Как найти порядковый номер атомную массу

В уроке 1 «Схема строения атомов» из курса «Химия для чайников» рассмотрим основы строение атома и состав атомного ядра; выясним, что такое атомная единица массы, порядковый номер атома и атомная масса элемента. Обязательно просмотрите основные понятия и определения к разделу «Атомы, молекулы и ионы», чтобы лучше воспринимать суть изложенного материала в данной главе.

Содержание

  • Основы строения атома
  • Состав ядра атома
  • Атомная единица массы
  • Порядковый номер атома и атомная масса элемента

Основы строения атома

Пока не будем говорить, кто и когда узнал о существовании атома, а сразу перейдем к основам его строения: Атом — это мельчайшая частица вещества, которая состоит из ядра (заряд «+»), окруженного электронами (заряд «–»).

Основы строения атома

Электроны расположены на электронных оболочках атома: чем больше заряд ядра, тем больше электронов и электронных оболочек. Сам атом заряда не имеет, так как он является электрически нейтральным: заряд ядра (+) равен сумме зарядов электронов (-), вращающихся вокруг ядра.

Состав ядра атома

Ядро атома состоит из нуклонов. Нуклоны в ядре — это протоны и нейтроны. Массы протона и нейтрона почти одинаковые. Заряд ядра атома обозначается знаком «+» и зависит исключительно от количества протонов, ведь протоны — это носители положительного заряда, а нейтроны заряда не имеют никогда. Почти вся масса атома сконцентрирована в ядре, поэтому оно супер-тяжелое по отношению к остальному содержимому атома, однако, очень маленькое по сравнению с общим размером атома.

Состав ядра атома

Чтобы вы понимали насколько оно мало, приведу пример: если атом увеличить до размеров Земли, то ядро атома будет в диаметре всего 60 метров. Надеюсь, что теперь у вас возникло некоторое представление об основах строения атома и составе атомного ядра.

Атомная единица массы

Весы, которые могли бы взвесить атом, электрон или нуклон, пока еще не изобрели. Поэтому химики выражают массу частиц не в граммах, а в атомных единицах массы (а.е.м.). 1 атомная единица массы равна 1/12 массы атома углерода, ядро которого состоит из 6 протонов и 6 нейтронов. Получается, что масса 1 протона ~ 1 нейтрона ~ 1 а.е.м. Возникает вопрос, почему мы не считали 6 электронов, однако ответ будет простым: масса электрона ничтожно мала, поэтому в данном случае с ней даже не считаются.

Атомная единица массы

Перевод граммов в атомные единицы массы выглядит так: 1 гр = 6,022×1023 а.е.м и наоборот 1 а.е.м. = 1,66×10-24 г. Число 6,022×1023 носит название — число Авогадро N (позже мы рассмотрим способ ее вычисления). Ниже изображена сравнительная таблица зарядов и масс элементарных частиц:

Название Заряд, Кл Масса, гр Масса, а.е.м.
Протон +1,6·10-19 1,67·10-24 1,00728
Нейтрон 0 1,67·10-24 1,00866
Электрон -1,6·10-19 9,10·10-28 0,00055

Порядковый номер атома и атомная масса элемента

Переходим к двум фундаментальным понятиям. Порядковый (атомный) номер Z — это число протонов в ядре и оно же обозначает число электронов, потому как атом должен быть электрически нейтральным. Атомная масса элемента (относительная атомная масса, атомный вес) — это масса всех субатомных частиц (протонов, нейтронов, электронов) в атоме, выражается в а.е.м. Относительная атомная масса элемента один в один то же самое, что и атомная, но является безразмерной величиной и показывает, во сколько раз масса рассматриваемого атома превышает массу 1/12 части атома углерода. Порядковые номера и атомные массы химических элементов отмечены в таблице Менделеева.

Порядковый номер атома и атомная масса элемента

Все атомы в природе с одинаковым порядковым номером в химическом отношении ведут себя практически одинаково и, поэтому их можно считать как атом одного и того же химического элемента. Каждый элемент обозначается одно- или двухбуквенным символом, заимствованный в большинстве случаев из греческого или латинского названия. Например, символ углерода — C, натрия — Na, азота — N и т.д. В качестве символа натрия Na, взяты две первые буквы его латинского названия натриум, чтобы отличить его от азота N (латинское название нитроген). В таблице Менделеева приведен алфавитный перечень элементов и их символов, их порядковый номер и атомные массы.

