Как найти полную площадь куба с сечением

Определение куба

Куб (или гексаэдр) — это правильный многогранник, который состоит из многоугольников, являющихся квадратами.

Онлайн-калькулятор площади поверхности куба

площадь треугольника

У куба есть двенадцать ребер, то есть, отрезков, которые являются сторонами квадратов.
Также он имеет восемь вершин и шесть граней.
У куба есть диагональ, соединяющая противоположные вершины.

Формула площади поверхности куба

Площадь поверхности куба – это сумма площадей всех его граней:

S=S1+S2+S3+S4+S5+S6S=S_1+S_2+S_3+S_4+S_5+S_6

Площадь каждой грани одинакова, то есть:

S1=S2=S3=S4=S5=S6=S′S_1=S_2=S_3=S_4=S_5=S_6=S’

S′S’ — площадь любой грани куба.

Тогда полная площадь поверхности куба запишется как:

S=6⋅S′S=6cdot S’

Рассмотрим на примерах разные способы вычисления полной площади поверхности куба.

Формула площади поверхности куба по длине ребра куба

Площадь каждой грани куба вычисляется как площадь квадрата, со стороной ребра куба по формуле:

S′=a⋅a=a2S’=acdot a=a^2

aa — сторона куба.

Отсюда, окончательно площадь поверхности куба:

S=6⋅a2S=6cdot a^2

aa — длина стороны куба.

Пример

Найти площадь поверхности куба, если длина его ребра равна 12 (см.).

Решение

a=12a=12

S=6⋅a2=6⋅122=6⋅144=864S=6cdot a^2=6cdot 12^2=6cdot 144=864 (см. кв.)

Ответ: 864 см. кв.

Формула площади поверхности куба по диагонали куба

По теореме Пифагора, диагональ куба связанна с длиной его ребра по формуле:

d2=a2+a2+a2d^2=a^2+a^2+a^2
d2=3⋅a2d^2=3cdot a^2
d=3⋅ad=sqrt{3}cdot a

Отсюда:

a=d3a=frac{d}{sqrt{3}}

Подставим в формулу для площади:

S=6⋅a2=6⋅(d3)2=2⋅d2S=6cdot a^2=6cdotBig(frac{d}{sqrt{3}}Big)^2=2cdot d^2

S=2⋅d2S=2cdot d^2

dd — диагональ куба.

Пример

Одна четвертая часть диагонали куба равна 2 (см.). Найти площадь поверхности куба.

Решение

14⋅d=2frac{1}{4}cdot d=2

Найдем диагональ:

d=4⋅2=8d=4cdot 2=8

Площадь:

S=2⋅d2=2⋅82=2⋅64=128S=2cdot d^2=2cdot 8^2=2cdot 64=128 (см. кв.)

Ответ: 128 см. кв.

Формула площади поверхности куба по длине диагонали квадрата (грани куба)

По теореме Пифагора, диагональ квадрата ll связанна с его стороной aa:

l2=a2+a2l^2=a^2+a^2
l2=2⋅a2l^2=2cdot a^2
l=2⋅al=sqrt{2}cdot a

Тогда сторона квадрата:

a=l2a=frac{l}{sqrt{2}}

Подставляем в формулу для площади и получаем:

S=6⋅a2=3⋅l2S=6cdot a^2=3cdot l^2

S=3⋅l2S=3cdot l^2

ll — диагональ квадрата (грани куба).

Пример

Одна четвертая часть диагонали квадрата равна 1 (см). Найти площадь поверхности куба, образованного данным четырехугольником.

Решение

14⋅l=1frac{1}{4}cdot l=1

Найдем диагональ квадрата:

l=4⋅1=4l=4cdot 1=4

Тогда площадь:

S=3⋅l2=3⋅42=48S=3cdot l^2=3cdot 4^2=48 (см. кв.)

Ответ: 48 см. кв.

Разберем более сложные примеры.

Формула площади поверхности куба по площади вписанного в куб шара

В куб вписан шар площади SшарS_{text{шар}}. Тогда радиус RR этого шара равен половине длины стороны куба aa:

R=a2R=frac{a}{2}

Площадь шара дается формулой:

Sшар=4⋅π⋅R2S_{text{шар}}=4cdotpicdot R^2

Отсюда найдем радиус шара:

R=Sшар4⋅πR=sqrt{frac{S_{text{шар}}}{4cdotpi}}

Сторона грани куба:

a=2⋅R=2⋅Sшар4⋅πa=2cdot R=2cdotsqrt{frac{S_{text{шар}}}{4cdotpi}}

Наконец площадь поверхности куба:

S=6⋅a2=6⋅SшарπS=6cdot a^2=frac{6cdot S_{text{шар}}}{pi}

S=6⋅SшарπS=frac{6cdot S_{text{шар}}}{pi}

SшарS_{text{шар}} — площадь шара, вписанного в куб.

Пример

В куб вписан шар, площадь которого равна 64 “пи” (см. кв.). Найти полную площадь поверхности куба.

Решение

Sшар=64πS_{text{шар}}=64pi

По формуле:

S=6⋅Sшарπ=6⋅64⋅ππ=384S=frac{6cdot S_{text{шар}}}{pi}=frac{6cdot 64cdotpi}{pi}=384 (см. кв.)

Ответ: 384 см. кв.

Не знаете, кто сможет решить контрольную работу на заказ для вас? Наши эксперты с удовольствием окажут вам помощь!

Тест по теме “Площадь поверхности куба”

Площадь куба, формула площади куба, найти площадь куба онлайн. Площадь сечения куба, формула площади сечения куба.

  • Формула площади куба

    Для того, чтобы перейти к теме «формулы площади куба» — давайте нарисуем или предоставим, что такое куб.

    Куб — это фигура с одинаковыми сторонами, угол между которыми равен 90°.

    Формула площади куба

    Формула площади куба звучит так :

    Если сторона куба — «а».

    Площадь куба равна 6 умноженное на а²

    Формула площади куба звучит так :

  • Доказательство формулы площади куба

    Для того, чтобы доказать формулу «площади куба» Вам потребуется

    Взглянуть на куб и вы увидите, что количество сторон куба — 6. И каждая сторона куба состоит из квадрата, со стороной «а».

    Вы знаете площадь квадрата, которая выражается формулой:

    S = a²

    Выше вы уже сказали, что сторон у куба 6, то нужно площадь одного квадрата умножить на 6.

