Как найти координаты точки?
О чем эта статья:
3 класс, 4 класс, 9 класс, 11 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).
Понятие системы координат
Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Например, координаты вашей квартиры тоже можно записать числами — они помогут понять, где именно находится тот дом, где вы живете. С точками на плоскости та же история.
Прямоугольная система координат — это система координат, которую изобрел математик Рене Декарт, ее еще называют «декартова система координат». Она представляет собой два взаимно перпендикулярных луча с началом отсчета в точке их пересечения.
Чтобы найти координаты, нужны ориентиры, от которых будет идти отсчет. На плоскости в этой роли выступят две числовые оси.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Чертеж начинается с горизонтальной оси, которая называется осью абсцисс и обозначается латинской буквой x (икс). Записывают ось так: Ox. Положительное направление оси абсцисс обозначается стрелкой слева направо.
Затем проводят вертикальную ось, которая называется осью ординат и обозначается y (игрек). Записывают ось Oy. Положительное направление оси ординат показываем стрелкой снизу вверх.
Оси взаимно перпендикулярны, а значит угол между ними равен 90°. Точка пересечения является началом отсчета для каждой из осей и обозначается так: O. Начало координат делит оси на две части: положительную и отрицательную.
- Координатные оси — это прямые, образующие систему координат.
- Ось абсцисс Ox — горизонтальная ось.
- Ось ординат Oy — вертикальная ось.
- Координатная плоскость — плоскость, в которой находится система координат. Обозначается так: x0y.
- Единичный отрезок — величина, которая принимается за единицу при геометрических построениях. В декартовой системе координат единичный отрезок отмечается на каждой из осей. Длина отрезка показывает сколько раз единичный отрезок и его части укладываются в данном отрезке.
Оси координат делят плоскость на четыре угла — четыре координатные четверти.
У каждой из координатных четвертей есть свой номер и обозначение в виде римской цифры. Отсчет идет против часовой стрелки:
- верхний правый угол — первая четверть I;
- верхний левый угол — вторая четверть II;
- нижний левый угол — третья четверть III;
- нижний правый угол — четвертая четверть IV;
- Если обе координаты положительны, то точка находится в первой четверти координатной плоскости.
- Если координата х отрицательная, а координата у положительная, то точка находится во второй четверти.
- Если обе координаты отрицательны, то число находится в третьей четверти.
- Если координата х положительная, а координата у отрицательная, то точка лежит в четвертой четверти.
Определение координат точки
Каждой точке координатной плоскости соответствуют две координаты.
Точка пересечения с осью Ох называется абсциссой точки А, а с осью Оу называется ординатой точки А.
Чтобы узнать координаты точки на плоскости, нужно опустить от точки перпендикуляр на каждую ось и посчитать количество единичных отрезков от нулевой отметки до опущенного перпендикуляра.
Координаты точки на плоскости записывают в скобках, первая по оси Ох, вторая по оси Оу.
Смотрим на график и фиксируем: A (1; 2) и B (2; 3).
Особые случаи расположения точек
В геометрии есть несколько особых случаев расположения точек. Лучше их запомнить, чтобы без запинки решать задачки. Вот они:
- Если точка лежит на оси Oy, то ее абсцисса равна 0. Например,
точка С (0, 2). - Если точка лежит на оси Ox, то ее ордината равна 0. Например,
точка F (3, 0). - Начало координат — точка O. Ее координаты равны нулю: O (0,0).
- Точки любой прямой, которая перпендикулярна оси абсцисс, имеют одинаковые абсциссы.
- Точки любой прямой, которая перпендикулярна оси ординат, имеют одинаковые ординаты.
- Если точка лежит на оси абсцисс, то ее координаты будут иметь вид: (x, 0).
- Если точка лежит на оси ординат, то ее координаты будут иметь вид: (0, y).
Способы нахождения точки по её координатам
Чтобы узнать, как найти точку в системе координат, можно использовать один из двух способов.
Способ первый. Как определить положение точки D по её координатам (-4, 2):
- Отметить на оси Ox, точку с координатой -4, и провести через нее прямую перпендикулярную оси Ox.
- Отметить на оси Oy, точку с координатой 2, и провести через нее прямую перпендикулярную оси Oy.
- Точка пересечения перпендикуляров и есть искомая точка D. Ее абсцисса равна -4, а ордината — 2.
