Урок геометрии по теме «Теорема Вариньона. Решение задач». 8-й класс
Класс: 8
Презентация к уроку
Загрузить презентацию (276 кБ)
Цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.
Задачи:
- Изучить теоретический материал: понятия «параллелограмм Вариньона», бимедианы четырехугольника, разобрать доказательство теоремы Вариньона и следствия из нее.
- Сравнить количество времени, необходимое для решения задач традиционным способом и, используя теорему Вариньона.
- Показать решение олимпиадных заданий с помощью параллелограмма Вариньона.
Ход урока
Введение
В 21 век, в век информационных технологий, главным ресурсом является время. Тысячи людей желают посещать тренинги, семинары и лекции по тайм-менеджменту, где бы их научили, как рационально, с минимальными потерями и максимальной пользой использовать свое время. Большую часть времени у ученика занимает обучение в школе и приготовление домашнего задания. Одним из самых сложных предметов в школе является геометрия. В частности, задачи на доказательство требуют значительной траты времени, поэтому у многих отсутствует интерес к решению подобных заданий. В теме «Четырехугольники» эту проблему может решить использование теоремы Вариньона.
Пьер Вариньон – французский математик и механик 18 века, который первым доказал, что середины сторон выпуклого четырехугольника являются вершинами параллелограмма. Эта теорема вызвала интерес у отечественных ученых лишь в 20 веке. Подробно ее применение показал украинский геометр – Г.Б.Филипповский и кандидат физико-математических наук, доцент МГУ В.В. Вавилов. В школе теорема Вариньона не входит в курс программы, но считаю изучение её необходимым.
1. Теоретическая часть
Вариньон Пьер [1] (1654–1722)
Пьер Вариньон родился во Франции в 1654 году. Обучался в иезуитском коллеже и университете в Кане, где стал магистром в 1682 году. Вариньон готовился к религиозной деятельности, но, изучая сочинения Эвклида и Декарта, увлекся математикой и механикой. Труды Вариньона посвящены теоретической механике, анализу бесконечно малых, геометрии, гидромеханике и физике. Вариньон был одним из первых ученых, ознакомивших Францию с анализом бесконечно малых. В конце 17 и начале 18 в. Вариньон руководил «Журналом ученых», в котором помещали свои работы по исчислению бесконечно малых братья Бернулли. В геометрии Вариньон изучал различные специальные кривые, в частности ввел термин «логарифмическая спираль». Главные заслуги Вариньона относятся к теоретической механике, а именно к геометрической статике. В 1687 Вариньон представил в Парижскую АН сочинение «Проект новой механики. », в котором сформулировал закон параллелограмма сил. В 1725 в Париже был издан трактат Вариньона «Новая механика или статика», представляющий собой систематическое изложение учения о сложении и разложении сил, о моментах сил и правилах оперирования ими, почти без изменений сохранившееся в учебниках статики до нашего времени. Написал учебник по элементарной геометрии (издан в 1731).
Теорема Вариньона [2]
Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника.
ABCD – выпуклый четырехугольник
AK=KB; BL=LC; CM=MD; AN=ND
1) KLMN – параллелограмм;
- Рассмотрим одну из сторон четырехугольника KLMN, например KL. KL– средняя линия треугольника ABC(по определению),следовательно, KL║AC. Аналогично, так как MN– средняя линия треугольника ADC,то MN║AC. Так как KL║AC и MN║AC следовательно, KL║NM и KL=MN=AC/2. Таким образом, KLMN – параллелограмм. Этот параллелограмм называется параллелограммом Вариньона данного четырехугольника.
- Средняя линия треугольника отсекает от него треугольник, площадь которого в четыре раза меньше площади исходного треугольника,
- т.е. SKBL = SABC/4, SMDN=SADS/4. Следовательно, S1+S3=SABCD /4. Аналогично, S2+S4=SABCD/4. Следовательно, S1+S3 + S2+S4 = SABCD /4 + SABCD/4 = SABCD/2.
Т.е., SKLMN = SABCD/2. Что и требовалось доказать.
Определение. Бимедианы четырехугольниках [3] – это отрезки, соединяющие середины противоположных сторон (диагонали параллелограмма Вариньона)
Следствия из теоремы Вариньона
Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны 2) бимедианы перпендикулярны.
Доказать: KLMN – ромб
Так как AC=BD (диагонали исходного четырехугольника равны по условию), то стороны параллелограмма Вариньона будут равны KL=LM=MN=NK (используя свойство средних линий треугольников, образованных при пересечении диагоналей исходного четырехугольника). Параллелограмм c равными сторонами является ромбом.
KLMN – параллелограмм Вариньона;
KM и LN перпендикулярны
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали перпендикулярны, то этот параллелограмм является ромбом (по признаку ромба).
Что и требовалось доказать.
Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике: 1) диагонали перпендикулярны; 2) бимедианы равны
KLMN – параллелограмм Вариньона;
диагонали AC и BD – перпендикулярны
Так как диагонали AC и BD – перпендикулярны, то стороны параллелограмма Вариньона будут перпендикулярны. Следовательно, параллелограмм Вариньона является прямоугольником.
KLMN – параллелограмм Вариньона;
бимедианы KM и LN – равны
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником (по признаку прямоугольника).
Что и требовалось доказать.
Параллелограмм Вариньона является квадратом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны и перпендикулярны; 2) бимедианы равны и перпендикулярны
KLMN – параллелограмм Вариньона;
диагонали AC и BD – перпендикулярны; AC=BD
Так как диагонали исходного четырехугольника AC и BD равны и перпендикулярны, то стороны параллелограмма Вариньона будут равны и перпендикулярны. Следовательно, параллелограмм Вариньона является квадратом.
KLMN – параллелограмм Вариньона;
бимедианы KM и LN – перпендикулярны; KM=LN
Доказать: KLMN – квадрат
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом (по признаку квадрата).
Что и требовалось доказать.
2. Практическая часть. Решение задач.
Докажите, что а) середины сторон прямоугольника являются вершинами ромба. И наоборот, б) середины сторон ромба являются вершинами прямоугольника.
а) Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (см. следствие 1);
Стороны прямоугольника перпендикулярны, поэтому бимедианы перпендикулярны, тогда середины сторон прямоугольника являются вершинами ромба (см. следствие 1).
б) диагонали ромба перпендикулярны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2);
Стороны ромба равны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2).
У четырехугольника диагонали равны aи b. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.
Периметр параллелограмма Вариньона равен a+b.
Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.
См. теорему Вариньона.
Докажите, что средние линии четырехугольника делятся точкой пересечения пополам.
Т.к. средние линии четырехугольника являются диагоналями параллелограмма Вариньона, то точка пересечения делит их пополам.
Олимпиадные задачи
1. Докажите, что если диагонали четырехугольника равны, то его площадь равна произведению средних линий [5].
Доказать: SABCD= KM*LN
Так как диагонали AC = BD, параллелограмм Вариньона является ромбом, площадь ромба равна половине произведения его диагоналей.
Что и требовалось доказать.
2. Докажите, что суммы площадей накрест лежащих четырехугольников, образованных пересечением бимедиан LN и KM выпуклого четырехугольника ABCD равны [6].
Воспользуемся теоремой о средней линии треугольника.
Что и требовалось доказать.
Заключение
«Нет ничего нового под солнцем, но есть кое-что старое, чего мы не знаем», – сказал американский литератор Лоренс Питер.
Пьер Вариньон жил в 18 веке, но теорема Вариньона как нельзя актуальна именно в наши дни, когда чтобы всё успеть, необходимо гораздо больше, чем 24 часа в сутки.
Поэтому была поставлена цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.
Для этого был разобран весь теоретический материал, решены задачи базового уровня, а также повышенной сложности (олимпиадные). Было подсчитано, что на решение задачи традиционным способом затрачивается 15-20 минут, а зная теорему Вариньона и следствия из нее, доказательство сводится к одному-двум предложениям и занимает 1-2 минуты. При этом экономия времени на доказательство в среднем составляет 15 минут. Таким образом, уже даже решение трех задач добавит дополнительные сорок пять минут (т.е. целый урок) на доказательство других, более сложных.
От этого повышается не только интерес к изучению данного предмета, но и сам процесс работы приносит удовлетворение. Цель работы считаю достигнутой.
Применение теоремы Вариньона к решению задач
2. 2. Применение теоремы Вариньона к решению задач.
Рассмотрим применение теоремы Вариньона к решению планиметрических задач повышенной трудности. Дело в том, что планиметрические задачи на олимпиадах встречаются значительно чаще.
Мы будем называть параллелограмм KLMN параллелограммом Вариньона, а отрезки КМ и LN, соединяющие середины противоположных сторон четырёхугольника АВСD — средними линиями этого четырёхугольника.
Задача 1. В выпуклом пятиугольнике ABCDE середины сторон AB и CD, BC и DE соединены отрезками. K, L – середины этих отрезков. Доказать, что отрезок KL параллелен пятой стороне AE и составляет ¼ от неё.
Решение: отрежем четырёхугольник ABCD и пусть Р-середина AD, тогда по теореме Вариньона A1B1C1P – параллелограмм, А1С1 – его диагональ и К – середина А1С1, значит, К – середина и второй
диагонали параллелограмма В1Р. Значит, KL – средняя линия треугольника PB1D1, поэтому KL||PD1 и KL=1/2 PD1, но PD1 – средняя линия треугольника ADE, значит, PD1||AE и PD1=1/2AE, поэтому KL||AE и KL=1/4 AE.
Задача 2. Верно ли, что можно составить треугольник из любой средней линии треугольника и отрезков, вдвое меньших его диагоналей?
Решение: верно, так как параллелограмм Вариньона существует для любого выпуклого четырёхугольника. Например, условию задачи удовлетворяют треугольники KLM и LMN на рис. 10. рис. 10
Задача 3. Средние линии четырёхугольника ABCD равны a и b, а угол между ними 60˚. Найдите диагонали четырёхугольника.
Решение: пусть KM=a, LN=b, (рис. 10). Тогда NM=, а LT=.
Из треугольника LTM по теореме косинусов . Но LM= BD, поэтому , откуда BD=. Аналогично из треугольника TNM найдём MN, потом вычислим AC: AC=.
Ответ: ;
Задача 4. Докажите, что сумма квадратов диагоналей четырёхугольника в два раза больше суммы квадратов его средних линий.
Доказательство: в параллелограмме Вариньона, как и в любом другом параллелограмме, сумма квадратов рис. 11 диагоналей равна сумме квадратов всех его сторон, т. е. Учитывая, что KL=1/2 AC и LM= 1/2 BD (рис. 11), получим: KM2+LN2=1/2(AC2+BD2), AC2+BD2=2(KM2+LN2).
Задача 5. Докажите, что площадь параллелограмма Вариньона равна половине площади четырёхугольника ABCD.
Доказательство: (рис. 12).
Учитывая, что , KL=1/2 AC и KN=1/2 BD, получим: рис. 12
.
Задача 6. Докажите, что все четырёхугольники, имеющие общие середины
Доказательство: действительно, для всех таких четырёхугольников определён один и тот же параллелограмм Вариньона. Его площадь равна половине площади каждого из исходных четырёхугольников (задача 5), тем самым их равновеликость доказана.
Задача 7. Докажите, что если диагонали четырёхугольника равны, то его площадь равна произведению средних линий.
Доказательство: в случае равенства диагоналей AC и BD параллелограмм Вариньона KLMN является ромбом (рис. 13), а рис. 13
площадь ромба равна половине произведения диагоналей:
, тогда .
Задача 8. Диагонали четырёхугольника ABCD равны d1 и d2, а средние линии равны между собой. Найдите площадь четырёхугольника.
Решение: из условия задачи следует, что в параллелограмме Вариньона диагонали KM и LN равны (рис. 12). Значит, KLMN – прямоугольник и SKLMN=1/2 d1d2, а с другой стороны, SKLMN=1/2 SABCD, следовательно, SABCD=1/2d1d2.
Ответ: SABCD=1/2d1d2.
Задача 9. Докажите, что площадь четырёхугольника равна произведению средней линии на одну из диагоналей и на синус угла между ними.