    Доказательство формулы площади куба

    Вывод доказательства формулы куба:

    Вы доказали, что «Площадь куба равна 6 умноженное на а²«

  • Задача : найдите площадь куба, если известна сторона.

    Условие задачи :

    Найдите площадь куба. если известна сторона куба, которая равна 5см.

    Вспоминаем уже приведенную формулу куба :

    Задача : найдите площадь куба, если известна сторона.

    И букву a — сторону куба заменяем на наше значение — 5см

    S = 6a² = 6 * 5² = 6 * 25 = 150
    Ответ:

    Если сторона куба равна 5см, то площадь куба равна 150см²

    Для проверки правильности решения задачи «найдите площадь куба, если известна сторона» — воспользуйтесь онлайн калькулятором «подсчета площади куба» — см. ниже:

  • Найти площадь куба онлайн

    Для того чтобы найти площадь куба онлайн, вам потребуется :

    Форма для подсчета площади куба онлайн

    Сторона куба — заполнить значением стороны куба.

    И нажать кнопку найти площадь куба.

  • Формула площади сечения куба

    Сформулируем «формулу площади сечения куба» начнем…

    Если сторона куба — — «а».

    То формула площади сечения куба звучит так:

    Сечение площади куба равно произведению квадрата стороны на корень из двух.

    Формула площади сечения куба

  • Доказательство формулы площади сечения куба

    Выше Вы рассмотрели формулу «площади сечения куба«, теперь… давайте докажем «формулу площади сечения куба«.

    Нам нужно найти диагональ треугольника ABC — что будет одной из сторон сечения куба.

    Доказательство формулы площади сечения куба

    Вспоминаем теорию Пифагора

    с² = а² + b²

    Если мы переведем в наши буквенные обозначения, для нашего треугольника, то:

    BC² = AB² + AC²

    В нашем случае «AB = AC= a» — из чего получаем :

    BC² = а² + а² = 2а²

    Теперь извлекаем корень с двух сторон:

    BC² = √2а²

    Мы нашли одну сторону сечения куба:

    BC = а√2

    Мы нашли сторону сечения куба это — BC

    Теперь мы можем построить сечение куба:

    Доказательство формулы площади сечения куба

    Т.е нам нужно найти площадь прямоугольника BCDE.

    Площадь прямоугольника равна :

    S = BC * CD

    Выше, мы уже нашли BC = а√2

    Как мы знаем из условия, что это куб, а у куба все стороны равны, то CD = «a».

    Заменяем BC и CD.

    S = а√2 * a = a²√2

  • Найти площадь сечения куба онлайн

    Для того, чтобы найти площадь сечения куба онлайн нам понадобится формула площади сечения куба и немного вернуться к теории, чтобы…

    добавить ясности, как видим, что в формуле присутствует корень из 2, что равно:

    1.4142135623731

    И далее к форме:

    Форма для подсчета площади сечения куба

    Для того, чтобы подсчитать «площадь сечения куба» вам понадобится:

    В первом поле выбираем диапазон числа(см. выше), диапазон от 1 до 13, который будет показывать ваш выбор сколько чисел после запятой оставить!

    Во втором поле вбиваем размер стороны куба.

    И далее вам остается подсчитать площадь сечения куба онлайн! Нажимаем кнопку — «найти площадь сечения куба«.

  • Задача: площадь сечения куба

    Условие задачи :

    Задача : найдите площадь сечения куба.

    Найдите площадь сечения куба, если известна сторона, которая равна 10см.

    Для решения данной задачи, нам потребуется знать формулу сечения площади куба

    Вспоминаем площадь сечения куба:

    S = a²√2

    Заменяем а на 10, корень квадратный из 2 округлим до 1.4 :

    S = 10²√2 = 100 * 1.4 = 140см².

    Более точные вычисления «площади сечения куба » вы можете произвести в форме выше пунктом!

    Как найти площадь сечения куба формула.

    Задачи на построение сечений куба плоскостью, как правило, проще чем, например, задачи на сечения пирамиды.

    Провести прямую можем через две точки, если они лежат в одной плоскости. При построении сечений куба возможен еще один вариант построения следа секущей плоскости. Поскольку две параллельные плоскости третья плоскость пересекает по параллельным прямым, то, если в одной из граней уже построена прямая, а в другой есть точка, через которую проходит сечение, то можем провести через эту точку прямую, параллельную данной.

    Рассмотрим на конкретных примерах, как построить сечения куба плоскостью.

    1) Построить сечение куба плоскостью, проходящей через точки A, C и M.

    Задачи такого вида — самые простые из всех задач на построение сечений куба. Поскольку точки A и C лежат в одной плоскости (ABC), то через них можем провести прямую. Ее след — отрезок AC. Он невидим, поэтому изображаем AC штрихом. Аналогично соединяем точки M и C, лежащие в одной плоскости (CDD1), и точки A и M, которые лежат в одной плоскости (ADD1).

    Треугольник ACM — искомое сечение.

    2) Построить сечение куба плоскостью, проходящей через точки M, N, P.

    Здесь только точки M и N лежат в одной плоскости (ADD1), поэтому проводим через них прямую и получаем след MN (невидимый). Поскольку противолежащие грани куба лежат в параллельных плоскостях, то секущая плоскость пересекает параллельные плоскости (ADD1) и (BCC1) по параллельным прямым. Одну из параллельных прямых мы уже построили — это MN.

    Через точку P проводим прямую, параллельную MN. Она пересекает ребро BB1 в точке S. PS — след секущей плоскости в грани (BCC1).

    Проводим прямую через точки M и S, лежащие в одной плоскости (ABB1). Получили след MS (видимый).

    Плоскости (ABB1) и (CDD1) параллельны. В плоскости (ABB1) уже есть прямая MS, поэтому через точку N в плоскости (CDD1) проводим прямую, параллельную MS. Эта прямая пересекает ребро D1C1 в точке L. Ее след — NL (невидимый). Точки P и L лежат в одной плоскости (A1B1C1), поэтому проводим через них прямую.

    Пятиугольник MNLPS — искомое сечение.

    3) Построить сечение куба плоскостью, проходящей через точки M, N, P.

    Точки M и N лежат в одной плоскости (ВСС1), поэтому через них можно провести прямую. Получаем след MN (видимый). Плоскость (BCC1) параллельна плоскости (ADD1),поэтому через точку P, лежащую в (ADD1), проводим прямую, параллельную MN. Она пересекает ребро AD в точке E. Получили след PE (невидимый).

