности,
компенсирующей индуктивную мощность
электродвигателей, повышается cos промышленных предприятий.

Раздел 3. Трехфазный электрический ток

3.1. Элементы трехфазной системы

В настоящее время
получение, передача и распределение
электроэнергии в большинстве случаев
производится посредством трехфазной
системы.

Эта система была
изобретена и практически разработана
во всех основных се частях выдающимся
русским инженером М. О. Доливо-Добровольским.

Как показывает
само название, трехфазная система
состоит из трех источников электроэнергии
и трех цепей, соединенных общими проводами
линии передачи.

Источником энергии
для всех фаз системы является трехфазный
генератор (рис. 3.1). Он отличается от
однофазного генератора переменного
тока тем, что у него на статоре размещены
три изолированные друг от друга одинаковые
обмотки. Они расположены так, чтобы
индуктируемые в них э.д.с. были сдвинуты
по фазе одна относительно другой на
120°.

Если генератор
двухполюсный, как на рис. 3.1, то оси
катушек обмоток фазы сдвинуты одна по
отношению к другой на одну треть
окружности статора.

Рис.3.1
Схема устройства трехфазного генератора.

Рис.3.2
Кривые мгновенных значений э.д.с.
трехфазной системы.

При вращении ротора
его постоянное магнитное поле пересекает
проводники обмоток не одновременно.
Э.д.с. обмотки Адостигает своего
максимального значения, когда мимо нее
проходит середина полюса ротора. Э.д.с.
в следующей обмоткеВдостигает
максимума позже, когда ротор повернется
на 1/3 оборота. В двухполюсном генераторе
повороту на 1/3 оборота соответствует
1/3 периода индуктируемой э.д.с.
Следовательно, э.д.с. в обмоткеВотстает по фазе от э.д.с. в обмоткеАна 1/3 периода. В свою очередь, э.д.с. в
обмоткеСотстает по фазе от э.д.с.
обмоткиД на 1/3 периода и от э.д.с.
обмоткиАна 2/3 периода. При такой
симметрии устройства генератора
максимальные значения этих э.д.с.
одинаковы. Конструкция генератора
должна обеспечивать их синусоидальность.

Уравнения мгновенных
значений э.д.с. будут:

EA
= E
m
sin
t

(3.1)

Кривые
мгновенных значении э.д.с. показаны на
рис. 3.2. На рис. 3.3 дана векторная диаграмма
для их действующих значений

Сумма этих векторов
образует замкнутый треугольник: ЕА
+ Е
В + ЕС = О— это трехфазная симметричная система
э.д.с. Алгебраическая сумма мгновенных
значений э.д.с.eА
+ е
B + еC
= 0
, что легко проверить, подставив
выражения этих значений как синусоидальных
функций времени.

Рис.
3.3 Векторы э.д.с. трехфазной системы.

Изображения э.д.с.
трехфазной системы в комплексной форме
будут:

ĖA
=
Eф ·
ej0
=
Eф

(3-2)

От последовательности
фаз системы зависит направление вращения
трехфазных двигателей, поэтому в
трехфазных устройствах она проверяется
специальными указателями последовательности
фаз и обозначается раскраской шин на
распределительных устройствах; приняты
следующие цвета: фаза А— желтый,
фазаВ— зеленый и фазаС
красный; незаземленная нейтраль —
белый, заземленная нейтраль — черный.
Зажимы обмоток генератора различают:
началаA, В, С, концыX, Y, Z.

Два основных
способа соединения обмоток генераторов,
трансформаторов и приемников в трехфазных
цепях: звездой и треугольником.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Как узнать мощность трансформатора?

Определение мощности силового трансформатора

Трансформаторы

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором.

Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания, начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Трансформатор ТП114-163М

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность, входное напряжение, выходное напряжение, а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (Iн на напряжение питания прибора (Uн). Думаю, многие знакомы с этой формулой ещё по школе.