Надеюсь урок 1 «Схема строения атомов» был понятным и познавательным. Если у вас возникли вопросы, пишите их в комментарии.


Загрузить PDF


Загрузить PDF

Атомный номер элемента — это число протонов в ядре одного атома этого элемента. Атомный номер элемента или изотопа остается постоянным, поэтому с его помощью можно узнать другие величины, например, количество электронов и нейтронов в атоме.

  1. Изображение с названием Find Atomic Number Step 1

    1

    Найдите периодическую систему химических элементов (таблицу Менделеева). Если хотите, воспользуйтесь таблицей в этой статье. У каждого элемента свой атомный номер, а элементы в таблице упорядочены по атомным номерам. Найдите таблицу Менделеева или просто запомните ее.

    • Таблицу Менделеева можно найти в большинстве учебников по химии.
  2. Изображение с названием Find Atomic Number Step 2

    2

    Найдите нужный элемент. В таблице приводится полное название элемента и его химический символ (например, Hg для ртути). Если у вас не получается найти элемент, в поисковой системе введите «химический символ <название элемента>».

  3. Изображение с названием Find Atomic Number Step 3

    3

    Найдите атомный номер. Как правило, он находится в верхнем левом или верхнем правом углу ячейки элемента, но может быть и в другом месте. Атомный номер всегда выражен целым числом.

    • Если вы видите десятичную дробь, это атомная масса.
  4. Изображение с названием Find Atomic Number Step 4

    4

    Убедитесь, что нашли атомный номер. Элементы таблицы упорядочены по возрастанию атомных номеров. Если атомный номер нужного элемента равен «33», то атомный номер предыдущего элемента должен быть равен «32», а следующего элемента — «34». Если это так, вы нашли атомный номер.

    • Иногда таблица выглядит так, что после бария (56) и радия (88) есть пустые ячейки. На самом деле они не пустые — соответствующие элементы расположены внизу таблицы. Это сделано для того, чтобы записать таблицу в определенной форме.
  5. Изображение с названием Find Atomic Number Step 5

    5

    Запомните, что такое атомный номер. Атомный номер — это число протонов в ядре одного атома элемента.[1]
    Это фундаментальная величина, характеризующая элемент. Количество протонов определяет общий электрический заряд ядра, который указывает на число электронов, вращающихся вокруг атома. Поскольку электроны участвуют почти во всех химических взаимодействиях, атомный номер косвенно устанавливает большинство физических и химических свойств элемента.

    • Другими словами, любой атом с восемью протонами является атомом кислорода. Два атома кислорода могут иметь разное количество нейтронов или электронов (если один из атомов является ионом), но у них всегда будет по восемь протонов.

    Реклама

  1. Изображение с названием Find Atomic Number Step 6

    1

    Выясните атомный вес. В таблице атомный вес находится под названием элемента и представляет собой десятичную дробь с двумя или тремя знаками после десятичной запятой. Атомный вес — это средняя масса одного атома элемента по отношению к массе элемента, который находится в природе. Атомный вес измеряется в «атомных единицах массы» (а.е.м.).

    • В некоторых учебниках и статьях атомный вес называется «относительной атомной массой».[2]
  2. Изображение с названием Find Atomic Number Step 8

    2

    Округлите атомный вес, чтобы найти массовое число. Массовое число — это общее количество протонов и нейтронов в одном атоме элемента. Это число легко найти: посмотрите в таблице атомный вес и округлите его до ближайшего целого числа. [3]

    • Этот метод работает, потому что атомный вес нейтронов и протонов приблизительно равен 1 а.е.м., а атомный вес электронов приблизительно равен 0 а.е.м. Атомный вес измеряется довольно точно, поэтому в нем присутствуют цифры после десятичной запятой, но нас интересует только целое число, которое позволит узнать количество протонов и нейтронов.
    • Помните, что атомный вес представляет собой усредненное значение. Например, среднее массовое число брома равно 80, но, как оказалось, массовое число одного атома брома практически всегда равно 79 или 81.[4]
  3. 3

    Найдите количество электронов. Атом состоит из одинакового количества протонов и электронов, поэтому число электронов равно числу протонов. Электроны заряжены отрицательно, поэтому они уравновешивают и нейтрализуют протоны, которые заряжены положительно.[5]