    Больше нет точек, лежащей в одной плоскости, или прямой и точки в параллельных плоскостях. Поэтому надо продолжить одну из уже имеющихся прямых, чтобы получить дополнительную точку.

    Если продолжать прямую MN, то, поскольку она лежит в плоскости (BCC1), нужно искать точку пересечения MN с одной из прямых этой плоскости. С CC1 и B1C1 точки пересечения уже есть — это M и N. Остаются прямые BC и BB1. Продолжим BC и MN до пересечения в точке K. Точка K лежит на прямой BC, значит, она принадлежит плоскости (ABC), поэтому через нее и точку E, лежащую в этой плоскости, можем провести прямую.

    Она пересекает ребро CD в точке H. EH -ее след (невидимый). Поскольку H и N лежат в одной плоскости (CDD1), через них можно провести прямую. Получаем след HN (невидимый).

    Плоскости (ABC) и (A1B1C1) параллельны. В одной из них есть прямая EH, в другой — точка M. Можем провести через M прямую, параллельную EH. Получаем след MF (видимый). Проводим прямую через точки M и F.

    Шестиугольник MNHEPF — искомое сечение.

    Если бы мы продолжили прямую MN до пересечения с другой прямой плоскости (BCC1), с BB1, то получили бы точку G, принадлежащую плоскости (ABB1). А значит, через G и P можно провести прямую, след которой PF. Далее — проводим прямые через точки, лежащие в параллельных плоскостях, и приходим к тому же результату.

    Работа с прямой PE дает то же сечение MNHEPF.

    4) Построить сечение куба плоскостью, проходящей через точку M, N, P.

    Здесь можем провести прямую через точки M и N, лежащие в одной плоскости (A1B1C1). Ее след — MN (видимый). Больше нет точек, лежащих в одной плоскости либо в параллельных плоскостях.

    Продолжим прямую MN. Она лежит в плоскости (A1B1C1), поэтому пересечься может только с одной из прямых этой плоскости. С A1D1 и C1D1 точки пересечения уже есть — N и M. Еще две прямые этой плоскости — A1B1 и B1C1. Точка пересечения A1B1 и MN — S. Поскольку она лежит на прямой A1B1, то принадлежит плоскости (ABB1), а значит, через нее и точку P, лежащую в этой же плоскости, можно провести прямую. Прямая PS пересекает ребро AA1 в точке E. PE — ее след (видимый). Через точки N и E, лежащие в одной плоскости (ADD1), можно провести прямую, след которой — NE (невидимый). В плоскости (ADD1) есть прямая NE, в параллельной ей плоскости (BCC1) — точка P. Через точку P можем провести прямую PL, параллельную NE. Она пересекает ребро CC1 в точке L. PL — след этой прямой (видимый). Точки M и L лежат в одной плоскости (CDD1), значит, через них можно провести прямую. Ее след — ML (невидимый). Пятиугольник MLPEN — искомое сечение.

    Можно было продолжать прямую NM в обе стороны и искать ее точки пересечения не только с прямой A1B1, но и с прямой B1C1, также лежащей в плоскости (A1B1C1). В этом случае через точку P проводим сразу две прямые: одну — в плоскости (ABB1) через точки P и S, а вторую — в плоскости (BCC1), через точки P и R. После чего остается соединить лежащие в одной плоскости точки: M c L, E — с N.

    Инструкция

    Способ расчета площади сечения также зависит от данных, которые уже имеются в задаче. Кроме этого, решение определяется тем, что лежит в основании призмы. Если необходимо найти диагональное сечение призмы, найдите длину диагонали, которая равна корню из суммы (основания сторон ). Например, если основания 3 см и 4 см, соответственно, длина диагонали равна корню из (4х4+3х3)= 5 см. Площадь диагонального сечения найдите по формуле: диагональ основания умножить на высоту.

    Если в основании призмы треугольник, для вычисления площади сечения призмы используйте формулу: 1/2 часть основания треугольника умножить на высоту.

    Различают следующие виды призм — правильные и прямые. Если необходимо найти сечение правильной призмы, вам нужно знать длину только одной из сторон многоугольника, ведь в основании лежит квадрат, у которого все стороны равны. Найдите диагональ квадрата, которая равна произведению его стороны на корень из двух. После этого перемножив диагональ , вы получите площадь сечения правильной призмы.

    Призма имеет свои . Так, площадь боковой поверхности произвольной призмы вычисляется по формуле, где — периметр перпендикулярного сечения, — длина бокового ребра. При этом перпендикулярное сечение перпендикулярно ко всем боковым ребрам призмы, а его углы — это линейные углы двугранных углов при соответствующих боковых ребрах. Перпендикулярное сечение перпендикулярно и ко всем боковым граням.

    Источники:

    • диагональное сечение призмы

    Осевым называется сечение, которое проходит через ось геометрического тела, образованного при вращении некой геометрической фигуры. Цилиндр получается в результате вращения прямоугольника вокруг одной из сторон, и этим обусловлены многие его свойства. Образующие этого геометрического тела параллельны и равны между собой, что очень важно для определения параметров его осевого сечения, в том числе диагонали.

    Вам понадобится

    • — цилиндр с заданными параметрами;
    • — лист бумаги;
    • — карандаш;
    • — линейка;
    • — циркуль;
    • — теорема Пифагора;
    • — теоремы синусов и косинусов.

    Инструкция

    Постройте цилиндр согласно заданным условиям. Для того чтобы его начертить, вам необходимо знать и высоту. Однако в задаче на диагонали могут быть указаны и другие условия — например, угол между диагональю и образующей или диаметром основания. В этом случае при создании чертежа используйте тот размер, который вам задан. Остальные возьмите произвольно и укажите, что именно вам дано. Обозначьте точки пересечения оси и оснований как О и О».

    Начертите осевое сечение. Оно представляет собой прямоугольник, два стороны которого являются диаметрами оснований, а две другие — образующими. Поскольку и образующие перпендикулярны основаниям, они являются одновременно и высотами данного геометрического тела. Обозначьте получившийся прямоугольник как АВСD.

    Проведите диагонали АС и ВD. Вспомните диагоналей прямоугольника. Они равны между собой и делятся в точке пересечения пополам.