P=Uн * Iн

,где Uн – напряжение в вольтах; Iн – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Замер толщины набора магнитопровода трансформатора

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Замер ширины центрального лепестка Ш-образной пластины

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным, но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см.) и ширину центрального лепестка пластины (1,7 см.). Получаем сечение магнитопровода – 3,4 см2. Далее нам понадобиться следующая формула.

Площадь сечения магнитопровода

,где S – площадь сечения магнитопровода; Pтр – мощность трансформатора; 1,3 – усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Мощность трансформатора

Подставим в формулу значение сечения S = 3,4 см2, которое мы получили ранее.

Расчёт мощности трансформатора

В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов – «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Трансформатор - "малютка"

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Толщина набора пластин PDPC24-35

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Главная » Радиоэлектроника для начинающих » Текущая страница

Также Вам будет интересно узнать:

  • Как определить мощность резистора?

  • Как проводить измерение сопротивления цифровым мультиметром?

  • Зачем нужен супрессор?

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Содержание

  • 1 Мощность в цепи переменного электрического тока
    • 1.1 Понятие активной мощности
    • 1.2 Понятие реактивной мощности
      • 1.2.1 Емкостные и индуктивные нагрузки
      • 1.2.2 Коэффициент мощности cosφ
    • 1.3 Понятие полной мощности. Треугольник мощностей
  • 2
  • 3 Как измеряют cosφ на практике

Мощность в цепи переменного электрического тока

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность — физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д.), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная «полезная» мощность — это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в ваттах (Вт).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с напряжением 220В, однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная «вредная» мощность — это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт), а в вольт-амперах реактивных (Вар).

Рассчитывается по формуле:

Q = U⋅I⋅sinφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи)– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100%). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

Что такое активная и реактивная мощность переменного электрического тока?

Также рассчитать полную мощность можно путем перемножения напряжения и силы тока соответственно.

S = U⋅I

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.

Что такое активная и реактивная мощность переменного электрического тока?

Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Далее, исходя из треугольника мощностей, найдем реактивную мощность равную квадрату из разности квадратов полной и активной мощностей.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром. Также с этой задачей легко справится цифровой ваттметр.

Что такое активная и реактивная мощность переменного электрического тока?

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Общие сведения о трансформаторах

Трансформатором называют электромагнитное устройство, преобразующим переменный ток с изменением значения напряжения. Принцип работы прибора предполагает использование электромагнитной индукции.

Аппарат состоит из следующих основных элементов:

Принцип работы трансформатора

  • первичной и вторичной обмоток;
  • сердечника, вокруг которого навиты обмотки.

Принцип работы трансформатора

Изменение характеристик достигается за счёт разного количества витков в обмотках на входе и выходе.

Ток на выходной катушке возбуждается за счёт создания магнитного потока при подаче напряжения на входные контакты.

Устройство трансформатора

А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.

Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.

Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.

Принцип работы трансформатора

Принцип работы трансформатора основан на явлении электромагнитной индукции.

Если на первичную обмотку подать переменное напряжение U1, то по виткам обмотки потечет переменный ток Io, который вокруг обмотки и в магнитопроводе создаст переменное магнитное поле. Магнитное поле образует магнитный поток Фo, который проходя по магнитопроводу пересекает витки первичной и вторичной обмоток и индуцирует (наводит) в них переменные ЭДС – е1 и е2. И если к выводам вторичной обмотки подключить вольтметр, то он покажет наличие выходного напряжения U2, которое будет приблизительно равно наведенной ЭДС е2.

Работа трансформатора без нагрузки

При подключении к вторичной обмотке нагрузки, например, лампы накаливания, в первичной обмотке возникает ток I1, образующий в магнитопроводе переменный магнитный поток Ф1 изменяющийся с той же частотой, что и ток I1. Под воздействием переменного магнитного потока в цепи вторичной обмотки возникает ток I2, создающий в свою очередь противодействующий согласно закону Ленца магнитный поток Ф2, стремящийся размагнитить порождающий его магнитный поток.

