Как найти последовательность гена

Темы «Молекулярная биология» и «Генетика» – наиболее интересные и сложные темы в курсе «Общая биология». Эти темы изучаются и в 9-х, и в 11­х классах, но времени на отработку умения решать задачи в программе явно недостаточно. Однако умение решать задачи по генетике и молекулярной биологии предусмотрено Стандартом биологического образования, а также  такие задачи входят в состав КИМ ЕГЭ.

Для  решения задач по молекулярной биологии  необходимо владеть следующими биологическими понятиями: виды нуклеиновых  кислот,строение ДНК,  репликация ДНК , функции ДНК, строение  и функции РНК, генетический код, свойства генетического кода,мутация.

Типовые задачи знакомят с основными приемами рассуждений в генетике, а «сюжетные»– полнее раскрывают и иллюстрируют особенности этой науки, делая ее интересной и привлекательной для учащихся. Подобранные задачи характеризуют генетику как точную науку, использующую математические методы анализа. Решение задач в биологии требует умения анализировать фактический материал, логически думать и рассуждать , а также определенной изобретательности при решении особенно трудных  и запутанных задач.

Для закрепления теоретического материала по способам и приемам  решения задач предлагаются задачи для самостоятельного решения, а также вопросы для самоконтроля.

Примеры решения задач

Необходимые пояснения:

  • Один шаг это полный виток спирали ДНК–поворот на 360o
  • Один шаг составляют 10 пар нуклеотидов
  • Длина одного шага – 3,4 нм
  • Расстояние между двумя нуклеотидами – 0,34 нм
  • Молекулярная масса одного нуклеотида – 345 г/моль
  • Молекулярная масса одной аминокислоты – 120 г/мол
  • В молекуле ДНК: А+Г=Т+Ц (Правило Чаргаффа: ∑(А) = ∑(Т), ∑(Г) = ∑(Ц), ∑(А+Г) =∑(Т+Ц)
  • Комплементарность нуклеотидов: А=Т; Г=Ц
  • Цепи ДНК удерживаются водородными связями, которые образуются между комплементарными азотистыми основаниями: аденин с тимином соединяются 2 водородными связями, а гуанин с цитозином тремя.
  • В среднем один белок содержит 400 аминокислот;
  • вычисление молекулярной массы белка:


где Мmin – минимальная молекулярная масса белка,
а – атомная или молекулярная масса компонента,
в – процентное содержание компонента.

Задача № 1.Одна из цепочек  ДНК имеет последовательность нуклеотидов : АГТ  АЦЦ  ГАТ  АЦТ  ЦГА  ТТТ  АЦГ  … Какую последовательность нуклеотидов имеет вторая цепочка ДНК той же молекулы. Для наглядности  можно использовать  магнитную «азбуку» ДНК (прием автора статьи) .
Решение: по принципу комплементарности достраиваем вторую цепочку (А-Т,Г-Ц) .Она выглядит следующим образом: ТЦА  ТГГ  ЦТА   ТГА  ГЦТ  ААА  ТГЦ.

Задача № 2. Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так: ААА  ЦАЦ  ЦТГ  ЦТТ  ГТА  ГАЦ. Напишите последовательности аминокислот, которой начинается цепь инсулина.
Решение: Задание выполняется с помощью таблицы генетического кода, в которой нуклеотиды в иРНК (в скобках – в исходной ДНК) соответствуют аминокислотным остаткам.

Задача № 3. Большая из двух цепей белка инсулина имеет (так называемая цепь В) начинается со следующих аминокислот : фенилаланин-валин-аспарагин-глутаминовая кислота-гистидин-лейцин. Напишите последовательность нуклеотидов в начале участка молекулы ДНК,  хранящего информацию об этом белке.

Решение (для удобства используем табличную форму записи решения): т.к. одну аминокислоту могут кодировать несколько триплетов, точную структуру и-РНК  и участка  ДНКопределить невозможно, структура может варьировать. Используя принцип комплементарности  и таблицу генетического кода получаем один из вариантов:

Цепь белка

Фен

Вал

Асн

Глу

Гис

Лей

и-РНК

УУУ

ГУУ

ААУ

ГАА

ЦАЦ

УУА

ДНК

1-я цепь

ААА

ЦАА

ТТА

ЦТТ

ГТГ

ААТ

2-я цепь

ТТТ

ГТТ

ААТ

ГАА

ЦАЦ

ТТА

Задача № 4. Участок гена имеет следующее строение, состоящее из последовательности нуклеотидов: ЦГГ  ЦГЦ  ТЦА  ААА  ТЦГ  …  Укажите строение соответствующего участка белка, информация о котором содержится в данном гене. Как отразится на строении  белка удаление из гена четвертого нуклеотида?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем:

Цепь ДНК

ЦГГ

ЦГЦ

ТЦА

ААА

ТЦГ

и -РНК

ГЦЦ

ГЦГ

АГУ

УУУ

АГЦ

Аминокислоты цепи белка

Ала-Ала-Сер-Фен-Сер

При удалении из гена четвертого нуклеотида – Ц произойдут заметные изменения – уменьшится количество и состав аминокислот в  белке:

Цепь ДНК

ЦГГ

ГЦТ

ЦАА

ААТ

ЦГ

и -РНК

ГЦЦ

ЦГА

ГУУ

УУА

ГЦ

Аминокислоты цепи белка

Ала-Арг-Вал-Лей-

Задача № 5. Вирусом табачной мозаики (РНК-содержащий вирус) синтезируется участок белка с аминокислотной последовательностью: Ала – Тре – Сер – Глу – Мет-. Под действием азотистой кислоты (мутагенный фактор) цитозин в результате дезаминирова ния превращается в урацил. Какое строение будет иметь участок белка вируса табачной мозаики,  если все цитидиловые нуклеотиды  подвергнутся указанному химическому превращению?