Способ второй. Как определить положение точки D (-4, 2):
- Сместить прямую по оси Ox влево на 4 единицы, так как у нас
перед 4 стоит знак минус. - Подняться из этой точки параллельно оси Oy вверх на 2 единицы, так как у нас перед 2 стоит знак плюс.
Чтобы легко и быстро находить координаты точек или строить точки по координатам, скачайте готовую систему координат и храните ее в учебнике:
Алгебра
Лучшие условия по продуктам Тинькофф по этой ссылке
Дарим 500 ₽ на баланс сим-карты и 1000 ₽ при сохранении номера
. 500 руб. на счет при заказе сим-карты по этой ссылке
Лучшие условия по продуктам
ТИНЬКОФФ по данной ссылке
План урока:
Числовая и единичная окружность
В средней школе мы уже познакомились с координатной, или числовой прямой. Так называют абстрактную прямую, на которой выбрана точка отсчета, определен единичный отрезок, а также задано направление, в котором следует откладывать положительные числа. С помощью координатной прямой удается наглядно представлять сложение и вычитание как положительных, так и отрицательных чисел, решать задачи, связанные с перемещением по прямой, и делать многое другое.
Однако порою приходится рассматривать задачи, связанные с движением по окружности, а также складывать и вычитать углы. Здесь математикам помогает другая абстракция – числовая окружность. Пусть два гонщика (Вася и Петя) едут по круговой трассе, чья протяженность составляет 1 км. За минуту Вася проехал 1250 м, а Петя преодолел только 500 м. Попытаемся показать их положение графически.
Построим на координатной плоскости окружность с центром в начале координат длиной 1 км. Будем считать, старт находится в крайней правой точке трассы, на пересечении оси Ох и окружности. Также условимся, что гонщики едут против часовой стрелки. Тогда получим такую картинку:
Петя проедет ровно половину окружности и окажется в крайней левой точке трассы. Вася же за минуту успел сделать полный круг (1 км) и проехать ещё 250 м, а потому оказался в верхней точке.
Теперь предположим, что Петя стоит на месте, а Вася проехал ещё 250 м (четверть круга). В результате оба пилота оказались в одной точке, но проехали они разное расстояние! Получается, что по положению гонщика невозможно однозначно определить, сколько именно метров он проехал.
Заметим, что очень удобно характеризовать положение точки на числовой окружности с помощью угла. Достаточно соединить точку отрезком с началом координат. Полученный отрезок образует с прямой Ох некоторый угол α:
В тригонометрии предпочитают использовать особую числовую прямую, радиус которой равен единице. По ряду причин, которые станут ясны чуть позже, с ней очень удобно работать. Такую фигуру называют единичной окружностью.
Выглядит единичная окружность так:
Откладывание углов на единичной окружности
Положение каждой точки на единичной окружности можно указать с помощью угла. Пусть надо найти точку, соответствующую углу 60°. Для этого просто строим угол следующим образом:
Углы, которые откладывают на единичной окружности, называют углами поворота. В данном случае можно утверждать, что точке А соответствует угол поворота, равный 60°.
Отложить можно и угол, больший 90° и даже 180°. Выглядеть они будут примерно так:
Углы можно складывать друг с другом и вычитать. Предположим, нам надо построить угол, равный сумме углов 120° и 110°. Для этого сначала совершить поворот на 120°, а потом от полученного отрезка отложить ещё один угол в 110°:
Ясно, что возможно построить любой угол в диапазоне от 0° до 360°. А можно ли отложить угол, который будет больше 360°? В обычной планиметрии мы не работаем с такими углами, однако в тригонометрии они существуют. Действительно, мы же можем, например, сложить углы 250° и 140°. В итоге получится 250 + 140 = 390°:
В результате мы совершили полный оборот (360°) и вдобавок повернули отрезок ещё на 30°. Получается, что углам в 390° и 30° соответствует одна и та же точка.
Углы можно и вычитать друг из друга. Для этого вычитаемый угол надо отложить в противоположном направлении – не против часовой, а по часовой стрелке. Например, вычитая из 150° угол в 70°, придем в точку, соответствующую 150 – 70 = 80°:
Из арифметики мы помним, что вычитание можно заменить прибавлением противоположного (то есть отрицательного) числа:
Получается, что отложив угол 70° по часовой стрелке, мы прибавили к 150° отрицательный угол (– 70°). То есть на единичной окружности можно откладывать отрицательные углы! Для их получения поворот надо осуществлять по часовой стрелке. Например, угол – 60° будет выглядеть так:
Итак, мы можем откладывать и положительные, и отрицательные углы, а также углы, большие 360°. Вообще в тригонометрии угол может быть равен любому действительному числу. На единичной окружности можно отложить углы величиной 1000°, 1000000° и (– 999999999°) и любые другие, самые большие и самые малые углы. В этом смысле единичная окружность схожа с координатной прямой. Разница лишь в том, что на прямой разным числам всегда соответствуют разные точки, а на окружности разным углам могут соответствовать одни и те же точки.