Работа трансформатора под нагрузкой

В результате размагничивающего действия потока Ф2 в магнитопроводе устанавливается магнитный поток Фo равный разности потоков Ф1 и Ф2 и являющийся частью потока Ф1, т.е.

Формула магнитного потока

Результирующий магнитный поток Фo обеспечивает передачу магнитной энергии из первичной обмотки во вторичную и наводит во вторичной обмотке электродвижущую силу е2, под воздействием которой во вторичной цепи течет ток I2. Именно благодаря наличию магнитного потока Фo и существует ток I2, который будет тем больше, чем больше Фo. Но и в то же время чем больше ток I2, тем больше противодействующий поток Ф2 и, следовательно, меньше Фo.

Из сказанного следует, что при определенных значениях магнитного потока Ф1 и сопротивлений вторичной обмотки и нагрузки устанавливаются соответствующие значения ЭДС е2, тока I2 и потока Ф2, обеспечивающие равновесие магнитных потоков в магнитопроводе, выражаемое формулой приведенной выше.

Таким образом, разность потоков Ф1 и Ф2 не может быть равна нулю, так как в этом случае отсутствовал бы основной поток Фo, а без него не мог бы существовать поток Ф2 и ток I2. Следовательно, магнитный поток Ф1, создаваемый первичным током I1, всегда больше магнитного потока Ф2, создаваемого вторичным током I2.

Величина магнитного потока зависит от создающего его тока и от числа витков обмотки, по которой он проходит.

Напряжение вторичной обмотки зависит от соотношения чисел витков в обмотках. При одинаковом числе витков напряжение на вторичной обмотке будет приблизительно равно напряжению, подаваемому на первичную обмотку, и такой трансформатор называют разделительным.

Схематичное изображение разделительного трансформатора

Если вторичная обмотка содержит больше витков, чем первичная, то развиваемое в ней напряжение будет больше напряжения, подаваемого на первичную обмотку, и такой трансформатор называют повышающим.

Схематичное изображение повышающего трансформатора

Если же вторичная обмотка содержит меньшее число витков, чем первичная, то и напряжение ее будет меньше, чем напряжение подаваемое на первичную обмотку, и такой трансформатор называют понижающим.

Схематичное изображение понижающего трансформатора

Следовательно. Путем подбора числа витков обмоток, при заданном входном напряжении U1 получают желаемое выходное напряжение U2. Для этого пользуются специальными методиками по расчету параметров трансформаторов, с помощью которых производится расчет обмоток, выбирается сечение проводов, определяются числа витков, а также толщина и тип магнитопровода.

Трансформатор может работать только в цепях переменного тока. Если его первичную обмотку подключить к источнику постоянного тока, то в магнитопроводе образуется магнитный поток постоянный во времени, по величине и направлению. В этом случае в первичной и вторичной обмотках не будет индуцироваться переменное напряжение, а следовательно, не будет передаваться электрическая энергия из первичной цепи во вторичную. Однако если в первичной обмотке трансформатора будет течь пульсирующий ток, то во вторичной обмотке будет индуцироваться переменное напряжение частота которого будет равна частоте пульсации тока в первичной обмотке.

Что такое КПД трансформатора и от чего зависит

Коэффициентом полезного действия (полная расшифровка данной аббревиатуры) называют отношение полезной электроэнергии к поданной на прибор.

Кроме энергии, показатель КПД может определяться расчётом по мощностным показателям при соотношении полезной величины к общей. Эта характеристика очень важна при выборе аппарата и определяет эффективность его использования.

Величина КПД зависит от потерь энергии, которые допускаются в процессе работы аппарата. Эти потери существуют следующего типа:

  • электрического – в проводниках катушек;
  • магнитного – в материале сердечника.