Доказательство: согласно рис. 14 необходимо доказать, рис. 14
что . Треугольник KLN представляет собой половину параллелограмма Вариньона. (). Так как KL=1/2AC, то , значит, , а с другой стороны, (см. задачу 8), тогда .
Задача 10. Докажите, что сумма квадратов сторон четырёхугольника равна сумме квадратов его диагоналей, сложенной с учетверённым квадратом отрезка, соединяющего середину его диагоналей.
Доказательство: согласно рис. 11 надо доказать, что. Для медианы ET треугольника ELN имеем: , где , , откуда . Аналогично, выразив медиану FT треугольника KFM и учитывая, что и , получим: .
Кроме того, (задача 7).
Итак, получаем: , откуда:
Задача 11. Постройте трапецию по диагоналям, одному из углов и отрезку, соединяющему середины оснований.
Решение: пусть в трапеции ABCD, которую необходимо построить, известны длины диагоналей AC и BD, отрезка LN и величина угла А (рис. 15).
Поскольку и , нетрудно построить по трём рис. 15
сторонам треугольник KLN. Далее построим его до параллелограмма Вариньона. Затем на отрезке KN построим сегмент, вмещающий угол А, и проведём через точку N параллельно KM прямую, она пересечёт сегмент в точке А. Дальнейшее построение очевидно.
В ходе работы мы прорешали более двадцати пяти задач, формулировки и решения наиболее интересных из них дополнительно приведены в приложении. Мы убедились в том, что теорема Вариньона помогает красиво, оригинально решать задачи, открывать и доказывать новые свойства четырёхугольников.
Теорема Вариньона
В школьном курсе теорема Вариньона часто фигурирует в качестве обычной задачи, в которой требуется доказать, что середины сторон четырёхугольника являются вершинами параллелограмма.
Её доказательство основано на свойствах средней линии треугольника.
Середины сторон четырёхугольника являются вершинами параллелограмма.
Дано: ABCD — четырёхугольник,
M, N, K, F — середины его сторон.
Доказать : MNKF — параллелограмм.
1) Проведём диагональ AC.
2) Рассмотрим треугольник ABC.
Так как точки M и N — середины сторон AB и BC, отрезок MN — средняя линия треугольника ABC.
3) Аналогично, FK — средняя линия треугольника ADC и
4) По признаку параллельности прямых, две прямые, параллельные третьей прямой, параллельны между собой:
5) В четырёхугольнике MKNF противоположные стороны параллельны и равны. Следовательно, MKNF — параллелограмм (по признаку).
Что и требовалось доказать.
Поскольку в школьном курсе геометрии рассматриваются только выпуклые четырёхугольники, доказательство приведено только для этого случая. Но и для невыпуклых четырёхугольников (в том числе, и для самопересекающихся), теорема также верна (доказывается аналогично).
Параллелограмм, образованный серединами сторон четырёхугольника, называется параллелограммом Вариньона (вариньоновским, вариньоновым).
Периметр параллелограмма Вариньона равен сумме диагоналей исходного параллелограмма:
(так как стороны MNKF равны половине диагонали AC или BD).
Площадь параллелограмма Вариньона равна половине площади исходного параллелограмма:
углы COD и NMF равны (как внутренние накрест лежащие при параллельных прямых AC и MN и секущей BD),
http://pandia.ru/text/78/064/100191.php
В школьном курсе теорема Вариньона часто фигурирует в качестве обычной задачи, в которой требуется доказать, что середины сторон четырёхугольника являются вершинами параллелограмма.
Её доказательство основано на свойствах средней линии треугольника.
Теорема (Вариньона)
Середины сторон четырёхугольника являются вершинами параллелограмма.
Дано: ABCD — четырёхугольник,
M, N, K, F — середины его сторон.
Доказать: MNKF — параллелограмм.
Доказательство:
1) Проведём диагональ AC.
2) Рассмотрим треугольник ABC.
Так как точки M и N — середины сторон AB и BC, отрезок MN — средняя линия треугольника ABC.
По свойствам средней линии треугольника,
3) Аналогично, FK — средняя линия треугольника ADC и
4) По признаку параллельности прямых, две прямые, параллельные третьей прямой, параллельны между собой:
А так как
и
то MN=FK.
5) В четырёхугольнике MKNF противоположные стороны параллельны и равны. Следовательно, MKNF — параллелограмм (по признаку).
Что и требовалось доказать.
Поскольку в школьном курсе геометрии рассматриваются только выпуклые четырёхугольники, доказательство приведено только для этого случая. Но и для невыпуклых четырёхугольников (в том числе, и для самопересекающихся), теорема также верна (доказывается аналогично).
Параллелограмм, образованный серединами сторон четырёхугольника, называется параллелограммом Вариньона (вариньоновским, вариньоновым).
Следствие 1.
Периметр параллелограмма Вариньона равен сумме диагоналей исходного параллелограмма:
(так как стороны MNKF равны половине диагонали AC или BD).
Следствие 2.
Площадь параллелограмма Вариньона равна половине площади исходного параллелограмма:
Доказательство:
углы COD и NMF равны (как внутренние накрест лежащие при параллельных прямых AC и MN и секущей BD),
Что и требовалось доказать.
Геометрия – одна из древнейших наук, занимающаяся изучением свойств геометрических фигур на плоскости и в пространстве. Современным школьникам приходится уделять очень много времени обучению и выполнению домашних заданий, ведь почти каждая геометрическая задача нестандартна, особенно задачи на доказательство.
В теме «Четырехугольники» проблему с доказательствами поможет решить использование теоремы Вариньона. В данной статье приведено доказательство теоремы Пьера Вариньона и некоторых следствий из неё с использованием авторских чертежей, созданных в программе GeoGebra, а также рассмотрены несколько задач, решенных традиционным способом и с помощью применения вышеуказанной теоремы.
