Как найти положение ползунка реостата

Когда мы собираем электрическую цепь и замыкаем ее, возникает электрический ток. Его характеризует величина, называемая силой тока. При последовательном соединении элементов она будет одинакова на всех участках цепи ($I = I_1 = I_2 = … = I_n$), а при параллельном — разветвляться ($I = I_1 + I_2 + … + I_n$). Но мы не можем изменить величину силы тока в цепи или на ее участке, не поменяв проводники или источник тока.

Тем не менее при проведении экспериментов было бы удобно иметь возможность изменять силу тока в цепи и следить за изменениями, которые при этом будут происходить. Также это удобно в различных электрических приборах и устройствах. Например, регулируя громкость звука аудиоустройств, мы меняем силу тока в их динамиках. Изменяя силу тока в электродвигателе швейной машинки, мы можем регулировать скорость его вращения.

В большинстве случаев для изменения силы тока в цепи используется специальный прибор — реостат. Именно об этом приборе мы и поговорим на данном уроке. Мы рассмотрим его устройство и действие, правила подключения в цепь.

Устройство простейшего реостата

Чтобы понять принцип работы любого реостата, рассмотрим самый простейший из них.

Для этого возьмем проволоку с достаточно большим удельным сопротивлением (например, нихромовую). Подключим ее последовательно в цепь, состоящую из источника тока, ключа и амперметра. Сделаем это, используя контакты A и B (рисунок 1).

Рисунок 1. Простейший реостат — проволока с большим удельным сопротивлением

Мы можем передвигать один из контактов — B. С помощью него мы можем изменять длину включенного в цепь участка проволоки AB. Другой участок проволоки при этом включен в цепь не будет.

При изменении длины участка AB будет изменяться сопротивление всей цепи. Каким образом?

Изменяя длину включенного в цепь участка проволоки, мы изменяем его сопротивление ($R = frac{rho l}{S}$). Будет изменяться и общее сопротивление цепи, а следовательно, и сила тока в ней.

Ползунковый реостат

Те реостаты, которые применяются на практике, имеют более удобную и компактную форму. Они также содержат в своей основе проволоку с большим удельным сопротивлением. 

Почему в реостатах используют проволоку с большим сопротивлением?
Взглянем еще раз на формулу для расчета сопротивления проводника: $R = frac{rho l}{S}$. Если у нас будет проводник с малым удельным сопротивлением, то он должен быть очень длинным. Это не всегда удобно при изготовлении реостатов.

При проведении лабораторных работ вы чаще всего будете использовать ползунковый реостат (рисунок 2).

Рисунок 2. Ползунковый реостат

Как устроен ползунковый реостат?
В этом реостате стальная проволока 1 намотана на керамический цилиндр. То есть сам цилиндр проводить ток не будет, так как он сделан из диэлектрика. Сама проволока тоже покрыта диэлектриком — окалиной. Это сделано для того, чтобы витки были изолированы друг от друга.

Над такой обмоткой расположен металлический стержень 2. К нему крепится ползунок 3, который своими контактами 4 прижат к обмотке. Этот ползунок мы можем передвигать.

Когда мы его передвигаем, слой окалины на проволоке стирается, и ток проходит через ползунок и металлический стержень.

Реостат имеет две клеммы. Одна находится на конце металлического стержня (клемма 5), а вторая соединена с одним из концов обмотки и расположена на корпусе реостата (клемма 6). С помощью этих клемм реостат включают в цепь.

Использование реостата

При перемещении ползунка по стержню будет изменяться сопротивление всего реостата. То есть ползунок дает нам возможность увеличивать или уменьшать сопротивление цепи. Изменяя сопротивление, мы будем изменять и силу тока в цепи.

Передвигая ползунок и сокращая длину включенной в цепь обмотки, мы увеличим силу тока в цепи ($I = frac{U}{R}$). Передвигая ползунок в другую сторону, мы увеличим длину подключенной обмотки и, наоборот, уменьшим силу тока.

Каждый реостат рассчитан на определенное сопротивление и на наибольшую допустимую силу тока. Эти значения указываются на самом приборе.

Превышать максимально допустимое значение силы тока не рекомендуется. Обмотка может очень сильно нагреться, иногда даже раскалиться. В такой ситуации реостат может перегореть — выйти из строя.