потери

Величина указанных потерь при проектировании устройства зависит от следующих факторов:

  • габаритных размеров устройства и формы магнитной системы;
  • компактности катушек;
  • плотности составленных комплектов пластин в сердечнике;
  • диаметра провода в катушках.

Снижение потерь в агрегате достигается в процессе проектирования устройства, с применением для изготовления сердечника магнито-мягких ферромагнитных материалов. Электротехническая сталь набирается в тонкие пластины, изолированные друг относительно друга специальным слоем нанесённого лака.

В процессе эксплуатации эффективность аппарата определяется:

  • поданной нагрузкой;
  • диэлектрической средой – веществом, использованным в качестве диэлектрика;
  • равномерностью подачи нагрузки;
  • температурой масла в агрегате;
  • степенью нагрева катушек и сердечника.

Если в ходе работы агрегат постоянно недогружать или нарушать паспортные условия эксплуатации, помимо опасности выхода из строя это ведёт к снижению эффективности устройства.

Методы определения КПД

КПД трансформатора можно подсчитать, с использованием нескольких методов. Данная величина зависит от суммарной мощности устройства, возрастая с увеличением указанного показателя. Значение эффективности колеблется в пределах от 0,8 до 0,92 при значении мощности от 10 до 300 кВт.

Зная величину предельной мощности, можно определить значение КПД, используя специальные таблицы.

Непосредственное измерение

Формула для вычисления данного показателя может быть представлена в нескольких выражениях:

ɳ = (Р2/Р1)х100% = (Р1 – ΔР)/Р1х100% = 1 – ΔР/Р1х100%,

  • ɳ – значение КПД;
  • Р2 и Р1 – соответственно величина полезной и потребляемой сетевой мощности;
  • ΔР – величина суммарных мощностных потерь.

Из указанной формулы видно, что значение показателя КПД не может превышать единицу.

После поэтапного преобразования приведённой формулы с учётом использования значений электротока, напряжения и угла между фазами, получается такое соотношение:

ɳ = U2хI2хcosφ2/ U2хI2хcosφ2 + Робм + Рс,

  • U2 и I2 – соответственно, значение напряжения и тока во вторичной обмотке;
  • Робм и Рс – величина потерь в обмотках и сердечнике.

Представленная формула содержится в ГОСТе, описывающем определение данного показателя.

кпд

Расчёты КПД

Определение косвенным методом

Для приборов, обладающих большой эффективностью работы, при величине КПД, превышающем 0,96, точный расчёт не всегда оказывается возможным. Поэтому данное значение определяется при помощи косвенного метода, предполагающего оценку мощностных показателей в первичной катушке, вторичной и допущенных потерь.

косвенным методом

Оценивая характеристики трансформатора, следует отметить высокую эффективность использования указанного оборудования, обусловленную его конструктивными особенностями.

Что такое коэффициент мощности

В цепи переменного тока, который поступает в трансформатор, возникает несколько видов нагрузки. Каждая из их определяет параметр, который в зависимости от нагрузки может быть активным, реактивным или полным соединением двух).

Активное сопротивление рассчитывается с учетом того, что потери будут равным квадрату тока, умноженному на сопротивление. Сопровождается выделением тепла. Реактивное происходит без выделения тепла и потерь нагрузки, рассчитывается по формулам индуктивности и емкости. Коэффициент является в общем понимании слова соотношением между активной и пассивной компонентой.

transformatorma

Как рассчитать коэффициент мощности трансформатора: формулы и математические расчёты

Определить его возможно по простой формуле: делятся усредненные значения модульных активных (ВТ) и полных (ВА).

При этом активная вычисляется как умноженные параметры напряжения и силы тока, умноженные на косинус фи. Для реактивной силы формула идентичная, но с тем учетом, что берется вместо косинуса синус. Полная вычисляется как умноженные напряжение на силу, равные корню из квадрата активной и реактивной.