    • Если атом теряет или приобретает электроны, он превращается в ион, то есть становится электрически заряженным атомом.
  4. Изображение с названием Find Atomic Number Step 9

    4

    Найдите количество нейтронов. Так как атомный номер = количество протонов, а массовое число = количество протонов + количество нейтронов, то число нейтронов = массовое число — атомный номер. Вот пара примеров:

    • Один атом гелия (He) имеет массовое число 4 и атомный номер 2. Поэтому в нем 4 — 2 = 2 нейтрона.
    • Атом серебра (Ag) имеет среднее массовое число 108 (из таблицы Менделеева) и атомный номер 47. Поэтому в атоме серебра 108 — 47 = 61 нейтрон.
  5. Изображение с названием Find Atomic Number Step 10

    5

    Запомните, что такое изотопы. Изотоп — это разновидность атома с определенным количеством нейтронов. Если в химической задаче упоминается «Бор-10» или 10B, речь идет об элементах бора с массовым числом 10.[6]
    Используйте это массовое число вместо массового числа бора из таблицы Менделеева.

    • Атомный номер изотопов никогда не меняется. Изотоп элемента имеет такое же количество протонов, как и сам элемент.

    Реклама

Советы

  • Атомный вес тяжелых элементов приводится в скобках. Это означает, что атомный вес вычислен на основе наиболее стабильного изотопа, а не среднего числа нескольких изотопов.[7]
    (Это не влияет на атомный номер элемента.)

Реклама

Об этой статье

Эту страницу просматривали 15 039 раз.

Была ли эта статья полезной?

Атом — это электронейтральная частица, состоящая из положительно заряженного ядра и электронной оболочки.

В состав ядра входят нуклоны, или ядерные частицы. Это протоны и нейтроны. Электронная оболочка образована электронами. Протоны, нейтроны и электроны называют элементарными частицами атома.

Нуклоны в ядре удерживаются ядерным взаимодействием, энергия которого намного больше энергии химической связи. Поэтому в химических реакциях ядра не разрушаются. 

Протон ((p)) — это частица с относительным зарядом (+1) и относительной массой (1). 

Нейтрон ((n)) не имеет заряда, а его относительная масса тоже равна (1).

Электрон (

e−

) имеет заряд (-1), а его масса в (1837) раз меньше массы протона и нейтрона.

Строение атома можно охарактеризовать по положению химического элемента в периодической системе.

Порядковый номер элемента равен заряду ядра, числу протонов в ядре и числу электронов в его электронной оболочке.

Учитывая, что масса атома в основном сосредоточена в ядре и масса каждого нуклона равна (1), можно определить число нейтронов. Для этого от массового числа нужно отнять число протонов (порядковый номер).

Пример:

порядковый номер радия

Ra

 (88), относительная атомная масса равна (226). Значит, в атоме содержится (88) протонов и (88) электронов, а число нейтронов равно (226 — 88 = 138).

Число нейтронов в атомах одного элемента непостоянно. Поэтому атомы одного химического элемента могут различаться своими массами и существуют в виде разных нуклидов (изотопов).

Изотопы (нуклиды) — разновидности атомов с одинаковым зарядом ядра, но разными массами.

Изотопы с одинаковым зарядом ядра составляют химический элемент. Их обозначают, указывая справа вверху от символа элемента массовое число. Справа внизу часто записывают также протонное число (порядковый номер):

O816

,

O817

.

Большинство химических элементов в природе представлено несколькими разновидностями атомов. Всего их известно более (2500).

Пример:

водород в природе представлен тремя изотопами. Ядро самого лёгкого изотопа (протия) состоит только из одного протона. В ядре дейтерия один протон и один нейтрон, а в ядре трития один протон и два нейтрона.

Frame 605.png

Рис. (1). Изотопы водорода

Указанная в периодической системе относительная атомная масса — это средняя масса всех существующих в природе изотопов данного элемента. Когда мы её округляем до целых, то получаем массу самого распространённого изотопа.