Как на схемах электрических цепей изображают реостат?
Реостаты имеют свой условный знак для обозначения на схемах электрической цепи (рисунок 3). Это обозначение ясно дает понять, в какую сторону нужно передвигать ползунок реостата, чтобы увеличить сопротивление в цепи (вправо).

Рисунок 3. Условный знак для обозначения ползункового реостата на схеме электрической цепи

Реже вы можете встретить другое обозначение реостата (рисунок 4).

Рисунок 4. Дополнительный условный знак для обозначения реостата на схеме электрической цепи

Подключение реостата в электрическую цепь

Реостат включается в электрическую цепь последовательно. Пример такой цепи с подсоединенным реостатом изображен на схеме (рисунок 5).

Рисунок 5. Подключение реостата в электрическую цепь

Зажимы 1 и 2 подключаются к источнику тока. Им может быть как аккумулятор или гальванический элемент, так и розетка.

Если мы увеличим сопротивление реостата, то накал лампочки (на рисунке 4) уменьшится. Значит, сила тока тоже уменьшится. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче. 

Такой способ довольно часто используют в выключателях для регулировки интенсивности освещения.

Путь тока по реостату, включенному в цепь

На рисунке 6 показан путь тока по реостату, если клеммы 1 и 2 подключены в цепь. Электрический ток проходит по обмотке реостата, потом через скользящий контакт ползунка он проходит по металлическому стержню и снова попадает в электрическую цепь.

Рисунок 6. Путь тока по реостату

Упражнения

Упражнение №1

На рисунке 7 изображен реостат, с помощью которого можно менять сопротивление в цепи не плавно, а ступенями — скачками. Рассмотрите рисунок и по нему опишите, как действует такой реостат.

Рисунок 7. Рычажный реостат

Такой реостат называется рычажным. В нижней его части расположен специальный рычаг, с помощью которого можно включать в цепь разное количество проводников (спиралей), соединенных последовательно друг с другом. От количества включенных в цепь спиралей будет зависеть их суммарное сопротивление и, следовательно, сила тока в цепи.

Упражнение №2

Если каждая спираль реостата (рисунок 7) имеет сопротивление, равное $3 space Ом$, то какое сопротивление будет введено в цепь при положении переключателя, изображенном на рисунке? Куда надо поставить переключатель, чтобы с помощью этого реостата увеличить сопротивление цепи еще на $18 space Ом$?

Спирали (проводники) соединены последовательно. Значит, суммарное сопротивление будет рассчитывать по формуле: $R = R_1 + R_2 + … + R_n$.

Посмотрим, сколько проводников включены в цепь при положении рычага на рисунке 7. В цепь включены 4 спирали (рисунок 8).

Рисунок 8. Ход тока по спиралям рычажного реостата, включенным в цепь

Так как сопротивление каждой спирали равно $3 space Ом$, мы можем записать:
$R = 3 space Ом + 3 space Ом + 3 space Ом + 3 space Ом = 3 space Ом cdot 4 = 12 space Ом$.
Значит, в цепь будет введено сопротивление, равное $12 space Ом$.

Чтобы ответить на второй вопрос, определим количество спиралей, которые дадут сопротивление в $18 space Ом$:
$n = frac{R}{R_1} = frac{18 space Ом}{3 space Ом} = 6$.

Посмотрим на рисунок 7 или 8. Чтобы включить в цепь еще 6 спиралей, нужно передвинуть рычаг в крайнее правое положение (рисунок 9).

Рисунок 9. Искомое положение рычага реостата

Упражнение №3

В цепь включены: источник тока, ключ, электрическая лампа и ползунковый реостат. Нарисуйте схему этой цепи. Куда надо передвинуть ползунок реостата, чтобы лампа светилась ярче?

Схема такой цепи изображена на рисунке 10.

Рисунок 10. Электрическая цепь с лампой и реостатом

Чтобы лампа светилась ярче, нужно увеличить силу тока в цепи. А для этого нужно уменьшить сопротивление ($I = frac{U}{R}$). Для этого необходимо передвинуть ползунок реостата влево. Так мы уменьшим длину включенной в цепь обмотки, что и приведет к уменьшению сопротивления ($R = frac{rho l}{S}$).

Упражнение №4

Требуется изготовить реостат на $20 space Ом$ из никелиновой проволоки площадью сечения $3 space мм^2$. Какой длины проволока потребуется для этого?