Понятие мощности трансформатора

Трансформатор переменного тока не производит электрическую энергию, а лишь преобразовывает ее по величине. Поэтому его мощность полностью зависит от ее величины  нагрузки (тока потребления) вторичной цепи.  При наличии нескольких потребителей должна учитываться суммарная нагрузка, которая может быть подключена одновременно. Для цепей переменного тока учитывается активный и реактивный характер потребления.

1

Активная

Данная составляющая часть характеристики определяется как среднее значение мгновенной за определенный период времени. Для цепей синусоидального переменного тока в качестве отрезка времени используется значение периода колебания:

T=1/f,

где f – частота.

Активная часть  зависит от характера нагрузки, то есть от сдвига фаз между током и напряжением и определяется по формуле:

P=i∙U∙cosϕ,

где ϕ – угол сдвига фаз.

Активная составляющая  устройств переменного тока выражается в Ваттах, как и для цепей постоянного тока.

Реактивная

Реактивная нагрузка отличается от активной тем, что в течение одного периода колебаний напряжения электрическая энергия реально не потребляется, но возвращается назад. В результате того, что к питающему устройству подключены устройства с большой емкостью или индуктивностью (электродвигатели), между током и напряжением возникает сдвиг фаз.

Реактивная составляющая потребления определяется выражением:

Q= i∙U∙sinϕ

Единица измерения – вар (вольт-ампер реактивный).

Полная

Полная мощность трансформатора учитывает всю потребленную и  возвращенную энергию и находится из выражения:

S= i∙U

Все составляющие связаны соотношением:

S2=P2+Q2.

Единица измерения – ВА (вольт-ампер).

Полная мощность равняется активной только в случае полностью активной нагрузки.

6 6

Номинальная

Номинальная мощность трансформатора учитывает возможность работы конструкции с учетом подключения потребителей разного характера, то есть аналогична полной. При этом гарантируется исправная работа устройства весь заявленный срок службы при  оговоренных условиях эксплуатации.

Номинальная мощность, как и полная, учитывает активный и реактивный характер потребления, которое может изменяться во время эксплуатации.

Выражается в вольт-амперах.

Методика расчета мощностей трансформатора

При расчете силового  трансформатора питающей подстанции учитывается среднесуточная нагрузка и длительность периода максимальной потребления. При этом должно учитываться соотношение:

Sном≥∑Pмакс

Режим пикового потребления также должен учитывать время воздействия, поскольку при кратковременных всплесках (до 1 часа), устройство будет работать в недогруженном режиме, что экономически не выгодно.

В таких случаях нужно брать в расчет перегрузочную способность конструкции, которая зависит от конструктивных особенностей, температуры окружающего воздуха  и условий охлаждения. Это диктуется условиями допустимого нагрева составляющих элементов (обмоток, коммутирующих цепей).

Понятие коэффициента загрузки определяет отношение среднесуточного и максимального потребления электрической энергии. Коэффициент загрузки всегда меньше единицы. Его величина связана с требованиями к надежности электроснабжения. Чем меньше требуемая надежность, тем больше коэффициент может приближаться к единице.

По сечению сердечника

Электромагнитный аппарат имеет сердечник с парой проводов или несколькими обмотками. Такая составляющая часть прибора, отвечает за активное индукционное повышение уровня магнитного поля. Кроме всего прочего, устройство способствует эффективной передаче энергии с первичной обмотки на вторичную, посредством магнитного поля, которое концентрируется во внутренней части сердечника.

Параметрами сердечника определяются показатели габаритной трансформаторной мощности, которая превышает электрическую.