Ещё раз отметим, что один полный оборот равен 360°. Если отложить на окружности произвольную точку А, которой соответствует угол α, а потом добавить к α ещё 360°, то мы попадем в ту же самую точку:
С точки зрения тригонометрии те углы поворота, которые соответствуют одной точке на единичной окружности, равны друг другу. Поэтому можно записать формулу:
Естественно, при вычитании 360° из угла мы тоже совершим полный поворот, только по часовой стрелке, поэтому верна и другая запись:
Угол, не изменится и в том случае, если мы совершим не один, а два полных оборота, то есть добавим к нему 2•360° = 720°. Можно добавлять к углу два, три, четыре полных поворота, но он не изменится от этого. Обозначим буквой n количество оборотов, которые мы добавляем к углу. Естественно, что n – целое число. Справедливой будет формула:
Например, верны следующие равенства:
15° + 3•360° = 15° + 1080° = 1095°
100° + 10•360° = 100° + 3600° = 3700°
1000° = 1000° – 2•360° = 1000° – 720° = 280°
Очевидно, что любой точке на окружности соответствует какой-то угол α из промежутка 0 ≤ α 1 5
Всё про окружность и круг
Окружность — это геометрическое место точек плоскости, равноудаленных от некоторой заданной точки (центра окружности). Расстояние между любой точкой окружности и ее центром называется радиусом окружности (радиус обозначают буквой R).
Значит, окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности.
Кругом называется часть плоскости, ограниченная окружностью и включающая ее центр.
Отрезок, соединяющий две точки окружности, называется хордой. Хорда, проходящая через центр окружности, представляет собой диаметр. Диаметр окружности равен ее удвоенному радиусу: D = 2R.
Точка пересечения двух хорд делит каждую хорду на отрезки, произведение которых одинаково: a1a2 = b1b2
Касательная к окружности всегда перпендикулярна радиусу, проведенному в точку касания.
Отрезки касательных к окружности, проведенные из одной точки, равны: AB = AC, центр окружности лежит на биссектрисе угла BAC.
Квадрат касательной равен произведению секущей на ее внешнюю часть
Центральный угол — это угол, вершина которого совпадает с центром окружности.
Дугой называется часть окружности, заключенная между двумя точками.
Мерой дуги (в градусах или радианах) является центральный угол, опирающийся на данную дугу.
Вписанный угол это угол, вершина которого лежит на окружности, а cтороны угла пересекают ее.
Вписанный угол равен половине центрального, если оба угла опираются на одну и ту же дугу окружности.
Внутренние углы, опирающиеся на одну и ту же дугу, равны.
Сектором круга называется геометрическая фигура, ограниченная двумя радиусами и дугой, на которую опираются данные радиусы.
Периметр сектора: P = s + 2R.
Площадь сектора: S = Rs/2 = ПR 2 а/360°.
Сегментом круга называется геометрическая фигура, ограниченная хордой и стягиваемой ею дугой.
http://100urokov.ru/predmety/urok-1-edinichnaya-okruzhnost
http://www.stranamam.ru/post/8974384/
Сегодня поговорим об единичной окружности 🧑🏫
Можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота?🤔
Ну, конечно, можно! Записывай и запоминай общую формулу для нахождения координат точки:
x=x0+r⋅cos δ
y=y0+r⋅sin δ
x0,y0 — координаты центра окружности;
r — радиус окружности;
δ —угол поворота радиуса вектора.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter. Мы обязательно поправим!
I’m having a bit of a mind blank on this at the moment.
I’ve got a problem where I need to calculate the position of points around a central point, assuming they’re all equidistant from the center and from each other.