Дано:
$R = 20 space Ом$
$S = 3 space мм^2$
$rho = 0.4 frac{Ом cdot мм^2}{м}$

$l — ?$

Показать решение и ответ

Скрыть

Решение:

Запишем формулу для расчета сопротивления проводника: $R = frac{rho l}{S}$.

Выразим отсюда длину и рассчитаем ее:
$l = frac{RS}{rho}$,
$l = frac{20 space Ом cdot 3 space мм^2}{0.4 frac{Ом cdot мм^2}{м}} = frac{60 space м}{0.4} = 150 space м$.

Получается, что для изготовления реостата на $20 space Ом$ потребуется $150 space м$ никелиновой проволоки.

Ответ: $l = 150 space м$.

Цели урока:

  1. Научить учащихся определять сопротивление проводника, используя закон Ома.
  2. Научить пользоваться реостатом для регулирования силы тока в электрической цепи.
  3. Формировать умение собирать электрические цепи, измерять в них силу тока и напряжение при помощи амперметра и вольтметра.
  4. Техника безопасности.

Оборудование:

  • Источник питания, исследуемые проводники, ползунковый реостат, амперметр, вольтметр, ключ, соединительные провода.
  • Компьютеры – 12.
  • Ноутбуки – 2.
  • Проектор – 1.
  • Экран.
  • Электронные мультимедийные карточки (ресурсы взяты в сети Интернет):
    1. Ползунковый реостат – Приложение 1;
    2. Закон Ома – Приложение 2;
    3. Тест сопротивление проводника – Приложение 3.

План урока:

  1. Орг. Момент.
  2. Техника безопасности.
  3. Напоминаю основные элементы электрической цепи и представляю реостат (Ползунковый реостат).
  4. Повторяем закон Ома – слайд оставляю на экране (Закон Ома). Использую проектор и экран.
  5. Готовим тетради для контрольных и лабораторных работ к записям лабораторных результатов (дата, лабораторная работа №5, №6, название лабораторной работы, цель работы, приборы и материалы, таблицу для измерения результатов опытов).
  6. Выполняем лабораторные работы №5, 6.

Ход урока

I. Орг момент (2 минуты).

II. Техника безопасности (2 минуты).

III. Подготовка контрольной тетради для записей измерений лабораторной работы №5.

Провожу на одном уроке две лабораторные работы. На предыдущих лабораторных работах (№3 и №4) обучающиеся уже научились пользоваться амперметрами и вольтметрами, выяснили правила включения их в цепь, определяли цену деления амперметра и вольтметра. Но все, же еще раз необходимо напомнить учащимся правила техники безопасности, когда необходимо делать различные переключения в цепи, особенно при изменении положения вольтметра в схеме.

Лабораторную работу провожу двумя способами: виртуальный (на компьютере) и реальный (лаборант готовит лабораторное оборудование: источник постоянного тока, ключ, амперметр, проволочный резистор и ползунковый реостат). Урок провожу в кабинете информатики (12 стационарных компьютеров и 2 ноутбука). 14 обучающихся выполняют лабораторную работу индивидуально, а оставшиеся 11 человек делю на группы (5 групп по два человека), данные группы получают лабораторное оборудование.

Обучающиеся класса готовят записи для выполнения лабораторной работы №5

Лабораторная работа №5 «Регулирование силы тока реостатом».

Цель работы: научиться пользоваться реостатом для изменения силы тока в цепи.

Приборы и материалы: источник питания, ползунковый реостат, амперметр, ключ, соединительные провода.

Указание к работе с физическим оборудованием (с указанием к лабораторной работе подробно знакомятся дома).

  1. Рассмотрите внимательно устройство реостата и установите, при каком положении ползунка сопротивление реостата наибольшее.
  2. Составьте цепь (Рис.1), включив в неё последовательно амперметр, реостат на полное сопротивление, источник питания и ключ.
    555.jpg
    Рис.1
  3. Замкните цепь и отметьте показания амперметра.
  4. Уменьшайте сопротивление реостата, плавно и медленно передвигая, его ползунок (но не до конца!). Наблюдайте за показаниями амперметра.
  5. После этого увеличивайте сопротивление реостата, передвигая ползунок в противоположенную сторону. Наблюдайте за показаниями амперметра.
  6. Внимание! Реостат нельзя полностью выводить, так как сопротивление его при этом становиться равным нулю, и если в цепи нет других приемников тока, то сила тока может оказаться очень большой и амперметр испортиться.