Источники:

Рис. 1. Изотопы водорода. © ЯКласс

Число протонов нейтронов электронов в атоме элемента (Таблица)

Число протонов нейтронов и электронов в атоме химического элемента (изотопа) можно определить, зная порядковый номер элемента в периодической таблице Менделеева и его атомную массу:

Число протонов = число электронов = порядковый номер элемента

Число нейтронов = атомная масса – число протонов 

Вычислим число нейтронов в атоме на примере кислорода 16O:

16 — 8 = 8 (в кислороде 8 нейтронов)

Как найти число протонов и нейтронов в элементе изотопе 

Таблица число протонов нейтронов электронов в атоме химического элемента

Справочная таблица содержит список элементов (изотопов) и их число протонов, нейтронов и электронов, а также атомную массу изотопа.

Элемент, изотоп Число протонов (= электронов) Число нейтронов Атомная масса изотопа
1H 1 0 1,0078
2H 1 1 2,0141
3He 2 1 3,0160
4He 2 2 4,0026
6Li 3 3 6,0151
7Li 3 4 7,0160
9Be 4 5 9,0122
10B 5 5 10,0129
11B 5 6 11,0093
12C 6 6 12,0000
13C 6 7 13,0034
14N 7 7 14,0031
15N 7 8 15,0001
16O 8 8 15,9949
17O 8 9 16,9991
18O 8 10 17,9992
19F 9 10 18,9984
20Ne 10 10 19,9924
21Ne 10 11 20,9938
22Ne 10 12 21,9914
23Na 11 12 22,9898
24Mg 12 12 23,9850
25Mg 12 13 24,9858
26Mg 12 14 25,9826
27Al 13 14 26,9815
28Si 14 14 27,9769
29Si 14 15 28,9765
30Si 14 16 29,9738
31P 15 16 30,9738
32S 16 16 31,9721
33S 16 17 32,9715
34S 16 18 33,9679
36S 16 20 35,9671
35Cl 17 18 34,9689
37Cl 17 20 36,9659
36Ar 18 18 35,9675
38Ar 18 20 37,9627
40Ar 18 22 39,9624
39K 19 20 38,9637
40K* 19 21 39,9640
41K 19 22 40,9618
40Ca 20 20 39,9626
42Ca 20 22 41,9586
43Ca 20 23 42,9588
44Ca 20 24 43,9555
46Ca 20 26 45,9537
48Ca* 20 28 47,9525
45Sc 21 24 44,9559
46Ti 22 24 45,9526
47Ti 22 25 46,9518
48Ti 22 26 47,9479
49Ti 22 27 48,9479
50Ti 22 28 49,9448
50V* 23 27 49,9472
51V 23 28 50,9440
50Cr 24 26 49,9460
52Cr 24 28 51,9405
53Cr 24 29 52,9406
54Cr 24 30 53,9389
55Mn 25 30 54,9380
54Fe 26 28 53,9396
56Fe 26 30 55,9349
57Fe 26 31 56,9354
58Fe 26 32 57,9333
59Co 27 32 58,9332
58Ni 28 30 57,9353
60Ni 28 32 59,9308
61Ni 28 33 60,9311
62Ni 28 34 61,9283
64Ni 28 36 63,9280
63Cu 29 34 62,9296
65Cu 29 36 64,9278
64Zn 30 34 63,9291
66Zn 30 36 65,9260
67Zn 30 37 66,9271
68Zn 30 38 67,9248
70Zn 30 40 69,9253
69Ga 31 38 68,9256
71Ga 31 40 70,9247
70Ge 32 38 69,9242
72Ge 32 40 71,9221
73Ge 32 41 72,9235
74Ge 32 42 73,9212
75As 33 42 74,9216
74Se 34 40 73,9225
76Se 34 42 75,9192
77Se 34 43 76,9199
78Se 34 44 77,9173
80Se 34 46 79,9165
82Se * 34 48 81,9167
79Br 35 44 78,9183
81Br 35 46 80,9163
78Kr * 36 42 77,9204
80Kr 36 44 79,9164
82Kr 36 46 81,9135
83Kr 36 47 82,9141
84Kr 36 48 83,9115
86Kr 36 50 85,9106
85Rb 37 48 84,9118
87Rb* 37 50 86,9092
84Sr 38 46 83,9134
86Sr 38 48 85,9093
87Sr 38 49 86,9089
88Sr 38 50 87,9056
89Y 39 50 88,9058
90Zr 40 50 89,9047
91Zr 40 51 90,9056
92Zr 40 52 91,9050
94Zr 40 54 93,9063
93Nb 41 52 92,9064
92Mo 42 50 91,9068
94Mo 42 52 93,9051
95Mo 42 53 94,9058
96Mo 42 54 95,9047
97Mo 42 55 96,9060
98Mo 42 56 97,9054
100Mo* 42 58 99,9075
96Ru 44 52 95,9076
98Ru 44 54 97,9053
99Ru 44 55 98,9059
100Ru 44 56 99,9042
101Ru 44 57 100,9056
102Ru 44 58 101,9043
104Ru 44 60 103,9054
103Rh 45 58 102,9055
102Pd 46 56 101,9056
104Pd 46 58 103,9040
105Pd 46 59 104,9051
106Pd 46 60 105,9035
108Pd 46 62 107,9039