Расчетная формула такой взаимосвязи:

Sо х Sс = 100 х Рг / (2,22 х Вс х А х F х Ко х Кc), где

  • Sо — показатели площади окна сердечника;
  • Sс — площадь поперечного сечения сердечника;
  • Рг — габаритная мощность;
  • Bс — магнитная индукция внутри сердечника;
  • А — токовая плотность в проводниках на обмотках;
  • F — показатели частоты переменного тока;
  • Ко — коэффициент наполненности окна;
  • Кс — коэффициент наполненности сердечника.

Показатели трансформаторной мощности равны уровню нагрузки на вторичной обмотке и потребляемой мощности из сети на первичной обмотке.

Самые распространенные разновидности трансформаторов производятся с применением Ш —образного и П — образного сердечников.

По нагрузке

При выборе трансформатора учитывается несколько основных параметров, представленных:

  • категорией электрического снабжения;
  • перегрузочной способностью;
  • шкалой стандартных мощностей приборов;
  • графиком нагрузочного распределения.

В настоящее время типовая мощность трансформатора стандартизирована.

трансформаторы

Варианты трансформаторов

Чтобы выполнить расчет присоединенной к трансформаторному прибору мощности, необходимо собрать и проанализировать данные обо всех подключаемых потребителях. Например, при наличии чисто активной нагрузки, представленной лампами накаливания или ТЭНами, достаточно применять трансформаторы с показателями мощности на уровне 250 кВА.

В системах электрического снабжения показатели трансформаторной мощности приборов должны позволить обеспечивать стабильное питание всех потребителей электроэнергии.

Расчет

Существует несколько видов расчетов, которыми пользуются профессионалы. Для новичков все они достаточно сложные, поэтому рекомендуем так называемый упрощенный вариант. В его основе лежат четыре формулы.

ae7f5d23a72ccf81bb1957aadc34dfac
Трансформатор позволяет понизить напряжение до необходимых параметров.

Формула закона трансформации

Итак, закон трансформации определяется нижеследующей формулой:

U1/U2=n1/n2, где:

  • U1 – напряжение на первичной обмотке,
  • U2 – на вторичной,
  • n1 – количество витков на первичной обмотке,
  • n2 – на вторичной.

Так как разбирается именно сетевой трансформатор, то напряжение на первичной обмотке у него будет 220 вольт. Напряжение же на вторичной обмотке – это необходимый для вас параметр. Для удобства расчета берем его равным 22 вольт. То есть, в данном случае коэффициент трансформации будет равен 10. Отсюда и количество витков. Если на первичной обмотке их будет 220, то на вторичной 22.

Советуем изучить Стабилизатор напряжения Ресанта

Представьте, что прибор, который будет подсоединен через трансформатор, потребляет нагрузку в 1 А. То есть, на вторичную обмотку действует именно этот параметр. Значит, на первичную будет действовать нагрузка 0,1 А, потому что напряжение и сила тока находятся в обратной пропорциональности.

А вот мощность, наоборот, в прямой зависимости. Поэтому на первичную обмотку будет действовать мощность: 220×0,1=22 Вт, на вторичную: 22×1=22 Вт. Получается, что на двух обмотках мощность одинаковая.

87dc8cf12aa1a7237dd97f46710bb403

Что касается количества витков, то рассчитать их на один вольт не составит большого труда. В принципе, это можно сделать методом «тыка». К примеру, наматываете на первичную обмотку десять витков, проверяете на ней напряжение и полученный результат делите на десять. Если показатель совпадает с необходимым для вас напряжением на выходе, то, значит, вы попали в яблочко. Если напряжение снижено, значит, придется увеличить количество витков, и наоборот.

И еще один нюанс. Специалисты рекомендуют наматывать витки с небольшим запасом. Все дело в том, что на самих обмотках всегда присутствуют потери напряжения, которые необходимо компенсировать. К примеру, если вам нужно напряжение на выходе 12 вольт, то расчет количества витков проводится из расчета напряжения в 17-18 В. То есть, компенсируются потери.