    Рассмотрите треугольник АDC. Он прямоугольный, поскольку образующая CD перпендикулярна основанию. Один представляет собой диаметр основания, второй — . Диагональ является . Вспомните, как вычисляется длина гипотенузы любого прямоугольного . Она равна квадратному корню из суммы квадратов катетов. То есть в данном случае d=√4r2+h3, где d – диагональ, r – радиус основания, а h – высота цилиндра.

    Если в задаче высота цилиндра не дана, но указан угол диагонали осевого сечения с основанием или образующей, используйте теорему синусов или косинусов. Вспомните, данные тригонометрические . Это отношения противолежащего или прилежащего заданному угол катета к гипотенузе, которую вам и нужно найти. Допустим, вам заданы высота и угол CAD между диагональю и диаметром основания. В этом случае используйте теорему синусов, поскольку угол CAD находится напротив образующей.

    2 + x — 1 = 0.

    Уравнение имеет два действительных корня, из которых нас, естественно, интересует только положительный. Он равен (√5 — 1)/2, что примерно равняется 0,618. Это число и выражает сечение. В его чаще всего обозначают буквой φ.

    Число φ обладает рядом замечательных математических свойств. Например, даже из исходного уравнения видно, что 1/φ = φ + 1. Действительно, 1/(0,618) = 1,618.

    Другой способ вычислить золотую пропорцию в использовании бесконечной дроби. Начиная с любого произвольного x, можно последовательно построить дробь:

    x
    1/(x + 1)
    1/(1/(x+1) + 1)
    1/(1/(1/(x+1) + 1) +1)

    Для облегчения вычислений эту дробь можно представить в виде итеративной , в которой для вычисления следующего шага нужно прибавить единицу к результату предыдущего шага и разделить единицу на получившееся число. Иными словами:

    x0 = x
    x(n + 1) = 1/(xn + 1).

    Этот процесс сходится, и его предел равен φ + 1.

    Если заменить вычисление обратной величины извлечением квадратного корня, то есть провести итеративный цикл:

    x0 = x
    x(n + 1) = √(xn + 1),

    то результат останется неизменным: независимо от изначально выбранного x итерации сходятся к значению φ + 1.

    Геометрически золотое сечение можно построить при помощи правильного пятиугольника. Если провести в нем две пересекающиеся диагонали, то каждая из них разделит другую строго в золотом соотношении. Это наблюдение, согласно преданию, принадлежит Пифагору, который был так потрясен найденной закономерностью, что счел правильную пятиконечную звезду (пентаграмму) священным божественным символом.

    Причины, по которым именно золотое сечение кажется наиболее гармоничным, неизвестны. Однако неоднократно подтверждали, что испытуемые, которым было поручено наиболее красиво разделить отрезок на две неравные части, это в пропорциях, весьма к золотому соотношению.

    Вопрос относится к аналитической геометрии. Он решается с привлечением уравнений пространственных прямых и плоскостей, понятия куба и его геометрических свойств, а также с использованием векторной алгебры. Могут понадобиться способы рения систем линейных уравнений.

    Инструкция

    Выберите условия задачи так, чтобы они были исчерпывающими, но не избыточными. Секущую плоскость α следует задать общим уравнением вида Ax+By+Cz+D=0, что наилучшим образом согласуется с произвольным его выбором. Для задания куба хватит координат любых трех его вершин. Возьмите, например, точки M1(x1,y1,z1), M2(x2,y2,z2), M3(x3,y3,z3), в соответствии с рисунком 1. На этом рисунке проиллюстрировано сечение куба. Оно пересекает два боковых ребра и три ребра оснований.

    Определитесь с планом дальнейшей работы. Предстоит искать координаты точек Q, L, N, W, R пересечения сечения с соответствующими ребрами куба. Для этого придется находить уравнения прямых, содержащих эти ребра, и искать точки пересечения ребер с плоскостью α. После этого последует разбиение QLNWR на треугольники (см. рис. 2) и вычисление пощади каждого из них с помощью свойств векторного произведения. Методика каждый раз одна и та же. Поэтому можно ограничиться точками Q и L и площадью треугольника ∆QLN.

    Направляющий вектор h прямой, содержащий ребро М1М5 (и точку Q), найдите как векторное произведение M1M2={x2-x1, y2-y1, z2-z1} и M2M3={x3-x2, y3-y2, z3-z2}, h={m1, n1, p1}=. 2). Если модуль вектора h |h|≠ρ, то замените его соответствующим коллинеарным вектором s={m, n, p}=(h/|h|)ρ. Теперь запишите уравнение прямой, содержащей М1М5 параметрически (см. рис. 3). После подстановки соответствующих выражений в уравнение секущей плоскости получите А(x1+mt)+B(y1+nt)+C(z1+pt)+D=0. Определите t, подставьте в уравнения для М1М5 и запишите координаты точки Q(qx, qy, qz) (рис. 3).

    Очевидно, что точка М5 имеет координаты М5(x1+m, y1+n, z1+p). Направляющий вектор для прямой, содержащей ребро М5М8 совпадает с М2М3={x3-x2, y3-y2,z3-z2}. Затем повторите предыдущие рассуждения L(lx, ly, lz) (см. рис. 4). Все дальнейшее, для N(nx, ny, nz) – копия это шага.

    формула через ребро и диагональ грани

    Sign in

    Password recovery

    Восстановите свой пароль

    Ваш адрес электронной почты

    MicroExcel.ru Математика Геометрия Нахождение площади поверхности куба: формула и задачи

    В данной публикации мы рассмотрим, как можно найти площадь поверхности куба и разберем примеры решения задач для закрепления материала.

    • Формула вычисления площади куба
      • 1. Через длину ребра
      • 2. Через длину диагонали грани
    • Примеры задач

    Формула вычисления площади куба

    1. Через длину ребра

    Площадь (S) поверхности куба равна произведению числа 6 на длину его ребра в квадрате.

    S = 6 ⋅ a2

    Данная формула получена следующим образом:

    • Куб – это правильная геометрическая фигура, все грани которого являются равными квадратами с длиной стороны a (одновременно является ребром куба).
    • Площадь каждой грани считается так: S = a ⋅ a = a2.
    • Всего у куба 6 граней, а значит, площадь его поверхности равняется шести площадям одной грани: S = 6 ⋅ a2.