110Pd 46 64 109,9052
107Ag 47 60 106,9051
109Ag 47 62 108,9048
106Cd 48 58 105,9065
108Cd 48 60 107,9042
110Cd 48 62 109,9030
111Cd 48 63 110,9042
112Cd 48 64 111,9028
113Cd* 48 65 112,9044
114Cd 48 66 113,9034
116Cd* 48 68 115,9048
113In 49 64 112,9041
115In* 49 66 114,9039
112Sn 50 62 111,9048
114Sn 50 64 113,9028
115Sn 50 65 114,9033
116Sn 50 66 115,9017
117Sn 50 67 116,9030
118Sn 50 68 117,9016
119Sn 50 69 118,9033
120Sn 50 70 119,9022
122Sn 50 72 121,9034
124Sn 50 74 123,9053
121Sb 51 70 120,9038
123Sb 51 72 122,9042
120Te 52 68 119,9040
122Te 52 70 121,9030
123Te 52 71 122,9043
124Te 52 72 123,9028
125Te 52 73 124,9044
126Te 52 74 125,9033
128Te* 52 76 127,9045
130Te* 52 78 129,9062
127I 53 74 126,9045
124Xe* 54 70 123,9059
126Xe 54 72 125,9043
128Xe 54 74 127,9035
129Xe 54 75 128,9048
130Xe 54 76 129,9035
131Xe 54 77 130,9051
132Xe 54 78 131,9042
134Xe 54 80 133,9054
136Xe* 54 82 135,9072
133Cs 55 78 132,9055
130Ba* 56 74 129,9063
132Ba 56 76 131,9051
134Ba 56 78 133,9045
135Ba 56 79 134,9057
136Ba 56 80 135,9046
137Ba 56 81 136,9058
138Ba 56 82 137,9052
138La* 57 81 137,9071
139La 57 82 138,9064
136Ce 58 78 135,9072
138Ce 58 80 137,9060
140Ce 58 82 139,9054
142Ce 58 84 141,9092
141Pr 59 82 140,9077
142Nd 60 82 141,9077
143Nd 60 83 142,9098
144Nd* 60 84 143,9101
145Nd 60 85 144,9126
146Nd 60 86 145,9131
148Nd 60 88 147,9169
150Nd* 60 90 149,9209
144Sm 62 82 143,9120
147Sm* 62 85 146,9149
148Sm* 62 86 147,9148
149Sm 62 87 148,9172
150Sm 62 88 149,9173
152Sm 62 90 151,9197
154Sm 62 92 153,9222
151Eu* 63 88 150,9199
153Eu 63 90 152,9212
152Gd* 64 88 151,9198
154Gd 64 90 153,9209
155Gd 64 91 154,9226
156Gd 64 92 155,9221
157Gd 64 93 156,9240
158Gd 64 94 157,9241
160Gd 64 96 159,9271
159Tb 65 94 158,9253
156Dy 66 90 155,9243
158Dy 66 92 157,9244
160Dy 66 94 159,9252
161Dy 66 95 160,9269
162Dy 66 96 161,9268
163Dy 66 97 162,9287
164Dy 66 98 163,9292
165Ho 67 98 164,9303
162Er 68 94 161,9288
164Er 68 96 163,9292
166Er 68 98 165,9303
167Er 68 99 166,9320
168Er 68 100 167,9324
170Er 68 102 169,9355
169Tm 69 100 168,9342
168Yb 70 98 167,9339
170Yb 70 100 169,9348
171Yb 70 101 170,9363
172Yb 70 102 171,9364
173Yb 70 103 172,9382
174Yb 70 104 173,9389
176Yb 70 106 175,9426
175Lu 71 104 174,9408
176Lu* 71 105 175,9427
174Hf* 72 102 173,9400
176Hf 72 104 175,9414
177Hf 72 105 176,9432
178Hf 72 106 177,9437
179Hf 72 107 178,9458
180Hf 72 108 179,9466
181Ta 73 108 180,9480
180W* 74 106 179,9467
182W 74 108 181,9482
183W 74 109 182,9502
184W 74 110 183,9509
186W 74 112 185,9544
185Re 75 110 184,9530
187Re* 75 112 186,9558
184Os 76 108 183,9525
186Os* 76 110 185,9538
187Os 76 111 186,9558
188Os 76 112 187,9558
189Os 76 113 188,9581
190Os 76 114 188,9581
192Os 76 116 191,9615
191Ir 77 114 190,9606
193Ir 77 116 191,9626
190Pt* 78 112 189,9599
192Pt 78 114 191,9610
194Pt 78 116 193,9627
195Pt 78 117 194,9648
196Pt 78 118 195,9650
198Pt 78 120 197,9679
197Au 79 118 196,9666
196Hg 80 116 195,9658
198Hg 80 118 197,9668
199Hg 80 119 198,9683
200Hg 80 120 199,9683
201Hg 80 121 200,9703
202Hg 80 122 201,9706
204Hg 80 124 203,9735
203Tl 81 122 202,9723
205Tl 81 124 204,9744
204Pb 82 122 203,9730
206Pb 82 124 205,9745
207Pb 82 125 206,9759
208Pb 82 126 207,9767
209Bi* 83 126 208,9804
232Th* 90 142 232,0381
235U* 92 143 235,0439