Взявшись за данную статью, автор столкнулась с тем, что для её оформления необходимо умение грамотно и наглядно выполнять чертежи и геометрические построения: чертить четырехугольники, находить середины их сторон, строить перпендикулярные прямые, откладывать на них равные отрезки. Существенную помощь в данной проблеме оказали возможности программы GeoGebra, переведенной на 39 языков и работающей на большом числе операционных систем. GeoGebra предоставляет пользователю набор виртуальных чертежных инструментов, с помощью которых на экране, как на листе бумаги, можно выполнять геометрические построения. Важнейшей особенностью полученного чертежа является то, что программа запоминает алгоритм построения, исходные данные можно легко изменять и результат сохранить в удобном формате.
Рассмотрим теорему Вариньона и пару следствий из неё.
Теорема Вариньона (рисунок 1): Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника.
Рис. 1
Дано:
ABCD – выпуклый четырехугольник
AK=KB; BL=LC; CM=MD; AN=ND.
Доказать:
- KLMN – параллелограмм;
- SKLMN= SABCD:2
Доказательство:
- Рассмотрим одну из сторон четырехугольника KLMN, например NM. Так как NM является средней линией треугольника ADC, то NM ║AC. По тем же причинам KL║AC. Следовательно, KL║NM и KL= MN= AC:2. таким образом, по признаку KLMN – параллелограмм. Этот параллелограмм называется параллелограммом Вариньона данного четырехугольника
- Средняя линия треугольника отсекает от него треугольник, площадь которого в четыре раза меньше площади исходного треугольника. Поэтому сама сумма площадей первого и третьего треугольников равна четверти площади всего четырехугольника. То же и относительно суммы площадей второго и четвертого треугольников. Поэтому площадь параллелограмма KLMN составляет половину площади четырехугольника
Некоторые следствия из теоремы Вариньона:
Следствие 1.
Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике: а) диагонали равны; б) бимедианы перпендикулярны.
а) Прямая теорема (рисунок 2): если в четырёхугольнике диагонали равны, то параллелограмм Вариньона является ромбом.
Рис. 2
Дано:
ABCD – четырехугольник;
KLMN – параллелограмм Вариньона;
AC=BD
Доказать: KLMN – ромб.
Доказательство:
Так как AC=BD (диагонали исходного четырехугольника равны по условию), то стороны параллелограмма Вариньона будут равны KL=LM=MN=NK (используя свойство средних линий треугольников, образованных при пересечении диагоналей исходного четырехугольника). Параллелограмм c равными сторонами является ромбом.
Обратная теорема: если параллелограмм Вариньона является ромбом, то диагонали исходного четырёхугольника равны.
б) Прямая теорема (рисунок 3): если в четырёхугольнике бимедианы перпендикулярны, то параллелограмм Вариньона является ромбом.
Рис. 3
Дано:
ABCD – четырехугольник;
KLMN – параллелограмм Вариньона;
KM и LN перпендикулярны
Доказать: KLMN – ромб.
Доказательство:
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали перпендикулярны, то этот параллелограмм является ромбом (по признаку ромба).
Обратная теорема: если параллелограмм Вариньона является ромбом, то бимедианы исходного четырёхугольника перпендикулярны.
Следствие 2.
Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике: а) диагонали перпендикулярны; б) бимедианы равны.
а) Прямая теорема (рисунок 4): если в четырёхугольнике диагонали перпендикулярны, то параллелограмм Вариньона является прямоугольником.
Рис. 4
Дано:
Четырехугольник ABCD;
KLMN – параллелограмм Вариньона;
диагонали AC и BD – перпендикулярны.
Доказать: KLMN – прямоугольник.
Доказательство:
Так как диагонали AC и BD – перпендикулярны, то стороны параллелограмма Вариньона будут перпендикулярны. Следовательно, параллелограмм Вариньона является прямоугольником.
Обратная теорема: если параллелограмм Вариньона является прямоугольником, то диагонали исходного четырёхугольника перпендикулярны.
б) Прямая теорема (рисунок 5): если в четырёхугольнике бимедианы равны, то параллелограмм Вариньона является прямоугольником.
Рис. 5
Дано:
Четырехугольник ABCD;
KLMN – параллелограмм Вариньона;
бимедианы KM и LN – равны.
Доказать: KLMN – прямоугольник.
Доказательство:
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником (по признаку прямоугольника).
Обратная теорема: если параллелограмм Вариньона является прямоугольником, то бимедианы исходного четырёхугольника равны.
Сравнение решений задач с использованием теоремы Вариньона и без её применения:
Задача 1. Докажите, что середины сторон четырехугольника являются вершинами параллелограмма (рисунок 6).
Рис. 6
Дано: ABCD – четырехугольник
AK=KB, BL=LC, CM=MD, AN=ND
Доказать: KLMN – параллелограмм.
Доказательство:
1 способ
Проведем АС и рассмотрим треугольник АВС. KL – средняя линия, следовательно KL║ AC, KL= AC:2. Рассмотрим треугольник ADC, NM – средняя линия, следовательно NM║AC, NM = AC/2.
KL║ AC, NM ║AC, следовательно, KL ║NM.
KL= AC:2, NM = AC:2, следовательно, KL=NM.
KLMN – параллелограмм (противоположные стороны равны и параллельны)
2 способ
KLMN – параллелограмм Вариньона (по определению).
Задача 2. Докажите, что площадь параллелограмма, вершины которого являются серединами сторон четырехугольника ABCD, равна половине площади четырехугольника ADCD (рисунок 7).
Рис. 7
Дано: ABCD – четырехугольник
Доказать: SKLMN=1/2 SABCD
Доказательство:
1 способ
Так как SABCD=1/2ACXBD sin<1 и SKLMN=1/2KLXKN sin<2 и учитывая, что <1=<2, KL=1/2AC и KN=1/2BD, то получаем, что SKLMN=1/2 SABCD
2 способ
Так как KLMN – параллелограмм Вариньона, то его площадь равна половине площади четырехугольника ABCD.
Задача 3. Докажите, что середины сторон прямоугольника являются вершинами ромба. И наоборот (рисунок .
Рис. 8
Доказательство:
1 способ
- AC – диагональ. KL – средняя линия треугольника ABC. NM – средняя линия треугольника ADC. Треугольники ABC и ADC равны по третьему признаку равенства треугольников (AB=DC, BC=DC, AC – общая сторона) => KL=NM. Также KL||NM (AC||NM, AC||KL) => KLMN- параллелограмм.