The number of points is variable so it’s DrawCirclePoints(int x)
I’m sure there’s a simple solution, but for the life of me, I just can’t see it
asked Mar 14, 2011 at 15:45
1
Given a radius length r and an angle t in radians and a circle’s center (h,k), you can calculate the coordinates of a point on the circumference as follows (this is pseudo-code, you’ll have to adapt it to your language):
float x = r*cos(t) + h;
float y = r*sin(t) + k;
Deduplicator
44.4k7 gold badges65 silver badges115 bronze badges
answered Mar 14, 2011 at 15:50
Brian DriscollBrian Driscoll
19.3k3 gold badges44 silver badges63 bronze badges
0
A point at angle theta on the circle whose centre is (x0,y0)
and whose radius is r
is (x0 + r cos theta, y0 + r sin theta)
. Now choose theta
values evenly spaced between 0 and 2pi.
Gewure
1,19817 silver badges30 bronze badges
answered Mar 14, 2011 at 15:48
Gareth McCaughanGareth McCaughan
19.8k1 gold badge41 silver badges62 bronze badges
3
Here’s a solution using C#:
void DrawCirclePoints(int points, double radius, Point center)
{
double slice = 2 * Math.PI / points;
for (int i = 0; i < points; i++)
{
double angle = slice * i;
int newX = (int)(center.X + radius * Math.Cos(angle));
int newY = (int)(center.Y + radius * Math.Sin(angle));
Point p = new Point(newX, newY);
Console.WriteLine(p);
}
}
Sample output from DrawCirclePoints(8, 10, new Point(0,0));
:
{X=10,Y=0}
{X=7,Y=7}
{X=0,Y=10}
{X=-7,Y=7}
{X=-10,Y=0}
{X=-7,Y=-7}
{X=0,Y=-10}
{X=7,Y=-7}
Good luck!
Deduplicator
44.4k7 gold badges65 silver badges115 bronze badges
answered Mar 14, 2011 at 15:54
Daniel LidströmDaniel Lidström
9,8101 gold badge27 silver badges35 bronze badges
3
Placing a number in a circular path
// variable
let number = 12; // how many number to be placed
let size = 260; // size of circle i.e. w = h = 260
let cx= size/2; // center of x(in a circle)
let cy = size/2; // center of y(in a circle)
let r = size/2; // radius of a circle
for(let i=1; i<=number; i++) {
let ang = i*(Math.PI/(number/2));
let left = cx + (r*Math.cos(ang));
let top = cy + (r*Math.sin(ang));
console.log("top: ", top, ", left: ", left);
}
shreyasm-dev
2,6835 gold badges16 silver badges34 bronze badges
answered Nov 22, 2018 at 7:44
maSC0d3RmaSC0d3R
3391 gold badge4 silver badges6 bronze badges
Using one of the above answers as a base, here’s the Java/Android example:
protected void onDraw(Canvas canvas) {
super.onDraw(canvas);
RectF bounds = new RectF(canvas.getClipBounds());
float centerX = bounds.centerX();
float centerY = bounds.centerY();
float angleDeg = 90f;
float radius = 20f
float xPos = radius * (float)Math.cos(Math.toRadians(angleDeg)) + centerX;
float yPos = radius * (float)Math.sin(Math.toRadians(angleDeg)) + centerY;
//draw my point at xPos/yPos
}
Deduplicator
44.4k7 gold badges65 silver badges115 bronze badges
answered Jul 2, 2014 at 19:24
scottyabscottyab
23.5k16 gold badges94 silver badges105 bronze badges
For the sake of completion, what you describe as «position of points around a central point(assuming they’re all equidistant from the center)» is nothing but «Polar Coordinates». And you are asking for way to Convert between polar and Cartesian coordinates which is given as x = r*cos(t)
, y = r*sin(t)
.
martineau
119k25 gold badges164 silver badges294 bronze badges
answered Jan 29, 2014 at 14:46
AdarshaAdarsha
2,24722 silver badges29 bronze badges
PHP Solution:
class point{
private $x = 0;
private $y = 0;
public function setX($xpos){
$this->x = $xpos;
}
public function setY($ypos){
$this->y = $ypos;
}
public function getX(){
return $this->x;
}
public function getY(){
return $this->y;
}
public function printX(){
echo $this->x;
}
public function printY(){
echo $this->y;
}
}
function drawCirclePoints($points, $radius, &$center){
$pointarray = array();
$slice = (2*pi())/$points;
for($i=0;$i<$points;$i++){
$angle = $slice*$i;
$newx = (int)($center->getX() + ($radius * cos($angle)));
$newy = (int)($center->getY() + ($radius * sin($angle)));
$point = new point();
$point->setX($newx);
$point->setY($newy);
array_push($pointarray,$point);
}
return $pointarray;
}
answered Jan 26, 2014 at 21:19
bitmousbitmous
4003 silver badges6 bronze badges
1
Here is how I found out a point on a circle with javascript, calculating the angle (degree) from the top of the circle.