* это нестабильные изотопы и с большим периодом полураспада, который равняется возрасту Вселенной.

химическая таблица менделееваВ статье рассмотрена расшифровка таблицы Менделеева,  с помощью которой можно быстро в ней разобраться. Из таблицы Менделеева можно почерпнуть огромное количество информации о каждом химическом элементе. Ее можно использовать на ЕГЭ, если уметь грамотно ей пользоваться.

  • Периодическая система Менделеева систематизирует  элементы и их  свойства. В ней все элементы упорядочены с учетом их атомного числа  и повторяющихся химических свойств. 
  • Периодический закон: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Расшифровка обозначений элементов 

Каждому химическому элементу в таблице отведена одна клеточка, в которой указаны символ и название элемента, порядковый номер и относительная атомная масса.обозначения в таблице менделеева

Расшифровка обозначений элементов таблицы Менделеева:

  • Обозначение: одной или двумя латинскими буквами.
  • Порядковый номер элемента или атомный номер равен числу протонов в его ядре. Обычно пишется в левом верхнем углу. 
  • Относительная атомная масса (сумма масс протонов и нейтронов). Это усреднённая величина, для расчёта которой используются атомные массы всех изотопов элемента с учетом их содержания в природе. Поэтому обычно она является дробным числом. 
  • Если округлить атомную массу до ближайшего целого, мы получим так называемое массовое число.
  • Разность массового числа и атомного числа дает количество нейтронов в ядре. Так, число нейтронов в ядре гелия равно двум, а у лития – четырем. 
  • Число положительных протонов, как правило, равно числу отрицательных электронов в атоме (за исключением изотопов). 
  • Электронная конфигурация — формула расположения электронов по различным электронным оболочкам атома химического элемента или молекулы.
  • Чтобы узнать количество нейтронов в ядре элемента, необходимо из относительной атомной массы (массового числа) вычесть порядковый номер.

Элементы периодической таблицы Менделеева

Металлы расположены в левом нижнем углу таблицы, неметаллы — в правом верхнем углу. Между ними находятся полуметаллы. Все периоды, кроме первого, начинается щелочным металлом. Каждый период заканчивается инертным газом.

  • Металлы обладают хорошей электро- и теплопроводностью, способны отражать яркий свет, имеют высокую температуру плавления (остаются твердыми при нормальных значениях окружающей среды, исключение — ртуть).
  • Неметаллы встречаются в природе в трех состояниях: газ (например, водород), жидкость (например, бром) и твердые вещества (например, фосфор). Он не способны проводить тепло и электричество. Имеют более низкую температуру плавления в сравнении с металлами, более хрупкие и ломкие. Могут иметь разнообразный внешний вид (элементы с низкой плотностью и яркостью).
  • Металлоиды имеют смешанные свойства металлов и неметаллов (например, кремний). Они имеют среднюю  тепло- и электропроводность. Различаются между собой по температуре плавления, плотности, цвету и форме. Внешний вид может быть схож с металлами или неметаллами.