- Из первого следует, что KL=NM. Аналогично можно доказать, что LM=KN.
- ABCD – прямоугольник => AC=BD. => KL=LM=MN=NK=> KLMN – ромб.
2 способ
а) Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба;
б) Стороны прямоугольника перпендикулярны, поэтому бимедианы перпендикулярны, тогда середины сторон прямоугольника являются вершинами ромба.
Цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.
Задачи:
- Изучить теоретический материал: понятия «параллелограмм Вариньона», бимедианы четырехугольника, разобрать доказательство теоремы Вариньона и следствия из нее.
- Сравнить количество времени, необходимое для решения задач традиционным способом и, используя теорему Вариньона.
- Показать решение олимпиадных заданий с помощью параллелограмма Вариньона.
Ход урока
Введение
В 21 век, в век информационных технологий, главным ресурсом является время. Тысячи людей желают посещать тренинги, семинары и лекции по тайм-менеджменту, где бы их научили, как рационально, с минимальными потерями и максимальной пользой использовать свое время. Большую часть времени у ученика занимает обучение в школе и приготовление домашнего задания. Одним из самых сложных предметов в школе является геометрия. В частности, задачи на доказательство требуют значительной траты времени, поэтому у многих отсутствует интерес к решению подобных заданий. В теме «Четырехугольники» эту проблему может решить использование теоремы Вариньона.
Пьер Вариньон – французский математик и механик 18 века, который первым доказал, что середины сторон выпуклого четырехугольника являются вершинами параллелограмма. Эта теорема вызвала интерес у отечественных ученых лишь в 20 веке. Подробно ее применение показал украинский геометр – Г.Б.Филипповский и кандидат физико-математических наук, доцент МГУ В.В. Вавилов. В школе теорема Вариньона не входит в курс программы, но считаю изучение её необходимым.
1. Теоретическая часть
Вариньон Пьер [1] (1654–1722)
Пьер Вариньон родился во Франции в 1654 году. Обучался в иезуитском коллеже и университете в Кане, где стал магистром в 1682 году. Вариньон готовился к религиозной деятельности, но, изучая сочинения Эвклида и Декарта, увлекся математикой и механикой. Труды Вариньона посвящены теоретической механике, анализу бесконечно малых, геометрии, гидромеханике и физике. Вариньон был одним из первых ученых, ознакомивших Францию с анализом бесконечно малых. В конце 17 и начале 18 в. Вариньон руководил «Журналом ученых», в котором помещали свои работы по исчислению бесконечно малых братья Бернулли. В геометрии Вариньон изучал различные специальные кривые, в частности ввел термин «логарифмическая спираль». Главные заслуги Вариньона относятся к теоретической механике, а именно к геометрической статике. В 1687 Вариньон представил в Парижскую АН сочинение «Проект новой механики…», в котором сформулировал закон параллелограмма сил. В 1725 в Париже был издан трактат Вариньона «Новая механика или статика», представляющий собой систематическое изложение учения о сложении и разложении сил, о моментах сил и правилах оперирования ими, почти без изменений сохранившееся в учебниках статики до нашего времени. Написал учебник по элементарной геометрии (издан в 1731).
Теорема Вариньона [2]
Четырехугольник, образованный путем последовательного соединения середин сторон выпуклого четырехугольника, является параллелограммом, и его площадь равна половине площади данного четырехугольника.
Дано: ABCD – выпуклый четырехугольник AK=KB; BL=LC; CM=MD; AN=ND Доказать: 1) KLMN – параллелограмм; 2) SKLMN= SABCD/2 |
Доказательство:
- Рассмотрим одну из сторон четырехугольника KLMN, например KL. KL – средняя линия треугольника ABC (по определению),следовательно, KL║AC. Аналогично, так как MN – средняя линия треугольника ADC,то MN║AC. Так как KL║AC и MN║AC следовательно, KL║NM и KL=MN=AC/2. Таким образом, KLMN – параллелограмм. Этот параллелограмм называется параллелограммом Вариньона данного четырехугольника.
- Средняя линия треугольника отсекает от него треугольник, площадь которого в четыре раза меньше площади исходного треугольника,
- т.е. SKBL = SABC/4, SMDN=SADS/4. Следовательно, S1+S3=SABCD /4. Аналогично, S2+S4=SABCD/4. Следовательно, S1+S3 + S2+S4 = SABCD /4 + SABCD/4 = SABCD/2.
Т.е., SKLMN = SABCD/2. Что и требовалось доказать.
Определение. Бимедианы четырехугольниках [3] – это отрезки, соединяющие середины противоположных сторон (диагонали параллелограмма Вариньона)
Следствия из теоремы Вариньона
Следствие 1
Параллелограмм Вариньона является ромбом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны 2) бимедианы перпендикулярны.
Дано: ABCD – четырехугольник; KLMN – параллелограмм Вариньона; AC=BD Доказать: KLMN – ромб |
Доказательство:
Так как AC=BD (диагонали исходного четырехугольника равны по условию), то стороны параллелограмма Вариньона будут равны KL=LM=MN=NK (используя свойство средних линий треугольников, образованных при пересечении диагоналей исходного четырехугольника). Параллелограмм c равными сторонами является ромбом.
2)
Дано: ABCD – четырехугольник; KLMN – параллелограмм Вариньона; KM и LN перпендикулярны Доказать: KLMN – ромб |
Доказательство:
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали перпендикулярны, то этот параллелограмм является ромбом (по признаку ромба).
Что и требовалось доказать.
Следствие 2
Параллелограмм Вариньона является прямоугольником тогда и только тогда, когда в исходном четырехугольнике: 1) диагонали перпендикулярны; 2) бимедианы равны
1)
Дано: четырехугольник ABCD; KLMN – параллелограмм Вариньона; диагонали AC и BD – перпендикулярны Доказать: KLMN – прямоугольник |
Доказательство:
Так как диагонали AC и BD – перпендикулярны, то стороны параллелограмма Вариньона будут перпендикулярны. Следовательно, параллелограмм Вариньона является прямоугольником.