Указание к работе на компьютере.

  1. Выбирают в перечне лабораторных работ название лабораторной работы – регулирование силы тока в цепи с помощью реостата.

  2. Собрать цепь по предложенной схеме, замкнуть ключ, если собрали цепь, верно, то увидели показания амперметра и вольтметра.

  3. Ползунок находится в начальном положении, записывают показания амперметра и вольтметра в тетрадях. Наблюдают за яркостью лампы.

  4. Ползунок реостата перемещают в среднее положение и делают записи в тетради.

  5. Ползунок реостата перемещают в крайнее положение и делают записи в тетради.

В группах и на компьютерах ребята выполняют работу 15 минут. Ребята, выполнявшие лабораторную работу на компьютере садятся, за парты и оформляют лабораторную работу в тетради.

На оформление работы (вывод выполненной работы №5) отводится 3 минуты.

Переходим к выполнению лабораторной работы №6 (ребята делаю записи в тетрадях).

IV. Лабораторная работы №6. «Измерение сопротивления проводника при помощи амперметра и вольтметра».

Цель работы: научиться измерять сопротивление проводника при помощи амперметра и вольтметра. Убедиться на опыте, что сопротивление проводника не зависит от силы тока в нем и напряжения на его концах.

На основании полученных данных в лабораторной работе №5 можно рассчитать значения сопротивлений реостата при нахождении ползунка в разных положениях:

R1=U1/I1 R2=U2/I2  R3=U3/I3

Ученики должны записать значения силы тока в цепи при максимальном сопротивлении реостата (Imin) и максимальное значение напряжения на нем Umax. Затем можно уменьшать сопротивление реостата до тех пор, пока сила тока в цепи не будет равна 1A, записывая при этом значение напряжения на реостате. На основании полученных данных можно рассчитать значение сопротивления реостата и сопротивление его активной части.

Результаты всех измерений и вычислений заносятся в таблицу.

№ опыта Сила тока I, А Напряжение U, В Сопротивление R, Ом
1 – первое положение ползунка I1 U1 R1
2 – первое положение ползунка I2 U2 R2
3 – первое положение ползунка I3 U3 R3

Оформление лабораторной работы (расчёт сопротивлений, вывод) 10 минут.

Для контроля качества выполнения работы слежу за работой учащихся на всех этапах выполнения лабораторных работ. Наиболее способным учащимся в ходе работы можно предлагать творческие задания:

Те ребята, которые делали, работу за компьютером выполняют следующее творческое задание:

а) предложите способ определения длины медного проводника площадью поперечного сечения 1мм2, используя амперметр и вольтметр;
б) имея кусок провода, изготовьте реостат.

Ребята, работающие в группах выполняют вычислительную работу с помощью электронной карточки «Тест сопротивление проводника» на компьютере.

На выполнение творческой работы (на компьютере или в тетрадях) – 10 минут.

V. Домашнее задание (2 минуты).

  1. Повторить материал по теме «Закон Ома для участка цепи»;
  2. Сборник задач В.И. Лукашика, Е.В. Ивановой: №1319, 1320, 1328, 1330.

Реостат — это переменный резистор, электрическое сопротивление которого между его подвижным контактом и выводами резистивного элемента можно изменять механическим способом (определение согласно ГОСТ 21414-75).

Реостат — это тип потенциометра с двумя выводами вместо трех. Является так называемым элементом управления в электрических цепях.

Важным преимуществом реостата является то, что его можно использовать для изменения электрического сопротивления в цепи без её разрыва.

Принцип действия и устройство реостата

Из любого учебника физики за 8 класс нам известно, что принцип действия реостата основан на законе Ома для участка цепи, а именно электрический ток, протекающий через цепь, изменяется в зависимости от уровня сопротивления, с которым он сталкивается при неизменном напряжении источника. Низкое сопротивление означает высокий электрический ток, так как ничто не препятствует току, а высокое сопротивление означает низкий электрический ток. Это свойство электрических цепей может быть использовано для настройки характеристик цепи в соответствии с конкретными требованиями.

При этом, сопротивление материала проводника (скажем, проволоки) зависит линейно от её длины и обратно пропорционально площади поперечного сечения, то есть верна формула: R = (ρ * l) / S, где

  • ρ — удельное сопротивление материала проводника;
  • l — длина проводника;
  • S — площадь поперечного сечения проводника.