const centreX = 50; // centre x of circle
const centreY = 50; // centre y of circle
const r = 20; // radius
const angleDeg = 45; // degree in angle from top
const radians = angleDeg * (Math.PI/180);
const pointY = centreY - (Math.cos(radians) * r); // specific point y on the circle for the angle
const pointX = centreX + (Math.sin(radians) * r); // specific point x on the circle for the angle
answered Mar 5, 2020 at 11:58
Noby FujiokaNoby Fujioka
1,6591 gold badge10 silver badges15 bronze badges
I had to do this on the web, so here’s a coffeescript version of @scottyab’s answer above:
points = 8
radius = 10
center = {x: 0, y: 0}
drawCirclePoints = (points, radius, center) ->
slice = 2 * Math.PI / points
for i in [0...points]
angle = slice * i
newX = center.x + radius * Math.cos(angle)
newY = center.y + radius * Math.sin(angle)
point = {x: newX, y: newY}
console.log point
drawCirclePoints(points, radius, center)
answered Dec 2, 2015 at 4:00
PirijanPirijan
3,3403 gold badges19 silver badges29 bronze badges
Here is an R
version based on the @Pirijan answer above.
points <- 8
radius <- 10
center_x <- 5
center_y <- 5
drawCirclePoints <- function(points, radius, center_x, center_y) {
slice <- 2 * pi / points
angle <- slice * seq(0, points, by = 1)
newX <- center_x + radius * cos(angle)
newY <- center_y + radius * sin(angle)
plot(newX, newY)
}
drawCirclePoints(points, radius, center_x, center_y)
mal
1,0006 silver badges14 bronze badges
answered Jun 16, 2017 at 16:20
jstajsta
3,15625 silver badges35 bronze badges
The angle between each of your points is going to be 2Pi/x
so you can say that for points n= 0 to x-1
the angle from a defined 0 point is 2nPi/x
.
Assuming your first point is at (r,0)
(where r is the distance from the centre point) then the positions relative to the central point will be:
rCos(2nPi/x),rSin(2nPi/x)
answered Mar 14, 2011 at 15:49
ChrisChris
27.1k6 gold badges71 silver badges92 bronze badges
Working Solution in Java:
import java.awt.event.*;
import java.awt.Robot;
public class CircleMouse {
/* circle stuff */
final static int RADIUS = 100;
final static int XSTART = 500;
final static int YSTART = 500;
final static int DELAYMS = 1;
final static int ROUNDS = 5;
public static void main(String args[]) {
long startT = System.currentTimeMillis();
Robot bot = null;
try {
bot = new Robot();
} catch (Exception failed) {
System.err.println("Failed instantiating Robot: " + failed);
}
int mask = InputEvent.BUTTON1_DOWN_MASK;
int howMany = 360 * ROUNDS;
while (howMany > 0) {
int x = getX(howMany);
int y = getY(howMany);
bot.mouseMove(x, y);
bot.delay(DELAYMS);
System.out.println("x:" + x + " y:" + y);
howMany--;
}
long endT = System.currentTimeMillis();
System.out.println("Duration: " + (endT - startT));
}
/**
*
* @param angle
* in degree
* @return
*/
private static int getX(int angle) {
double radians = Math.toRadians(angle);
Double x = RADIUS * Math.cos(radians) + XSTART;
int result = x.intValue();
return result;
}
/**
*
* @param angle
* in degree
* @return
*/
private static int getY(int angle) {
double radians = Math.toRadians(angle);
Double y = RADIUS * Math.sin(radians) + YSTART;
int result = y.intValue();
return result;
}
}
answered Jan 9, 2017 at 13:03
GewureGewure
1,19817 silver badges30 bronze badges
Based on the answer above from Daniel, here’s my take using Python3.
import numpy
def circlepoints(points,radius,center):
shape = []
slice = 2 * 3.14 / points
for i in range(points):
angle = slice * i
new_x = center[0] + radius*numpy.cos(angle)
new_y = center[1] + radius*numpy.sin(angle)
p = (new_x,new_y)
shape.append(p)
return shape
print(circlepoints(100,20,[0,0]))
answered Jul 19, 2018 at 11:16
Все просто, если сначала перенести начало координат в центр окружности, решить простейшую систему уравнений, сводящуюся к извлечению корня:
а потом вернуться в старую систему координат.