2)
Дано: четырехугольник ABCD; KLMN – параллелограмм Вариньона; бимедианы KM и LN – равны Доказать: KLMN – прямоугольник |
Доказательство:
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны, то этот параллелограмм является прямоугольником (по признаку прямоугольника).
Что и требовалось доказать.
Следствие 3
Параллелограмм Вариньона является квадратом тогда и только тогда, когда в исходном четырехугольнике 1) диагонали равны и перпендикулярны; 2) бимедианы равны и перпендикулярны
1)
Дано: четырехугольник ABCD; KLMN – параллелограмм Вариньона; диагонали AC и BD – перпендикулярны; AC=BD Доказать: KLMN – квадрат |
Доказательство:
Так как диагонали исходного четырехугольника AC и BD равны и перпендикулярны, то стороны параллелограмма Вариньона будут равны и перпендикулярны. Следовательно, параллелограмм Вариньона является квадратом.
Дано: четырехугольник ABCD; KLMN – параллелограмм Вариньона; бимедианы KM и LN – перпендикулярны; KM=LN Доказать: KLMN – квадрат |
Доказательство:
Бимедианы исходного четырехугольника – это диагонали параллелограмма Вариньона. Так как в параллелограмме диагонали равны и перпендикулярны, то этот параллелограмм является квадратом (по признаку квадрата).
Что и требовалось доказать.
2. Практическая часть. Решение задач.
Задача 1 [4]
Докажите, что а) середины сторон прямоугольника являются вершинами ромба. И наоборот, б) середины сторон ромба являются вершинами прямоугольника.
Доказательство:
а) Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (см. следствие 1);
Стороны прямоугольника перпендикулярны, поэтому бимедианы перпендикулярны, тогда середины сторон прямоугольника являются вершинами ромба (см. следствие 1).
б) диагонали ромба перпендикулярны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2);
Стороны ромба равны, поэтому середины сторон ромба являются вершинами прямоугольника (см. следствие 2).
Задача 2
У четырехугольника диагонали равны aи b. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.
Решение:
Периметр параллелограмма Вариньона равен a+b.
Задача 3
Докажите, что середины сторон четырехугольника являются вершинами параллелограмма.
Решение:
См. теорему Вариньона.
Задача 4
Докажите, что средние линии четырехугольника делятся точкой пересечения пополам.
Доказательство:
Т.к. средние линии четырехугольника являются диагоналями параллелограмма Вариньона, то точка пересечения делит их пополам.
Олимпиадные задачи
1. Докажите, что если диагонали четырехугольника равны, то его площадь равна произведению средних линий [5].
Дано: ABCD – четырехугольник; AC = BD Доказать: SABCD= KM*LN |
Доказательство:
Так как диагонали AC = BD, параллелограмм Вариньона является ромбом, площадь ромба равна половине произведения его диагоналей.
Что и требовалось доказать.
2. Докажите, что суммы площадей накрест лежащих четырехугольников, образованных пересечением бимедиан LN и KM выпуклого четырехугольника ABCD равны [6].
Доказательство:
Воспользуемся теоремой о средней линии треугольника.
Получаем: SBKL + SDMN = (SABC + SADC)/4 = SABCD/4 = (SABD + SCBD)/4 = SAKN+SCLM
Что и требовалось доказать.
Заключение
«Нет ничего нового под солнцем, но есть кое-что старое, чего мы не знаем», – сказал американский литератор Лоренс Питер.
Пьер Вариньон жил в 18 веке, но теорема Вариньона как нельзя актуальна именно в наши дни, когда чтобы всё успеть, необходимо гораздо больше, чем 24 часа в сутки.
Поэтому была поставлена цель: изучить теорему Вариньона и научиться применять ее на практике с наименьшими временными затратами.
Для этого был разобран весь теоретический материал, решены задачи базового уровня, а также повышенной сложности (олимпиадные). Было подсчитано, что на решение задачи традиционным способом затрачивается 15-20 минут, а зная теорему Вариньона и следствия из нее, доказательство сводится к одному-двум предложениям и занимает 1-2 минуты. При этом экономия времени на доказательство в среднем составляет 15 минут. Таким образом, уже даже решение трех задач добавит дополнительные сорок пять минут (т.е. целый урок) на доказательство других, более сложных.
От этого повышается не только интерес к изучению данного предмета, но и сам процесс работы приносит удовлетворение. Цель работы считаю достигнутой.
Список литературы:
- Интернет-ресурсы ru.wikipedia.org/wiki/Вариньон,_Пьер
- Филипповский Г. Б. Параллелограмм Вариньона решает задачи //Математика в школе № 4 – 2006, стр. 45–50
- В. Вавилов, П. Красников. Бимедианы четырехугольника//Математика. 2006 – №22.
- Геометрия: Учебник для 7 – 9 кл. общеобразовательных учреждений /Л. С. Атанасян, В.Ф. Бутузов, С. Б. Кадомцев и др, – М.: Просвещение, 2008.
- Геометрия: Доп. главы к шк. учеб. 8 кл.: Учеб. пособие для учащихся школ и классов с углубленным изучением математики / Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др. – М.: Просвещение, 1996.
- Интернет-ресурсы easymath.com.ua/
Занятие математического кружка
«Теорема Вариньона, ее применение при решении геометрических задач»
В школьном курсе геометрии рассматривается достаточное количество теории и решается множество задач по четырехугольникам. Возможно, этого объема теоретического материала вполне достаточно для решения школьных задач и без знания теоремы Вариньона, но, используя эту теорему, наше решение может быть более компактным и интересным. Но, к сожалению, в школьном курсе не рассматривается такой простой и интересный факт, что фигура, полученная последовательным соединением середин сторон произвольного четырехугольника, является параллелограммом , но я считаю изучение этой теоремы необходимым.
Теорема Вариньона поразила меня своей простотой, очевидностью, помогла разглядеть те удивительные факты, которые были для меня раньше незаметны.