Таким образом, если площадь поперечного сечения остается постоянной, увеличение длины увеличивает сопротивление. Как показано на рисунке 1, ползунок реостата перемещается с помощью резистивного элемента. Он перемещается в 2 направлениях (туда/обратно). Соответственно изменяется эффективная длина. По мере продвижения ползунка к выходному выводу эффективная длина уменьшается, вызывая падение сопротивления и увеличение силы тока.

В простейшем типе реостата используется керамический цилиндр с намотанной по всей длине стальной проволокой (или другим материалом/сплавом с большим удельным сопротивлением), причем эта проволока имеет постоянное поперечное сечение по всей длине. Проволока покрыта тонким слоем не проводящей ток окалины, поэтому витки её изолированы друг от друга.

Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок (подвижный контакт). Своими контактами он прижат к виткам обмотки.

Слой окалины с проволоки снимается в результате трения контактов ползуна о витки обмотки. Электрический ток от витков проволоки через контакты ползунка течет в стержень.

Из конструктивных особенностей нужно ещё отметить, что внутри реостат всегда полый. Это необходимо, поскольку при протекании электрического тока реостат нагревается, а эта полость обеспечивает быстрое охлаждение.

Ползунок можно перемещать вдоль стержня, чтобы создать бо́льшее или ме́ньшее сопротивление в электрической цепи. При изменении положения ползунка реостата изменяется длина той части обмотки, через которую проходит ток — а вследствие этого изменяется и сопротивление реостата. То есть, увеличение длины проволочного стержня создает бо́льшее сопротивление, что приводит к уменьшению тока, протекающего через цепь, а уменьшение — наоборот, создает ме́ньшее сопротивление, что приводит к увеличению силы тока в цепи.

Общая структура линейного реостата

Рисунок 1. Общая структура простого ползункового реостата

Каждый реостат рассчитан на определённое сопротивление и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате.

Кто изобрел реостат?

Разработка реостата иногда приписывается Чарльзу Уитстону, британскому изобретателю XIX века, который, помимо прочего, привнес в науку ряд открытий, связанных с электричеством. Уитстон, безусловно, работал с электрическими цепями и многое узнал о электрическом сопротивлении и о том, как им можно манипулировать в процессе работы. Основные конструкции реостатов, разработанные в то время, используются и сегодня.

Реостат на основе рисунка Чарльза Уитстона

Реостат на основе рисунка Чарльза Уитстона

Где применяются реостаты?

Основное предназначение реостата — это регулировка силы тока в электрической цепи.

Существуют различные типы реостатов, но в технике, например в электротранспорте, регулировка силы тока реостатами вытесняется другими, более выгодными электронными регуляторами, полупроводниковыми элементами и потенциометрами. Дело в том, что, изменяя силу тока в цепи, реостат нагревается, на что расходуется значительная энергия. При большом значении силы тока проволока реостата может перегреться и реостат перестанет работать. В электронных регуляторах эти потери в сотни раз меньше.

  • Реостат обычно используется в областях, где требуется высокое напряжение или ток. Микроволновая печь, холодильник, миксер, вентилятор, электроинструменты и т.д.
  • В светорегуляторах реостаты используются для изменения интенсивности света. Если увеличить сопротивление реостата, через лампочку будет протекать меньший электрический ток, и яркость света уменьшится. Аналогично, если мы уменьшаем сопротивление реостата, через лампочку протекает больше электрического тока, и яркость света увеличивается.
  • Реостаты используются для увеличения или уменьшения скорости вращения электродвигателя.
  • Он используется в переключателях, с помощью которых устанавливается температура на электроплитах. Он используется во всех устройствах, аналогичных кухонным приборам, которые имеют нагревательные элементы, температура которых должна быть увеличена или уменьшена.
  • Он используется для увеличения или уменьшения громкости в таких устройствах, как телевизор, радио.

Почему реостат нужно подключать последовательно в электрическую цепь?

Чтобы подключить реостат в цепь, мы должны подключить его последовательно, а не параллельно. Электрический ток, как известно, течет по пути с наименьшим сопротивлением. Поэтому, когда возникает выбор между путём с меньшим сопротивлением и путём с бо́льшим сопротивлением, он всегда выбирает меньший.