    2. Через длину диагонали грани

    Сторона любой грани куба (ребро) может быть рассчитана через длину ее диагонали по формуле: a=d/√2.

    Это значит, что вычислить площадь поверхности фигуры можно так:

    S = 6 ⋅ (d/√2)2

    Примеры задач

    Задание 1
    Найдите площадь поверхности куба, если длина его ребра составляет 12 см.

    Решение:
    Используем первую формулу выше и получаем:
    S = 6 ⋅ (12 см)2 = 864 см2.

    Задание 2
    Площадь поверхности куба равняется 294 см2. Вычислите длину его ребра.

    Решение:
    Примем ребро куба за a. Из формулы расчета площади следует:

    Задание 3
    Вычислите площадь поверхности куба, если диагональ его грани равняется 5 см.

    Решение:
    Воспользуемся формулой, в которой задействована длина диагонали:
    S = 6 ⋅ (5 см : √2)2 = 75 см2.

    ЧАЩЕ ВСЕГО ЗАПРАШИВАЮТ

    Таблица знаков зодиака

    Нахождение площади трапеции: формула и примеры

    Нахождение длины окружности: формула и задачи

    Римские цифры: таблицы

    Таблица синусов

    Тригонометрическая функция: Тангенс угла (tg)

    Нахождение площади ромба: формула и примеры

    Нахождение объема цилиндра: формула и задачи

    Тригонометрическая функция: Синус угла (sin)

    Геометрическая фигура: треугольник

    Нахождение объема шара: формула и задачи

    Тригонометрическая функция: Косинус угла (cos)

    Нахождение объема конуса: формула и задачи

    Таблица сложения чисел

    Нахождение площади квадрата: формула и примеры

    Что такое тетраэдр: определение, виды, формулы площади и объема

    Нахождение объема пирамиды: формула и задачи

    Признаки подобия треугольников

    Нахождение периметра прямоугольника: формула и задачи

    Формула Герона для треугольника

    Что такое средняя линия треугольника

    Нахождение площади треугольника: формула и примеры

    Нахождение площади поверхности конуса: формула и задачи

    Что такое прямоугольник: определение, свойства, признаки, формулы

    Разность кубов: формула и примеры

    Степени натуральных чисел

    Нахождение площади правильного шестиугольника: формула и примеры

    Тригонометрические значения углов: sin, cos, tg, ctg

    Нахождение периметра квадрата: формула и задачи

    Теорема Фалеса: формулировка и пример решения задачи

    Сумма кубов: формула и примеры

    Нахождение объема куба: формула и задачи

    Куб разности: формула и примеры

    Нахождение площади шарового сегмента

    Что такое окружность: определение, свойства, формулы

    Как рассчитать площадь поперечного сечения

    Обновлено 7 февраля 2020 г.

    Кевин Бек

    Вы можете столкнуться с ситуациями, когда у вас есть трехмерная твердотельная фигура и вам нужно вычислить площадь воображаемой плоскости, вставленной через фигуру и имеющей границы, определяемые границами твердого тела.

    Например, если под вашим домом проходит цилиндрическая труба длиной 20 м (м) и диаметром 0,15 м, вам может понадобиться узнать площадь поперечного сечения трубы.

    Поперечные сечения могут быть перпендикулярны оси твердого тела, если таковые существуют. В случае сферы любая секущая плоскость, проходящая через сферу, независимо от ориентации, приведет к диску определенного размера.

    Площадь поперечного сечения зависит от формы твердого тела, определяющей границы поперечного сечения, и угла между осью симметрии твердого тела (если она есть) и плоскостью, создающей поперечное сечение.

    Площадь поперечного сечения прямоугольного тела

    Объем любого прямоугольного тела, включая куб, равен площади его основания (длина, умноженная на ширину), умноженной на его высоту: V = l × w × h.

    Следовательно, если поперечное сечение параллельно верхней или нижней части твердого тела, площадь поперечного сечения равна l × w. Если секущая плоскость параллельна одному из двух наборов сторон, площадь поперечного сечения вместо этого определяется как l × h или w × h.

    Если поперечное сечение не перпендикулярно какой-либо оси симметрии, созданная форма может быть треугольником (если поместить его через угол твердого тела) или даже шестиугольником.

    Пример: Вычислить площадь поперечного сечения плоскости, перпендикулярной основанию куба объемом 27 м 3 .

    • Так как для куба l = w = h, длина любого ребра куба должна быть 3 м (поскольку 3

      × 3

      × 3 = 27). Таким образом, поперечное сечение описанного типа представляет собой квадрат со стороной 3 м, что дает площадь 9 м 2 .

    Площадь поперечного сечения цилиндра

    Цилиндр представляет собой твердое тело, образованное путем вытягивания окружности через пространство перпендикулярно ее диаметру. Площадь круга находится по формуле πr 2 , где r — радиус. Поэтому имеет смысл, что объем цилиндра будет площадью одной из окружностей, образующих его основание.

    Если поперечное сечение параллельно оси симметрии, то площадь поперечного сечения представляет собой просто круг площадью πr 2 . Если секущая плоскость вставляется под другим углом, создается эллипс. Для площади используется соответствующая формула: πab (где а — самое большое расстояние от центра эллипса до края, а b — самое короткое).

    Пример: Какова площадь поперечного сечения трубы под вашим домом, описанной во введении?

    Площадь поперечного сечения сферы

    Любая теоретическая плоскость, проведенная через сферу, даст круг (подумайте об этом несколько минут). Если вы знаете диаметр или длину окружности, образуемой поперечным сечением, вы можете использовать соотношения C = 2πr и A = πr 2 для получения решения.

    Пример 900:12: Самолет грубо вставлен в Землю очень близко к Северному полюсу, удаляя часть планеты на 10 м вокруг. Какова площадь поперечного сечения этого холодного куска Земли?

    • Поскольку C = 2πr = 10 м, r = 10/2π = 1,59 м; A = πr 2 = π(1,59) 2 = 7,96 м 2 .

    Как рассчитать высоту по объему

    ••• wutwhanfoto/iStock/GettyImages

    Обновлено 30 апреля 2018 г.