Пьер Вариньон родился во Франции в 1654 году. Обучался в иезуитском коллеже и университете в Кане, где стал магистром в 1682 году. Он готовился к религиозной деятельности, но, изучая сочинения Эвклида и Декарта, увлекся математикой и механикой. Труды Вариньона посвящены теоретической механике, анализу бесконечно малых, геометрии, гидромеханике. Наибольшее значение имеют работы Вариньона по геометрической статике. В 1687 г. в работе «Проект новой механики…» Вариньон дал чёткую формулировку закона параллелограмма сил, развил понятие момента сил. С 1688 г. член Парижской Академии наук, работал профессором математики в коллеже Мазарини. Пьер Вариньон, руководил «Журналом учёных» в Париже и написавший учебник по элементарной геометрии, первым заострил внимание на, казалось бы, довольно очевидном факте: середины сторон выпуклого четырёхугольника являются вершинами параллелограмма.
Теорема Вариньона и выпуклые четырехугольники.
Следствия из теоремы.
Т еорема. Середины сторон произвольного четырёхугольника являются вершинами параллелограмма, площадь равна половине площади данного четырехугольника.
Дано: АВСD- выпуклый четырехугольник,
F,M,N,K-середины сторон AB, BC,CD, AD
Доказать: FMNK параллелограмм
Доказательство: FM и KN – средние линии соответственно треугольника ABC и треугольника ACD. Следовательно
KN || AC, KN = AC; FM|| AC, FM= AC, значит KN || FM, KN=FM. Тогда делаем вывод, что FMNK – параллелограмм.
Площадь параллелограмма равна половине площади исходного четырёхугольника.
Доказать:
Доказательство: Обозначим площадь четырехугольника ABCD через S.
Средняя линия треугольника отсекает от него треугольник, площадь которого в четыре раза меньше площади исходного треугольника,
, Аналогично рассуждая, получаем: Следовательно:
Параллелограмм, образованный серединами сторон, иногда называется параллелограмма Вариньона.
Периметр параллелограмма Вариньона равен сумме диагоналей исходного четырёхугольника.
Бимедианы четырехугольника– это отрезки, соединяющие середины противоположных сторон (диагонали параллелограмма Вариньона)
Справедливость теоремы Вариньона не зависит от выпуклости четырёхугольника. Теорема Вариньона и следствие из неё остаются верными и для невыпуклого четырехугольника
Следствия из теоремы.
1 . Середины сторон прямоугольника являются вершинами ромба.
Доказательство: Диагонали прямоугольника равны, то есть AC=BD значит FM=KN=MN=FK, тогда FMNK – ромб.
2. Середины сторон равнобедренной трапеции являются вершинами ромба.
Доказательство: Диагонали равнобедренной трапеции равны, то есть BD=AC , тогда FM=KN=MN=FK, следовательно, FMNK – ромб.
3 . Середины сторон ромба являются вершинами прямоугольника.
Доказательство: Диагонали ромба взаимно перпендикулярны, то есть ACBD , а так как MN||AC, FK||AC , FM||DB , NK||DB ,то FMNK – прямоугольник.
Подводя итоги кратко можно сказать:
1) Если ABCD – прямоугольник, то KLMN – ромб;
2) Если ABCD — ромб, то KLMN – прямоугольник;
3) Если ABCD – равнобедренная трапеция, то KLMN — ромб.
Применение теоремы Вариньона к доказательству некоторых утверждений
В учебнике геометрии Атанасяна Л.С рассматривается доказательство теоремы об основном свойстве медиан треугольника, продемонстрируем применение теоремы Вариньона к доказательству этой теоремы
B
Теорема. Медианы в треугольнике пересекаются в одной точке и делятся в ней в отношении 2:1, считая от вершины.
Доказательство: проведём две медианы AK и BL треугольника ABC. Пусть О – точка их пересечения. Середины сторон невыпуклого четырехугольника АCBО – точки K, L, M и N– вершины параллелограмма, причем точкой пересечения его диагоналей KM и LN для этой конфигурации будет точка пересечения медиан О. Итак, AM = MO = OK и BN = NO = OL, т.е. точка О делит каждую из медиан AK и BL в отношении 2:1.Аналогично доказывается для медианы, проведённой из вершины С.
Утверждение 1. В выпуклом четырехугольнике сумма квадратов диагоналей в 2 раза больше суммы квадратов отрезков соединяющих середины противоположных сторон.
Д оказательство: Так как ORNL– параллелограмм, а сумма квадратов его сторон равна сумме квадратов его диагоналей, то
Так как , , то получаем:
У тверждение 2. Если отрезки соединяющие середины противоположных сторон выпуклого четырехугольника равны, то диагонали четырехугольника перпендикулярны.
Доказательство: Так как , но FN и MK являются диагоналями параллелограмма FMNK, тогда FMNK – прямоугольник, стороны которого параллельны диагоналям четырехугольника ABCD значит BDAC.
У тверждение 3. Если отрезки, соединяющие середины противоположных сторон выпуклого четырехугольника, перпендикулярны, то диагонали четырехугольника равны.
Доказательство: Так как FNMK и FMNK – параллелограмм, то FMNK –ромб, то есть FM=MN=NK=FK значит AC=BD
Применение теоремы Вариньона к решению задач
Рассмотрим задачи, которые встречаются в школьном курсе геометрии.
Учебник для 7 – 11 классов средней школы. Погорелов А. В.
Задача 55, стр100. Докажите, что середины сторон четырехугольника являются вершинами параллелограмма
Доказательство: Полученный четырехугольник является параллелограммом по теореме Вариньона
Задача 57, стр100. У четырехугольника диагонали равны a и b. Найдите периметр четырехугольника, вершинами которого являются середины сторон данного четырехугольника.
Решение: Полученный четырехугольник является параллелограммом по теореме Вариньона. Периметр параллелограмма Вариньона равен сумме диагоналей исходного четырёхугольника т.е. a+b.
Задача 58, стр100 .Докажите, что середины сторон прямоугольника являются вершинами ромба. И наоборот, середины сторон ромба являются вершинами прямоугольника
Доказательство: Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (следствие 1);
Стороны прямоугольника перпендикулярны, поэтому бимедианы перпендикулярны, тогда середины сторон прямоугольника являются вершинами ромба ( следствие 3).