Площадь сердечника

Как уже было сказано выше, мощность блока питания – это сумма мощностей всех его вторичных обмоток. Это основа выбора самого сердечника и его площади. Формула такая:

S=1,15 * √P

В этой формуле мощность устанавливается в ваттах, а площадь получается в сантиметрах квадратных. Если сам сердечник имеет Ш-образную конструкцию, то сечение берется среднего стержня.

66391b8a18c5f742a3a87c4e7fd599ee
Разновидности сердечников для трансформатора.

Количество витков в первичной обмотке

Здесь используется следующая формула:

n=50*U1/S, понятно, что U1 равно 220 В.

Кстати, эмпирический коэффициент «50» может изменяться. К примеру, чтобы блок питания не входил в насыщение и тем самым не создавал лишних помех (электромагнитных), то лучше в расчете использовать коэффициент «60». Правда, это увеличит число витков обмотки, трансформатор станет немного больше в размерах, но при этом снизятся потери, а, значит, режим работы блока питания станет легче

Сечение провода

И последняя четвертая формула касается сечения используемого медного провода в обмотках.

d=0,8*√I, где d – это диаметр провода, а «I» – сила тока в обмотке.

Расчетный диаметр необходимо также округлить до стандартной величины.

Итак, вот четыре формулы, по которым проводится подбор трансформатора тока

Здесь неважно покупаете ли вы готовый прибор или собираете его самостоятельно. Но учтите, что такой расчет подходит только для сетевого трансформатора, который будет работать от сети в 220 В и 50 Гц

4ff0b96139c358317f31cae9bca2c20e
Обозначение трансформатора на схеме.

Для высокочастотных приборов используются совершенно другие формулы, где придется проводить расчет потерь трансформатора тока. Правда, формула коэффициента трансформации и у него точно такая же. Кстати, в этих устройствах устанавливается ферромагнитный сердечник.

Низкий коэффициент мощности: причины и последствия

Низкий показатель приводит к максимуму устранения энергетической составляющей. Используются специальные приборы для компенсации, которые позволяют снизить потребление электричества и увеличить кпд устройства.

transformatorma2

Нагрузочные потери в элементах сети

Нагрузочные приводят к перераспределению и снижению энергетической составляющей. Уровень напряжения падает, что обуславливает значительный перегрев устройства. Следствие — потеря эффективности и работоспособности, быстрый выход оборудования из строя.

Специалист минимизируют силы нагрузочного типа. Это позволяет увеличить показатели пускового момента устройства.

Потери в силовом трансформаторе

Коэффициент, обладающий разрозненными характеристиками, вызывает уход электроэнергии. Энергия неправильно распределяется. Увеличив рассматриваемый показатель удается достигнуть необходимых характеристик. В условиях значительной стоимости энергия в современных реалиях для предприятия снижение потерь становится первостепенной задачей. Дополнительно можно подключить нагрузку.

ustrojstvo transformatorama

Источники

  • https://bulze.ru/otoplenie-drugoe/kpd-transformatora-eto.html
  • https://tyt-sxemi.ru/transformator/
  • https://sesaga.ru/ustrojstvo-i-princip-raboty-transformatora.html
  • https://OTransformatore.ru/vopros-otvet/znachenie-i-raschet-koeffitsienta-moshhnosti-transformatora/
  • https://OTransformatore.ru/vopros-otvet/polnaya-moshhnost-transformatora/
  • https://StBel.ru/chto-novogo/raschet-transformatora-po-secheniyu-serdechnika.html

Как вам статья?

Павел

Павел

Бакалавр «210400 Радиотехника» – ТУСУР. Томский государственный университет систем управления и радиоэлектроники

Написать

Пишите свои рекомендации и задавайте вопросы

Понравилась статья? Поделить с друзьями:
  • Как исправить пинг в стандофф
  • Как найти серых стражей
  • Как составить полилог образец
  • Чат рулетка вы запретили доступ к вашим устройствам как исправить яндекс браузер
  • Как составить фельетон