Расшифровка групп и периодов таблицы Менделеева

В таблице химические вещества расположены в специальном порядке: слева направо по мере роста их атомных масс. Все они в периодической системе объединены в периоды и группы.

Периоды это горизонтальные ряды в таблице. У всех элементов одного периода одинаковое количество заполненных электронами энергетических уровней.
Номер периода, в котором находится элемент, совпадает с номером его валентной оболочки. Эта валентная оболочка постепенно заполняется от начала к концу периода.

Закономерности периодов:

  • Металлические свойства убывают, неметаллические и окислительные -возрастают. Каждый период начинается активным металлом и заканчивается инертным газом.
  • Уменьшается атомный радиус.
  • Увеличивается электроотрицательность.

Группы — это столбцы. Элементы во всех группах имеют одинаковое электронное строение внешних электронных оболочек. В каждой группе на внешнем энергетическом атома одинаковое число электронов, то есть номер группы совпадает с числом валентных электронов, которые могут участвовать в образовании химических связей. Поэтому номер группы часто совпадает с валентностью элементов. Например, номер группы совпадает с валентностью s-элементов и с наибольшей возможной валентностью p-элементов. 

Закономерности групп:

  • Металлические свойства увеличиваются, неметаллические и окислительные- убывают.
  • Увеличивается радиус атома элементов в рамках одной группы.
  • Уменьшается электроотрицательность

менделеева период группа подгруппа

Атомное число показывает, сколько протонов содержит ядро атома элемента и сколько электронов  в атоме находятся вокруг него. Атом каждого последующего элемента содержит на один протон больше, чем предыдущий.

Валетность  — это свойство элементов образовывать химические связи. То есть это количество химических связей, которые образует атом или число атомов, которое может присоединить или заместить атом данного элемента. Валентность бывает: постоянная и переменная (зависит от состава вещества, в которое входит элемент).
Определить валентность:
— Постоянная валентность идентична номеру группы главной подгруппы. Номера групп в таблице изображаются римскими цифрами.
— Переменная валентность (часто бывает у неметаллов) определяется по формуле: 8 вычесть № группы, в которой находится вещество.

Расшифровка периодов и групп периодической таблицы Менделеева

Каждый элемент имеет свой порядковый (атомный) номер, располагается в определённом периоде и определённой группе.

Периоды

  • Малые периоды: первый, второй и третий периоды. В них содержится соответственно 2, 8 и 8 элементов;
  • Большие периоды: остальные элементы. В четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. 

В таблице 7 периодов. В каждом содержится определённое число элементов:
1-й период — 2 элемента (малый период),
2-й период — 8 элементов (малый период),
3-й период — 8 элементов (малый период),
4-й период — 18 элементов (большой период),
5-й период — 18 элементов (большой период),
6-й период — 32 элемента (18+14) (большой период),
7-й период — 32 элемента (18+14) (большой период).

Группы и подгруппы

  •  Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов.
  • Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.

В Периодической таблице может использоваться разное обозначение групп. Поэтому согласно такому обозначению бывает разная расшифровка групп таблицы менделеева:

  • 18 групп, пронумерованных арабскими цифрами.
  • 8 групп, пронумерованных цифрами с добавлением букв A или B.
    Группы A — это главные подгруппы.
    Группы B — это побочные подгруппы в больших периодов. Это только металлы. 
    IA, VIIIA — по 7 элементов;
    IIA — VIIA — по 6 элементов;
    IIIB — 32 элемента (4+14 лантаноидов +14 актиноидов);
    VIIIB — 12 элементов;
    IB, IIB, IVB — VIIB — по 4 элемента.
    Римский номер группы, как правило, показывает высшую валентность в оксидах (но для некоторых элементов не выполняется). 

Элементы с порядковыми номерами 58–71 (лантаноиды) и 90–103 (актиноиды) вынесены из таблицы и располагаются под ней. Это элементы IIIB группы. Лантаноиды относятся к шестому периоду, а актиноиды — к седьмому.

Элементы главной подгруппы

1 группа главная подгруппа элементов (IA) — щелочные металлы.
Это мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним электроном на внешней оболочке и прекрасно вступают в реакцию. 
Литий Li (3), Натрий Na (11), Калий K (19), Рубидий Rb (37), Цезий Cs (55), Франций Fr (87).