    Автор: Chance E. Gartneer

    Высота является интегральным размером при определении объема объекта. Чтобы найти измерение высоты объекта, вам нужно знать его геометрическую форму, такую ​​как куб, прямоугольник или пирамида. Один из самых простых способов думать о высоте, поскольку она соответствует объему, — это думать о других измерениях как о базовой площади. Высота — это просто множество базовых областей, сложенных друг на друга. Формулы объема отдельных объектов можно изменить для расчета высоты. Математики давно вывели формулы объема для всех известных геометрических фигур. В некоторых случаях, например, в случае с кубом, определить высоту несложно; в других требуется немного простой алгебры.

    Высота прямоугольных объектов

    Формула объема сплошного прямоугольника: ширина x глубина x высота. Разделите объем на произведение длины и ширины, чтобы вычислить высоту прямоугольного объекта. В этом примере прямоугольный объект имеет длину 20, ширину 10 и объем 6000. Произведение 20 и 10 равно 200, а 6000, разделенное на 200, дает 30. Высота объекта равна 30.

    Высота куба

    Куб — это разновидность прямоугольника, у которого все стороны одинаковы. Итак, чтобы найти объем, возведите в куб длину любой стороны. Чтобы найти высоту, вычислите кубический корень из объема куба. В этом примере объем куба равен 27. Кубический корень из 27 равен 3. Высота куба равна 3,9.2) умножить на высоту. Разделите объем цилиндра на квадрат радиуса, умноженный на число Пи, чтобы вычислить его высоту. В этом примере объем цилиндра равен 300, а радиус равен 3. Возведение 3 в квадрат дает 9, а умножение 9 на число пи дает 28,274. Разделив 300 на 28,274, мы получим 10,61. Высота цилиндра 10,61.

    Высота пирамиды

    Квадратная пирамида имеет плоское квадратное основание и четыре треугольные стороны, которые сходятся в точке на вершине. Формула объема: длина x ширина x высота ÷ 3. Утройте объем пирамиды, а затем разделите полученную сумму на площадь основания, чтобы вычислить ее высоту. Например, объем пирамиды равен 200, а площадь ее основания равна 30. Умножение 200 на 3 дает 600, а деление 600 на 30 дает 20. Высота пирамиды 20,9.0003

    Высота призмы

    Геометрия описывает несколько различных видов призм: одни имеют прямоугольные основания, другие — треугольные. В любом случае поперечное сечение на всем протяжении одинаково, как и у цилиндра. Объем призмы равен произведению площади основания на высоту. Итак, чтобы вычислить высоту, разделите объем призмы на площадь ее основания.

    В данной публикации мы рассмотрим, как можно найти площадь поверхности куба и разберем примеры решения задач для закрепления материала.

    • Формула вычисления площади куба

      • 1. Через длину ребра

      • 2. Через длину диагонали грани

    • Примеры задач

    Формула вычисления площади куба

    1. Через длину ребра

    Площадь (S) поверхности куба равна произведению числа 6 на длину его ребра в квадрате.

    S = 6 ⋅ a2

    Площадь поверхности куба через длину ребра

    Данная формула получена следующим образом:

    • Куб – это правильная геометрическая фигура, все грани которого являются равными квадратами с длиной стороны a (одновременно является ребром куба).
    • Площадь каждой грани считается так: S = a ⋅ a = a2.
    • Всего у куба 6 граней, а значит, площадь его поверхности равняется шести площадям одной грани: S = 6 ⋅ a2.

    2. Через длину диагонали грани

    Сторона любой грани куба (ребро) может быть рассчитана через длину ее диагонали по формуле: a=d/√2.

    Площадь поверхности куба через диагональ грани

    Это значит, что вычислить площадь поверхности фигуры можно так:

    S = 6 ⋅ (d/√2)2

    Примеры задач

    Задание 1
    Найдите площадь поверхности куба, если длина его ребра составляет 12 см.

    Решение:
    Используем первую формулу выше и получаем:
    S = 6 ⋅ (12 см)2 = 864 см2.

    Задание 2
    Площадь поверхности куба равняется 294 см2. Вычислите длину его ребра.

    Решение:
    Примем ребро куба за a. Из формулы расчета площади следует:
    Расчет длины ребра куба из площади его поверхности

    Задание 3
    Вычислите площадь поверхности куба, если диагональ его грани равняется 5 см.

    Решение:
    Воспользуемся формулой, в которой задействована длина диагонали:
    S = 6 ⋅ (5 см : √2)2 = 75 см2.

    Куб — удивительная фигура. Он одинаковый со всех сторон. Любая его грань может вмиг стать основанием или боковой. И от этого ничего не изменится. А формулы для него всегда легко запоминаются.

    И неважно, что нужно найти — объем или площадь поверхности куба. В последнем случае даже не нужно учить что-то новое. Достаточно помнить только формулу площади квадрата.

    Что такое площадь?

    Площадь поверхности куба, формулы и примеры

    Эту величину принято обозначать латинской буквой S. Причем это справедливо для школьных предметов, таких как физика и математика. Измеряется она в квадратных единицах длины.

    Все зависит от данных в задаче величин. Это могут быть мм, см, м или км в квадрате. Причем возможны случаи, когда единицы даже не указаны. Идет речь просто о числовом выражении площади без наименования.

    Так что же такое площадь? Это величина, которая является числовой характеристикой рассматриваемой фигуры или объемного тела. Она показывает размер ее поверхности, которая ограничена сторонами фигуры.

    Какая фигура называется кубом?

    Площадь поверхности куба, формулы и примеры

    Эта фигура является многогранником. Причем непростым. Он правильный, то есть у него все элементы равны друг другу. Будь то стороны или грани. Каждая поверхность куба представляет собой квадрат.

    Другое название куба — правильный гексаэдр, если по-русски, то шестигранник. Он может быть образован из четырехугольной призмы или параллелепипеда. При соблюдении условия, когда все ребра равны и углы образуют 90 градусов.

    Эта фигура настолько гармонична, что часто используется в быту. Например, первые игрушки малыша — кубики. А забава для тех, кто постарше, — кубик Рубика.

    Как связан куб с другими фигурами и телами?

    Площадь поверхности куба, формулы и примеры

    Если начертить сечение куба, которое проходит через три его грани, то оно будет иметь вид треугольника. По мере удаления от вершины сечение будет все больше.

    Настанет момент, когда пересекаться будут уже 4 грани, и фигура в сечении станет четырехугольником.

    Если провести сечение через центр куба так, чтобы оно было перпендикулярно его главным диагоналям, то получится правильный шестиугольник.