Реостат, как мы уже знаем, — это устройство с переменным значением сопротивления. Когда мы подключаем его к параллельному пути, этот путь приобретает немного бо́льшее сопротивление, чем другой доступный путь. Когда в электрический цепи течет ток, электроны никогда не выбирают параллельный путь, а текут прямо по последовательному пути. Поэтому реостат вообще не будет работать в таком случае.

Последовательное подключение реостата
Последовательное подключение реостата

Как обозначается реостат на схемах?

Реостат на схемах обозначается как резистор со стрелкой. При таком обозначении легко понять, что при движении ползунка вправо сопротивление реостата уменьшится, а при движении влево – увеличится. 

Обозначение реостата

В тоже время нужно знать, что международная электротехническая комиссия (IEC) определила другой символ для обозначения реостатов:

IEC символ для обозначения реостата

Прямоугольник обозначает сопротивление, а стрелка – то, что его можно изменять.

На практике часто приходится менять силу тока в цепи, делая ее то больше, то меньше. Так, изменяя силу тока в динамике радиоприемника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Во многих случаях для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включенного в цепь участка АС. При этом будет меняться сопротивление цепи, а, следовательно, и сила тока в ней, это покажет амперметр.

http://smartant.narod.ru/physics/key.gif

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением, а для того чтобы длинная проволока не мешала ее наматывают спиралью.

Один из реостатов (ползунковый реостат) изображен на рисунке а), а его условное обозначение в схемах — на рисунке б).

В этом реостате никелиновая проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки.

Электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим 1. С помощью этого зажима и зажима 2, соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь.

http://smartant.narod.ru/physics/Reostat.gif

Стрелками указано как протекает электрический ток через реостат

Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь. То есть мы увеличиваем или уменьшаем количество витков по которым протекает электрический ток (чем больше витков, тем больше сопротивление).

Каждый реостат рассчитан на определенное сопротивление (чем больше проволоки намотано, тем большее сопротивление может дать такой реостат) и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате (см. рисунок а).

[Значения 6Ω и 3 А означают что данный реостат способен изменять свое сопротивление с 0 до 6 Ом, и ток с силой больше чем 3 Ампера пропускать по нему не стоит.]

Теперь самое время перейти от теории к практике!

Часть 1. Регулировка силы тока в лампочке.

На видео видно, как передвигая ползунок реостата вправо и влево, лампочка горит ярче или тусклее.

Понять принцип опыта можно взглянув на схему (см. рисунок 4).

На рисунке указана схема цепи, которую мы собирали в видео. Полное сопротивление цепи состоит из сопротивления Rл лампочки и сопротивления включенной в цепь части проволоки (на рисунке заштрихована) реостата. Незаштрихованная часть проволоки в цепь не включена. Если изменить положение ползунка, то изменится длина включенной в цепь части проволоки, что приведет к изменению силы тока.

Так, если передвинуть ползунок в крайнее правое положение (точка С), то в цепь будет включена вся проволока, сопротивление цепи станет наибольшим, а сила тока — наименьшей, поэтому нить лампочки будет гореть тускло или совсем не будет гореть (так как эл. ток такой силы не может разогреть спираль лампочки до свечения).

Если же передвинуть ползунок реостата в положение А, то электрический ток совсем не будет идти по проволоке реостата и, следовательно, сопротивление реостата будет равно нулю. Весь ток будет расходоваться на горение лампы, и она будет светить максимально ярко.

Часть 2. Включение лампочки от карманного фонаря в сеть 220 В.

Внимание! Не повторяйте этот опыт самостоятельно. Напоминаем, что поражение электрическим током осветительной сети может привести к смерти.

Что произойдет, если включить лампочку от фонарика в осветительную сеть напряжением 220 В? Понятно, что лампочка, рассчитанная на работу от батареек с суммарным напряжением 3,5 Вольт (3 пальчиковых батарейки), не способна выдержать напряжение в 63 раза большее – она сразу перегорит (может и взорваться).

Как тогда это сделать? На помощь придет уже известный нам прибор – реостат.

Нам нужен такой реостат, который способен был задержать бурный поток электрического тока, идущего от осветительной сети, и превратить его в тоненький ручеек электричества, который будет питать нашу хрупкую лампочку не нанося ей вреда.

Мы взяли реостат с сопротивлением 1000 (Ом). Это значит, что если эл. ток будет проходить по всей проволоке этого реостата, то на выходе из него получится ток с силой всего лишь 0,22 Ампер.