Если вы еще не учились примерно в 9 классе, то вот вам полное решение:
Решений, как видите, два. Один из знаков соответствует точке с минимальным расстоянием, второе — с максимальным. Какой именно знак для минимума, а какой для максимума — зависит от взаимного расположения точки и окружности.
Как вычислять по этим формулам и сравнивать значения, надеюсь, рассказывать не нужно?
Уравнение окружности.
Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.
В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.
Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.
Геометрическая интерпретация уравнения окружности – это линия окружности.
Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.
Окружность с центром в точке А и радиусом R поместим в координатную плоскость.
Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:
Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.
Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:
Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.
Примеры решения задач про уравнение окружности
Задача. Составить уравнение заданной окружности
Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.
Решение.
Обратимся к формуле уравнения окружности:
R 2 = (x- a ) 2 + (y- b ) 2
Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3
Получаем:
(x — 2 ) 2 + (y — ( -3 )) 2 = 4 2
или
(x — 2 ) 2 + (y + 3 ) 2 = 16 .
Задача. Принадлежит ли точка уравнению окружности
Проверить, принадлежит ли точка A(2;3) уравнению окружности (x — 2) 2 + (y + 3) 2 = 16.
Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.
В уравнение ( x — 2) 2 + ( y + 3) 2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3
Проверим истинность полученного равенства
( x — 2) 2 + ( y + 3) 2 = 16
( 2 — 2) 2 + ( 3 + 3) 2 = 16
0 + 36 = 16 равенство неверно
Таким образом, заданная точка не принадлежит заданному уравнению окружности.
Декартовы координаты точек плоскости. Уравнение окружности
Числовая ось
Определение 1 . Числовой осью ( числовой прямой, координатной прямой ) Ox называют прямую линию, на которой точка O выбрана началом отсчёта (началом координат) (рис.1), направление
указано в качестве положительного направления и отмечен отрезок, длина которого принята за единицу длины.
Определение 2 . Отрезок, длина которого принята за единицу длины, называют масштабом .
Каждая точка числовой оси имеет координату , являющуюся вещественным числом. Координата точки O равна нулю. Координата произвольной точки A , лежащей на луче Ox , равна длине отрезка OA . Координата произвольной точки A числовой оси, не лежащей на луче Ox , отрицательна, а по абсолютной величине равна длине отрезка OA .
Прямоугольная декартова система координат на плоскости
Определение 3 . Прямоугольной декартовой системой координат Oxy на плоскости называют две взаимно перпендикулярных числовых оси Ox и Oy с одинаковыми масштабами и общим началом отсчёта в точке O , причём таких, что поворот от луча Ox на угол 90° до луча Oy осуществляется в направлении против хода часовой стрелки (рис.2).
Замечание . Прямоугольную декартову систему координат Oxy , изображённую на рисунке 2, называют правой системой координат , в отличие от левых систем координат , в которых поворот луча Ox на угол 90° до луча Oy осуществляется в направлении по ходу часовой стрелки. В данном справочнике мы рассматриваем только правые системы координат, не оговаривая этого особо.
Если на плоскости ввести какую-нибудь систему прямоугольных декартовых координат Oxy , то каждая точка плоскости приобретёт две координаты – абсциссу и ординату, которые вычисляются следующим образом. Пусть A – произвольная точка плоскости. Опустим из точки A перпендикуляры AA1 и AA2 на прямые Ox и Oy соответственно (рис.3).
Определение 4 . Абсциссой точки A называют координату точки A1 на числовой оси Ox , ординатой точки A называют координату точки A2 на числовой оси Oy .
Обозначение . Координаты (абсциссу и ординату) точки A в прямоугольной декартовой системе координат Oxy (рис.4) принято обозначать A (x ; y) или A = (x ; y).
Замечание . Точка O , называемая началом координат , имеет координаты O (0 ; 0) .
Определение 5 . В прямоугольной декартовой системе координат Oxy числовую ось Ox называют осью абсцисс , а числовую ось Oy называют осью ординат (рис. 5).
Определение 6 . Каждая прямоугольная декартова система координат делит плоскость на 4 четверти ( квадранта ), нумерация которых показана на рисунке 5.
Определение 7 . Плоскость, на которой задана прямоугольная декартова система координат, называют координатной плоскостью .