    Внутри куба можно начертить тетраэдр (треугольную пирамиду). За вершину тетраэдра берется один из его углов. Остальные три совпадут с вершинами, которые лежат на противоположных концах ребер выбранного угла куба.

    В него можно вписать октаэдр (выпуклый правильный многогранник, который похож на две соединенные пирамиды). Для этого нужно найти центры всех граней куба. Они будут вершинами октаэдра.

    Возможна и обратная операция, то есть внутрь октаэдра реально вписать куб. Только теперь центры граней первого станут вершинами для второго.

    Метод 1: вычисление площади куба по его ребру

    Для того чтобы вычислить всю площадь поверхности куба, потребуется знание одного из его элементов. Самый простой способ решения, когда известно его ребро или, другими словами, сторона квадрата, из которого он состоит. Обычно эта величина обозначается латинской буквой «а».

    Теперь нужно вспомнить формулу, по которой вычисляется площадь квадрата. Чтобы не запутаться, введено ее обозначение буквой S1.

    Площадь поверхности куба, формулы и примеры

    Для удобства лучше задать номера всем формулам. Эта будет первой. Но это площадь только одного квадратика. Всего их шесть: 4 по бокам и 2 снизу и сверху. Тогда площадь поверхности куба вычисляется по такой формуле: S = 6 * a2. Ее номер 2.

    Площадь поверхности куба, формулы и примерыПлощадь поверхности куба, формулы и примеры

    Метод 2: как вычислить площадь, если известен объем тела

    Этот способ сводится к тому, чтобы сосчитать длину ребра по известному объему. И потом уже воспользоваться известной формулой, которая здесь обозначена цифрой 2.

    Из математического выражения для объема гексаэдра выводится то, по которому можно сосчитать длину ребра. Вот она:

    Площадь поверхности куба, формулы и примеры

    • Нумерация продолжается, и здесь уже цифра 3.
    • Теперь его можно вычислить и подставить во вторую формулу. Если действовать по нормам математики, то нужно вывести такое выражение:

    Площадь поверхности куба, формулы и примеры

    Это формула площади всей поверхности куба, которой можно воспользоваться, если известен объем. Номер этой записи 4.

    Метод 3: расчет площади по диагонали куба

    Для того чтобы рассчитать площадь полной поверхности куба, также потребуется вывести ребро через известную диагональ. Здесь используется формула для главной диагонали гексаэдра:

    Площадь поверхности куба, формулы и примеры

    1. Это формула №5.
    2. Из нее легко вывести выражение для ребра куба:

    Площадь поверхности куба, формулы и примеры

    Это шестая формула. После его вычисления можно снова воспользоваться формулой под вторым номером. Но лучше записать такую:

    Она оказывается пронумерованной цифрой 7. Если внимательно посмотреть, то можно заметить, что последняя формула удобнее, чем поэтапный расчет.

    Метод 4: как воспользоваться радиусом вписанной или описанной окружности для вычисления площади куба

    Если обозначить радиус описанной около гексаэдра окружности буквой R, то площадь поверхности куба будет легко вычислить по такой формуле:

    Ее порядковый номер 8. Она легко получается благодаря тому, что диаметр окружности полностью совпадает с главной диагональю.

    Несколько слов о боковой поверхности гексаэдра

    Если в задаче требуется найти площадь боковой поверхности куба, то нужно воспользоваться уже описанным выше приемом. Когда уже дано ребро тела, то просто площадь квадрата нужно умножить на 4. Эта цифра появилась из-за того, что боковых граней у куба всего 4. Математическая запись этого выражения такая:

    Ее номер 10. Если даны какие-то другие величины, то поступают аналогично описанным выше методам.

    Примеры задач

    Условие первой. Известна площадь поверхности куба. Она равна 200 см². Необходимо вычислить главную диагональ куба.

    Решение:

    1 способ. Нужно воспользоваться формулой, которая обозначена цифрой 2. Из нее будет несложно вывести «а». Эта математическая запись будет выглядеть как квадратный корень из частного, равного S на 6. После подстановки чисел получается:

    а = √ (200/6) = √ (100/3) = 10 √3 (см).

    Пятая формула позволяет сразу вычислить главную диагональ куба. Для этого нужно значение ребра умножить на √3. Это просто. В ответе получается, что диагональ равна 10 см.

    2 способ. На случай если забылась формула для диагонали, но помнится теорема Пифагора.

    Аналогично тому, как было в первом способе, найти ребро. Потом нужно записать теорему для гипотенузы два раза: первую для треугольника на грани, вторую для того, который содержит искомую диагональ.

    х² = а² + а², где х — диагональ квадрата.

    d² = х² + а² = а² + а² + а² = 3 а². Из этой записи легко видно, как получается формула для диагонали. А дальше все расчеты будут, как в первом способе. Он немножко длиннее, но позволяет не запоминать формулу, а получить ее самостоятельно.

    Ответ: диагональ куба равна 10 см.

    Условие второй. По известной площади поверхности, которая равна 54 см2, вычислить объем куба.

    Решение:

    Пользуясь формулой под вторым номером, нужно узнать значение ребра куба. То, как это делается, подробно описано в первом способе решения предыдущей задачи. Проведя все вычисления, получим, что а = 3 см.

    Теперь нужно воспользоваться формулой для объема куба, в которой длина ребра возводится в третью степень. Значит, объем будет считаться так: V = 33 = 27 см3.

    Ответ: объем куба равен 27 см3.

    Условие третьей. Требуется найти ребро куба, для которого выполняется следующее условие. При увеличении ребра на 9 единиц площадь всей поверхности увеличивается на 594.

    Решение:

    Поскольку явных чисел в задаче не дано, только разности между тем, что было, и тем, что стало, то нужно ввести дополнительные обозначения. Это несложно. Пусть искомая величина будет равна «а». Тогда увеличенное ребро куба будет равно (а + 9).

    Зная это, нужно записать формулу для площади поверхности куба два раза. Первая — для начального значения ребра — совпадет с той, которая пронумерована цифрой 2. Вторая будет немного отличаться. В ней вместо «а» нужно записать сумму (а + 9). Так как в задаче идет речь о разности площадей, то нужно вычесть из большей площади меньшую:

    6 * (а + 9)2 — 6 * а2 = 594.

    Нужно провести преобразования. Сначала вынести за скобку 6 в левой части равенства, а потом упростить то, что останется в скобках. А именно (а + 9)2 — а2. Здесь записана разность квадратов, которую можно преобразовать так: (а + 9 — а)(а + 9 + а). После упрощения выражения получается 9(2а + 9).