2 группа главная подгруппа (IIА) -щелочноземельными металлами.
Имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами. По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.
 Кальций Ca (20), Стронций Sr (38), Барий Ba (56), Радий Ra (88).

3 группа главная подгруппа (IIIА).
Все элементы данной подгруппы, за исключением бора, металлы. Главную подгруппу составляют составляют бор, алюминий, галлий, индий и таллий. На внешнем электронном уровне элементов по три электрона. Они легко отдают эти электроны или образуют три неспаренных электрона. 

4 группа главная подгруппа (IVА) .
Углерод и кремний обладают всеми свойствами неметаллов, германий и олово занимают промежуточную позицию, а свинец имеет выраженные металлические свойства. Большинство элементов подгруппы углерода — полупроводники (проводят электричество за счёт примесей, но хуже, чем металлы). 

5 группа главная подгруппа (VA).
Физические свойства элементов подгруппы азота различны. Азот является бесцветным газом. Фосфор, мягкое вещество, образует несколько вариантов аллотропных модификаций — белый, красный и чёрный фосфор. Мышьяк — твёрдый полуметалл, способный проводить электрический ток. Висмут — блестящий серебристо-белый металл с радужным отливом. 

6 группа главной подгруппы (VIA) .
Для завершения внешнего электронного уровня атомам этих элементов не хватает лишь двух электронов, поэтому они проявляют сильные окислительные (неметаллические) свойства.

7 группа главная подгруппа (VIIA) — галогены .
(F, Cl, Br, I, At). Имеют семь электронов на внешнем электронном слое атома. Это сильнейшие окислители, легко вступающие в реакции. Галогены («рождающие соли») назвали так потому, что они реагируют со многими металлами с образованием солей. 
Самый активный из галогенов — фтор. Он способен разрушать даже молекулы воды, за что и получил своё грозное имя (слово «фтор» переводится на русский язык как «разрушительный»). А его «близкий родственник» — иод — используется в медицине в виде спиртового раствора для обработки ран.

‍8 группа главная подгруппа (VIIIA)  — инертные (благородные) газы.
(He, Ne, Ar, Kr, Xe, Rn, Og). У них полностью заполнен внешний электронный уровень. Они практически не способны участвовать в реакциях. Поэтому их иногда называют «благородными».  У инертных газов есть способность: они светятся под действием электромагнитного излучения, поэтому используются для создания ламп. Так, неон используется для создания светящихся вывесок и реклам, а ксенон — в автомобильных фарах и фотовспышках. 

Элементы побочной подгруппы

Элементы побочных подгрупп кроме лантаноидов и актиноидов — переходные металлы.
Твёрдые (исключение жидкая ртуть), плотные, обладают характерным блеском, хорошо проводят тепло и электричество. 

Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.

3 группа побочная подгруппа (IIIB) шестого и седьмого периодов — лантаноиды и актиноиды.
Для удобства их помещают под основной таблицей. 

  • Лантаноиды иногда называют «редкоземельными элементами», поскольку они были обнаружены в небольшом количестве в составе редких минералов и не образуют собственных руд.
  • Актиноиды имеют одно важное общее свойство — радиоактивность. Все они, кроме урана, практически не встречаются в природе и синтезируются искусственно.   

Неметаллы

Правый верхний угол таблицы до инертных газов -неметаллы.
Неметаллы плохо проводят тепло и электричество и могут существовать в трёх агрегатных состояниях: твёрдом (как углерод или кремний), жидком (как бром) и газообразном (как кислород и азот). Водород может проявлять как металлические, так и неметаллические свойства, поэтому его относят как к первой, так и к седьмой группе. 

Кислородные и водородные соединения

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения.
Существует 8 форм кислородных соединений:  R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4,
где R — элемент группы.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют 4 формы водородных соединений: RH4, RH3, RH2, RH.
Характер соединений: RH — сильнокислый; RH2 — слабокислый; RH3 — слабоосновный; RH4 — нейтральный.

Понравилась статья? Поделить с друзьями:
  • Как найти хорошего мануального терапевта
  • Как найти ненужные приложения на телефоне
  • Как исправить bufferbloat
  • Как найти тайник стрелка на радаре
  • Брюки пузырятся в паху как исправить