Замечание . Ось абсцисс задаётся на координатной плоскости уравнением y = 0 , ось ординат задаётся на координатной плоскости уравнением x = 0.
Формула для расстояния между двумя точками координатной плоскости
Утверждение 1 . Расстояние между двумя точками координатной плоскости
вычисляется по формуле
Доказательство . Рассмотрим рисунок 6.
| A1A2| 2 = = ( x2 – x1) 2 + ( y2 – y1) 2 . |
(1) |
что и требовалось доказать.
Уравнение окружности на координатной плоскости
Поскольку расстояние от любой точки окружности до центра равно радиусу, то, в соответствии с формулой (1), получаем:
Уравнение (2) и есть искомое уравнение окружности радиуса R с центром в точке A0 (x0 ; y0) .
Следствие . Уравнение окружности радиуса R с центром в начале координат имеет вид
Точки принадлежащие кругу и окружности
Вводятся координаты (x;y) точки и радиус круга ( r ). Определить принадлежит ли данная точка кругу, если его центр находится в начале координат.
Будем считать, что точка принадлежит кругу, если находится внутри его или на его окружности.
Из любой точки координатной плоскости можно провести отрезок к началу координат. Если длина этого отрезка больше радиуса круга, то точка лежит за пределами круга и, следовательно, не принадлежит ему. Если же отрезок, соединяющий точку и начало координат, меньше радиуса круга с центром в начале координат или равен ему, то точка будет принадлежать кругу.
Отрезок между любой точкой и нулевой точкой (началом координат) является гипотенузой прямоугольного треугольника, катеты которого равны значениям x и y координаты данной точки.
Таким образом задача сводится по-сути к двум действия:
- Нахождение длины отрезка между точкой и началом координат по теореме Пифагора (квадрат длины гипотенузы равен сумме квадратов длин катетов).
- Сравнению полученного значения с радиусом круга.
Окружность — это линия на плоскости, каждая точка которой расположена на одинаковом расстоянии от центра окружности. Это расстояние называется радиус и в записях обозначается буквой R .
Центр окружности обозначают буквой O.
Окружность разделяет плоскость на две части, внутреннюю и внешнюю. Внутренняя часть, включающая саму окружность, называется кругом. (Наведите курсор на рисунок.)
Точка O — это центр и круга и окружности.
Отрезки OA, OB, и OC — это радиусы, их длины равны. Отрезок BC, проходящий через центр окружности (круга) называется диаметром и обозначается буквой D. Диаметр разделяет круг на два полукруга, а окружность на две полуокружности.
Диаметр равен двум радиусам, это хорошо видно на рисунке.
BC = OC + OB , так как BC = D а OC = OB = R , то
Точки A и B делят окружность на две части, которые называются дугами, а точки A и B концами этих дуг.
Дуга окружности — это часть окружности ограниченная двумя точками.
На рисунке точки B и C разделили окружность на две дуги, голубую и зеленую.
Записать их названия мы можем так:
BC (дуга BC) — в данном случае речь может идти как о голубой так и о зеленой;
BAC (дуга BAC) — в данном случае речь идет именно о зеленой дуге.
Выберите верные утверждения, исходя из рисунка:
1) Точки C, B и E не принадлежат кругу.
2) Точки D, B и O принадлежат окружности.
3) Точки A, B и O принадлежат кругу. Неверно. Точка B принадлежат кругу, так как окружность часть круга. Неверно. Точка O центр окружности, но не лежит на ней. 1) Точка О является центром и окружности, и круга.
2) Точка О является центром окружности, но не центром круга.
3) Точки D и B не принадлежат окружности. 1) Точки B и D не принадлежат кругу.
2) Точки A, B, D и O принадлежат кругу.
3) Точки B, D и E принадлежат кругу. Неверно. Точка О является центром и окружности, и круга. Неверно. Точки D и B принадлежат окружности. Неверно. Точки B и D принадлежат кругу, так как лежат на окружности, а она часть круга. 1) Точки B и D разделяют окружность на 4 дуги.
2) Точки B и D разделяют окружность на 3 дуги.
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На данном уроке дается определение окружности и круга, а также определение дуги, радиуса, хорды и диаметра окружности, рассматривается взаимное расположение точек и окружности, а также двух окружностей, решаются различные задачи по этой теме.
Окружность и круг
Окружность можно построить с помощью циркуля (рис. 1). Ножку с иголкой устанавливают в точку, а ножка с грифелем опишет замкнутую линию, которую называют окружностью.