    Теперь его нужно умножить на 6, то есть то число, что было перед скобкой, и приравнять к 594: 54(2а + 9) = 594. Это линейное уравнение с одной неизвестной. Его легко решить.

    Сначала нужно раскрыть скобки, а потом перенести в левую часть равенства слагаемое с неизвестной величиной, а числа — в правую. Получится уравнение: 2а = 2. Из него видно, что искомая величина равна 1.

    Ответ: а = 1.

    Источник: https://www.syl.ru/article/181412/mod_nemnogo-informatsii-o-kube-i-o-sposobah-togo-kak-vyichislit-ploschad-poverhnosti-kuba

    Формулы объема и площади поверхности. Призма, пирамида — материалы для подготовки к ЕГЭ по Математике

    Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:

    1. Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
    2. Элементарная логика.

    Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.

    Площадь поверхности куба, формулы и примеры

    Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».

    Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.

    Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.

    Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.

    Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.

    Объём куба равен . Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

    Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб 🙂

    Очевидно, их 6, поскольку у куба 6 граней.

    Иногда в задаче  надо посчитать площадь поверхности куба или призмы.

    Напомним, что площадь поверхности многогранника — это сумма площадей всех его граней.

    В некоторых задачах каждое ребро многогранника увеличили, например, в три раза. Очевидно, что при этом площадь поверхности увеличится в девять раз, а объём — в раз.

    Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше — читайте о приемах решения задач по стереометрии.

    Источник: https://ege-study.ru/ru/ege/materialy/matematika/formuly-obema/

    Калькулятор площади куба

    Куб — это правильный шестигранник, каждая грань которого является квадратом. Кубические фигуры часто встречаются в реальной жизни, поэтому на работе или в быту вам может понадобиться вычислить объем или площадь поверхности объекта, который имеет форму кубика.

    Геометрия куба

    Куб или правильный гексаэдр — это частный случай шестигранной прямоугольной призмы, все грани которой представляют собой квадраты. Кроме того, куб — это и частный случай прямоугольного параллелепипеда, у которого длина, ширина и высота абсолютно равны.

    Куб — уникальная фигура, существующая в разных многомерных пространствах. К примеру, нульмерный куб — это точка, одномерный — отрезок, двухмерный — квадрат, а четырехмерный — тессеракт.

    В нашем родном трехмерном пространстве куб встречается повсеместно, к примеру, в форме детских кубиков, рафинированного сахара, картонных коробок, газетных киосков или предметов интерьера.

    Кубы широко используются в программировании, аналитике, научных изысканиях и прочих высоких материях.

    Идеальная форма геометрической фигуры позволяет при помощи разномерных кубов выражать массивы данных, измерять объемы или визуализировать данные.

    Кубические фигуры часто встречаются в реальности и абстрактных задачах, поэтому вам может понадобиться рассчитать объем или площадь поверхности кубика для решения самых разных проблем.

    Площадь поверхности куба

    Площадь кубической фигуры — это сумма площадей всех граней. Каждая грань куба — это квадрат. Площадь квадрата, то есть одной грани, определяется по простой формуле как:

    • Sg = a2

    Куб — это гексаэдр, то есть шестигранник. Таким образом, площадь поверхности кубической фигуры представляет собой сумму шести квадратов:

    • S = 6 Sg = 6 a2

    Определить площадь куба можно не только при помощи длины его ребра: для расчета площади поверхности вы можете использовать диагональ самого куба или диагональ одной грани.

    Диагональ куба — это отрезок, который находится внутри пространства куба и соединяет две противоположные вершины. Проведенная диагональ разделяет куб на два прямоугольных треугольника. Согласно теореме Пифагора квадрат ребра куба равен одной трети от квадрата диагонали D, следовательно, формула площади полной поверхности приобретает вид:

    1. S = 2 D2

    Площадь поверхности куба легко определить и с помощью диагонали одной грани. Площадь квадрата через диагональ равна:

    1. S = 0,5 d2.

    Так как у куба 6 граней, общая площадь поверхности составит сумму шести граней куба, то есть:

    1. S = 6 × 0,5 d2 = 3 d2

    Таким образом, чтобы определить площадь поверхности кубической фигуры вам достаточно ввести в форму-онлайн калькулятора всего один параметр на выбор:

    • длину ребра;
    • диагональ куба;
    • диагональ квадрата.

    Рассмотрим примеры использования данных формул в реальной жизни.

    Примеры из жизни

    Ящик

    Представьте, что вы хотите соорудить из листов ДСП ящик для хранения инструментов в форме куба. Вы знаете, что он отлично впишется в пространство на чердаке высотой 50 см.

    Сколько же квадратных метров ДСП вам понадобится для создания такого контейнера? Зная высоту, равную a = 0,5 м вы можете легко подсчитать площадь общей поверхности куба, введя данный параметр в онлайн-калькулятор. Вы получите ответ в виде:

    S = 1,5

    Таким образом, вам понадобится всего 1,5 квадратных метра ДСП для создания ящика для инструментов. Зная всего один параметр, вы без труда порежете листы на грани куба и соорудите нужную конструкцию.

    Контейнер

    Допустим, вы хотите обработать антикоррозионным покрытием грузовые контейнеры, которые имеют кубическую форму. Для правильного расчета параметров покрытия вам необходимо знать площадь обрабатываемой поверхности. Вы знаете, что диагональ грани стандартного контейнера равняется d = 3 м. Зная этот параметр, вы легко рассчитаете площадь кубической поверхности, которая равна:

    S = 18

    Зная общую площадь покрытия, вы без проблем определите необходимое количество антикоррозионной жидкости.

    Заключение

    Куб встречается в реальной жизни не так часто, как призматические фигуры или параллелепипеды, однако в любом случае вам может понадобиться удобный калькулятор, при помощи которого вы определите площадь полной поверхности кубического объекта. Наш сервис поможет решить вам бытовые, производственные или школьные задачи мгновенно и без ошибок.

    Источник: https://BBF.ru/calculators/153/

    Понравилась статья? Поделить с друзьями:
  • Как найти книжный клуб в симс
  • Как правильно составить резюме при смене сферы деятельности
  • Презентация для поставщиков как составить
  • Как составить краткосрочный бизнес план
  • Как правильно составить акт осмотра объекта