Учебник для 7 – 9 классов общеобразовательных учреждений В.Н.Руденко, Г.А.Бахурин
Задача 374. Докажите, что середины сторон параллелограмма являются вершинами нового параллелограмма
Доказательство: Новый четырехугольник является параллелограммом по теореме Вариньона
Задача 413. Диагональ квадрата равна 7см. найдите периметр четырехугольника, вершинами которого являются середины сторон квадрата
Решение: Полученный четырехугольник является квадратом. Периметр по следствиям из теоремы Вариньона равен a+b, где a и b являются диагоналями исходного четырехугольника у квадрата диагонали равны, значит периметр равен 14см.
Учебник для 7 – 11 классов средней школы. Г.П.Бевз, В.Г.Бевз, Н.Г.Владимирова
Задача 369. Какую форму имеет четырехугольник, вершинами которого являются середины сторон прямоугольника?
Решение: Диагонали прямоугольника равны, поэтому середины сторон прямоугольника являются вершинами ромба (следствие 1);
Задача 371. Докажите, что средние линии четырехугольника делятся точкой пересечения пополам.
Доказательство: Т.к. средние линии четырехугольника являются диагоналями параллелограмма Вариньона, то точка пересечения делит их пополам.
Р ассмотрим задачи на бимедианы четырехугольника и теорему Вариньона, которые взяты с различных математических конкурсов и олимпиад.
З адача 1. Докажите, что если диагонали четырехугольника равны, то его площадь равна произведению средних линий
Дано: ABCD – четырехугольник; AC = BD
Доказать: SABCD = KM*LN
Доказательство:
Доказательство: KLMN – параллелограмм Вариньона. Так как AC= BD, параллелограмм Вариньона является ромбом. SKMNL =KM*LN /2 (площадь ромба равна половине произведения его диагоналей ).
SABCD = 2 SKMNL = KM * LN
Задача 2. Докажите, что площадь параллелограмма, образованного прямыми, проходящими через вершины выпуклого четырехугольника и параллельными его диагоналям, в два раза больше площади исходного четырехугольника
Доказательство:
SABCD=SLMNK+SLKD+SALM+SBMN+SKCN
Так как AMOL, MONB, CKON, DKOL — параллелограммы,
То SALM=SMOL , SMBN=SMON, SNCK=SKON . SLKD=SLOK
Отсюда получаем, что SABCD=2SKLMN
З адача 3.Доказать, что периметр параллелограмма Вариньона равен сумме длин диагоналей четырехугольника ABCD.
Доказательство:
Так как KL=MN=1/2 AC
LM=KN=1/2 BD
(как средние линии треугольниковABC и BCD),
то: PKLMN=2*(KL+LM)=2*(1/2AC+1/2BD)
=AC+BD.
PKLMN=AC+BD.
З адача 4. Отрезки, соединяющие середины противоположных сторон четырехугольника, называются средними линиями. Доказать, что средние линии четырехугольника точкой пересечения делятся пополам.
Доказательство:
Поскольку средние линии
KM и LN четырехугольника
ABCD являются диагоналями
параллелограмма Вариньона,
то точка пересечения делит их пополам (по свойству диагоналей параллелограмма) KM и LN — средние линии четырехугольника ABCD.
Задача 5 .
П равильно ли, что можно составить треугольник из любой средней линии четырехугольника и отрезков, вдвое меньших от его диагоналей?
Решение:
Правильно, так как параллелограмм
Вариньона существует
для произвольного
выпуклого четырехугольника.
Например, условие задачи
удовлетворяют треугольники KLM и LMN.
B : KL-средняя линия ABCD, KL=1/2AC, LM=1/2BD.
З адача6 . Построить ромб с вершинами на сторонах прямоугольника ABCD
Доказательство: Поскольку диагонали AB и CD прямоугольника равны,
то параллелограмм Вариньона KLMN и
будет искомым ромбом для прямоугольника
ABCD. KL =1/2AC, LM=1/2BD;При этом AC=BD.
Отсюда, KL=LM=MN=NK. Итак, KLMN-ромб.
KLMN- ромб с вершинами в серединах сторон четырехугольника ABCD.
З адача7. Пусть L и N – середины противоположных сторон BC и AD четырехугольника ABCD. Доказать, что площадь четырехугольника LPNQ равна сумме площадей треугольников ABP и CQD.
Доказательство:
SALCN = SNBLD = .
В треугольнике
ACD медиана CN делит его на два треугольника равной площади, а в треугольнике ABC медиана AL делит его на два равновеликих треугольника. Так как SABC+SACD=SABCD ,то SALCN=SNBLD= . аналогично устанавливается нужное равенство и для четырехугольника NBLD. Теперь утверждение задачи следует из того, что четырехугольники ALCN и NBLD покрывают внутри четырехугольника ABCD два раза четырехугольник LPNQ и не покрывают треугольники ABP и CQD, а их сумма их площадей равна площади четырехугольника ABCD. Площадь четырехугольника, с другой стороны, равна сумме площадей шести треугольников (в том числе и треугольников ABP и CQD) и интересующего нас четырехугольника LPNQ.
.Литература
1.Адмар Ж. Элементарная геометрия, М., Учпедгиз, 1948.
2.Кокстер Г., Грейтцер С. Новые встречи с геометрией. М., 1978.
3. Геометрия. Учебник для 7 – 9 классов общеобразовательных учреждений
Л. С. Атанасян, В.Ф. Бутузов, С. Б. Кадомцев и др, – М.: Просвещение,2012.
4. Геометрия. Учебник для 7 – 11 классов средней школы. Погорелов А. В — М.: Просвещение.2012
5. Геометрия. Учебник для 7 – 11 классов средней школы. Г.П.Бевз, В.Г.Бевз, Н.Г.Владимирова- М.: Просвещение.2011
6. Геометрия. Учебник для 7 – 9 классов общеобразовательных учреждений В.Н.Руденко, Г.А.Бахурин — М.: Просвещение.2001
7.Сборник тестовых заданий по геометрии 9 класс, «Интеллект-Центр» Москва 2001
8.Задачи по геометрии 7-11кл., авторы: Б. Г. Зив, В. М. Мейлер, А. Г. Баханский.
Интернет источники
1.https://ru.wikipedia.org/wiki/Теорема_Вариньона_(геометрия)
2. https://yadi.sk/i/Q3GSNIImfTxf5
11