Окружность – это множество точек, равноудаленных от заданной точки (точки О), которую называют центром окружности. Окружность разделит плоскость на 2 части. Ту часть плоскости, которая лежит внутри окружности вместе с самой окружностью, называют кругом. Точка О является как центром окружности, так и центром круга (рис. 2).
Рис. 2. Окружность и круг
Взаимное расположение окружности и точки
Точки могут лежать на окружности, т. е. принадлежать окружности. Точки А и В принадлежат окружности с центром в точке О (Рис. 3); точки О, Е и D не принадлежат окружности с центром в точке О; точки О, Е, А, В принадлежат кругу с центром в точке О, а точка D не принадлежит этому кругу.
Рис. 3. Окружность и круг с центром в точке О
Точки А и В делят окружность на две части (рис. 4), каждую из которых называют дугой окружности; точки А и В – концами дуг.
Рис. 4. Окружность
Дуга, радиус, хорда, диаметр окружности
Дуга окружности – это часть окружности, ограниченная двумя точками. Пример. На окружности с центром в точке О отмечены точки А, В и С. Назовите дуги, на которые эти дуги делят окружность. Дуги с концами в точках А и В: дуга АВ, дуга АСВ. Дуги с концами в точках В и С: дуга ВС, дуга ВАС. Дуги с концами в точках А и С: дуга АС, дуга АВС. Отрезки ОА, ОВ соединяют центр окружности с точками, лежащими на окружности. Их называют радиусами (рис. 5).
Рис. 5. Радиусы окружности
Радиус – это расстояние от центра окружности до любой точки окружности. Радиусы одной окружности равны. Обозначают радиусы R или r. Отрезок, соединяющий две точки окружности, называют хордой. Хорду, проходящую через центр окружности, называют диаметром. Обозначают: d или D. Свойства диаметра: 1. диаметр – самая большая хорда. 2. d = 2R. Диаметр делит круг на два полукруга, а окружность – на две полуокружности
Задача 1
Постройте окружность с центром в точке О и радиусом 4 см. Постройте прямую а так, чтобы она пересекла окружность в двух точках А и В (рис. 6). На каком расстоянии от центра окружности находятся точки А и В?
Рис. 6. Окружность с центром в точке О и радиусом 4 см
Так как расстояние между двумя точками – это длина отрезка с концами в этих точках, то нам необходимо найти длины отрезков ОА и ОВ. По определению отрезки ОА и ОВ – радиусы одной и той же окружности. Тогда ОА = ОВ = R= 4 см. Значит, на расстоянии 4 см находятся точки А и В от центра окружности.
Задача 2
Постройте отрезок АВ, равный 4 см. Постройте первую окружность с центром в точке А радиусом 3 см, и другую окружность с центром в точке В радиусом 2 см. Назовите точки пересечения окружностей точками Е и С (рис. 7). Чему равны длины отрезков АЕ, АС, ЕВ и ВС?
Рис. 7. Отрезок АВ
По определению, отрезок АЕ, АС – это радиусы первой окружности. АЕ = АС = = 2 см.
Задача 3
Начертите отрезок СМ, равный 5 см. Постройте точку, удаленную от концов отрезка на 3 см. Сколько таких точек можно построить? Таких точек можно построить 2. Они будут лежать на пересечении двух окружностей с центром в точке С и с центром в точке М радиусом 3 см (рис. 8).
Рис. 8. Точки, удаленные от концов отрезка на 3 см
Список литературы
- Н.Я. Виленкин. Учебник для 5 кл. общеобразовательных учреждений/ 17-е изд. – М.: Мнемозина, 2005.
- Шевкин А.В. Текстовые задачи по математике: 5–6. – М.: Илекса, 2011. – 106 с.
- Ершева А.П., Голобородько В.В. Вся школьная математика в самостоятельных и контрольных работах. Математика 5–6. – М.: Илекса, 2006. – 432 с.
- Н.Н. Хлевнюк, М.В. Иванова. Формирование вычислительных навыков на уроках математики. 5–9 классы. – М.: Илекса, 2011. – 248 с.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
Домашнее задание
Учебник математики. 5 класс. Н.Я. Виленкин. № 850–856.
Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.
источники:
http://www.resolventa.ru/demo/him/diagege.htm
http://4apple.org/tochki-prinadlezhashhie-krugu-i-okruzhnosti/