I=U/R=220 В / 1000 (Ом) = 0, 22 А

Для питания же нашей лампочки нужно даже более сильное электричество (0,28 А). То есть реостат не пропустит достаточное количество тока, чтобы зажечь нашу маленькую лампочку.

Это мы и наблюдаем во второй части видео, где в крайнем положении ползунка лампочка не горит, а при передвижении его вправо лампочка начинает загораться все ярче и ярче (подвигая ползунок мы запускаем все больше тока).

В определенный момент (на определенном положении ползунка реостата) лампочка перегорает, потому что реостат (при данном положении ползунка) пропустил слишком много электричества, которое и пережгло нить накаливания лампочки.

Так можно ли включить низковольтную лампочку в осветительную сеть? Можно! Только следует задержать все лишнее электричество реостатом с достаточно большим сопротивлением.

Часть 3. Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть 220 В.

Мы взяли лампу мощностью 60 Вт, рассчитанную на напряжение 220 В, и лампочку от карманного фонарика на 3,5 В и силу тока 0,28 А.

Что произойдет, если включить эти лампочки в осветительную сеть напряжением 220 В? Понятно, что 60-ти ваттная лампочка будет гореть нормально (она на это и предназначена), а вот лампочка от карманного фонарика немедленно перегорит при включении ее в сеть (т.к. рассчитана работать от батареек только на 3,5 Вольта).

Но в опыте видно, как при подключении лампочек друг за другом (последовательно) и включении их в сеть 220 В обе лампы горят нормальным накалом и даже не думают перегорать. Даже когда ползунок реостата в крайнем положении (т.е. он не создает никакого сопротивления току) маленькая лампочка не перегорает.

Почему так? Почему даже при выключенном реостате (при его нулевом сопротивлении) лампа не перегорает? Что не дает ей перегореть при таком большом напряжении? И действительно ли напряжение на маленькой лампочке такое большое? Будет ли работать маленькая лампа если заменить лампу мощностью 60 Вт на стоваттную лампочку (100 Вт)? 

Вы уже сможете ответить на большинство вопросов, если внимательно следили за ходом рассуждений в предыдущей части статьи. В этом опыте маленькой лампочке не дает перегорать большая лампочка. Она выступает в роли реостата с большим сопротивлением и берет на себя почти всю нагрузку.

Давайте попробуем разобраться как такое может происходить, что маленькая лампочка не перегорает благодаря лампочке в 60 Вт и доказать расчетным методом, что для нормального накала обеих лампочек необходимо одна и та же сила тока.

На помощь в решении этого вопроса нам придет физика, а конкретно ее раздел электричество (изучается в 8 классе).

Регулирование силы тока реостатом и измерение сопротивления с помощью амперметра и вольтметра

Оборудование: источник питания, реостат, резистор, амперметр, вольтметр, ключ, соединительные провода.

Указания к выполнению работы

1. Рассмотрите реостат. Установите, при каком положении ползунка сопротивление реостата является наибольшим и наименьшим.

2. Соберите цепь, соединив последовательно источник питания, амперметр, реостат, резистор и ключ. К зажимам реостата присоедините вольтметр.

3. Изобразите в тетради схему цепи.

4. Плавно перемещая ползунок, измерьте силу тока и напряжение при его трех различных положениях. Рассчитайте сопротивление реостата, соответствующее каждому из этих случаев. Результаты измерений и вычислений занесите в таблицу.

Положение

ползунка

I, А

U, В

R, Ом

1

2

3

В данной работе мы проверим закон Ома и научимся регулировать силу тока в цепи путем изменения ее сопротивления. Как известно,

— закон Ома. В нашей цепи R — сопротивление реостата и резистора, которое мы можем изменить механически (путем перемещения ползунка реостата). Как видно из (1), увеличивая R, мы добьемся уменьшения силы тока и наоборот. Следует отметить, что напряжение U остается неизменным и равно напряжению на реостате.

Пример выполнения работы:

I, A

U, B

R, Ом

1

2

12

6

2

3

12

4

3

6

12

2

Таким образом, мы экспериментально подтвердили закон Ома.

Понравилась статья? Поделить с друзьями:
  • Как найти новую любимую песню
  • Как найти ботинки по модели
  • Как найти общую энергию всех молекул
  • Найти как готовить блинчики
  • Как в майкрософт ворд исправить ошибки в тексте