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем  :

Аминокислоты цепи белка (исходная)

Ала – Тре – Сер – Глу – Мет-

и -РНК (исходная)

ГЦУ

АЦГ

АГУ

ГАГ

АУГ

и -РНК (дезаминированная)

ГУУ

АУГ

АГУ

ГАГ

АУГ

Аминокислоты цепи белка (дезаминированная)

Вал – Мет – Сер – Глу – Мет-

Задача № 6. При  синдроме Фанкоми (нарушение образования костной ткани)  у больного с мочой выделяются аминокислоты , которым соответствуют кодоны в и -РНК : АУА   ГУЦ  АУГ  УЦА  УУГ  ГУУ  АУУ. Определите, выделение каких аминокислот с мочой характерно  для синдрома Фанкоми, если у здорового человека в моче содержатся аминокислоты аланин, серин, глутаминовая кислота, глицин.

Решение (для удобства используем табличную форму записи решения): Используя принцип комплементарности  и таблицу генетического кода получаем:

и -РНК

АУА

ГУЦ

АУГ

УЦА

УУГ

ГУУ

АУУ

Аминокислоты цепи белка (больного человека)

Изе-Вал-Мет-Сер-Лей-Вал-Иле

Аминокислоты цепи белка (здорового человека)

Ала-Сер-Глу-Гли

Таким образом, в моче больного человека только одна аминокислота (серин) такая же как, у здорового человека, остальные – новые, а три, характерные для здорового человека, отсутствуют.

Задача № 7. Цепь А инсулина быка в 8-м звене содержит аланин, а лошади – треонин, в 9-м звене соответственно серин и глицин. Что можно сказать о происхождении инсулинов?

Решение (для удобства  сравнения используем табличную форму записи решения): Посмотрим, какими триплетами в и-РНК кодируются упомянутые в условии задачи аминокислоты.

Организм

Бык

Лошадь

8-е звено

Ала

Тре

и- РНК

ГЦУ

АЦУ

9-е звено

Сер

Гли

и- РНК

АГУ

ГГУ

Т.к. аминокислоты кодируются  разными триплетами, взяты триплеты, минимално отличающиеся друг от друга. В данном случае  у лошади и быка в 8-м и 9-м звеньях  изменены аминокислоты в результате замены первых нуклеотидов в триплетах и -РНК : гуанин заменен на аденин ( или наоборот). В двухцепочечной ДНК  это будет равноценно замене пары Ц-Г  на  Т-А (или наоборот).
Следовательно, отличия цепей А инсулина быка и  лошади обусловлены транзициями в участке молекулы ДНК, кодирующей 8-е и 9-е звенья цепи А инсулинов быка и лошади.

Задача № 7 . Исследования показали, что в и- РНК содержится 34% гуанина,18% урацила, 28% цитозина и 20% аденина.Определите процентный состав  азотистых оснваний в участке ДНК, являющейся матрицей для данной и-РНК.
Решение (для удобства   используем табличную форму записи решения): Процентное соотношение азотистых оснований высчитываем исходя из принципа комплементарности:

и-РНК

Г

У

Ц

А

34%

18%

28%

20%

ДНК (смысловая цепь, считываемая)

Г

А

Ц

Т

28%

18%

34%

20%

ДНК (антисмысловая цепь)

Г

А

Ц

Т

34%

20%

28%

18%

Суммарно  А+Т  и Г+Ц в смысловой цепи будут составлять: А+Т=18%+20%=38%  ; Г+Ц=28%+34%=62%. В антисмысловой (некодируемой) цепи суммарные показатели будут такими же , только процент отдельных оснований будет обратный: А+Т=20%+18%=38%  ; Г+Ц=34%+28%=62%. В обеих же цепях в парах комплиментарных оснований будет поровну, т.е аденина и тимина – по 19%, гуанина и цитозина по 31%.

Задача № 8.  На фрагменте одной нити ДНК нуклеотиды расположены в последователь ности:  А–А–Г–Т–Ц–Т–А–Ц–Г–Т–А–Т. Определите процентное содержание всех нукле отидов в этом фрагменте ДНК и длину гена.

Решение:

1) достраиваем вторую нить (по принципу комплементарности)

2) ∑(А +Т+Ц+Г) = 24,из них ∑(А) = 8 = ∑(Т)

24 – 100%

=> х = 33,4%

8 – х%

24 – 100%

=>  х = 16,6%

4 –  х%

∑(Г) = 4 = ∑(Ц) 

  
3) молекула ДНК двуцепочечная, поэтому длина гена равна длине одной цепи:

12 × 0,34 = 4,08 нм

Задача № 9. В молекуле ДНК на долю цитидиловых нуклеотидов приходится 18%. Определите процентное содержание других нуклеотидов в этой ДНК.

Решение:

1) т.к. Ц = 18%, то и Г = 18%;
2) на долю А+Т приходится 100% – (18% +18%) = 64%, т.е. по 32%

Задача № 10. В молекуле ДНК обнаружено 880 гуанидиловых нуклеотидов, которые составляют 22% от общего числа нуклеотидов в этой ДНК. Определите: а) сколько других нуклеотидов в этой ДНК? б) какова длина этого фрагмента?

Решение:

1) ∑(Г) = ∑(Ц)= 880 (это 22%); На долю других нуклеотидов приходится 100% – (22%+22%)= 56%, т.е. по 28%; Для вычисления количества этих нуклеотидов составляем пропорцию:

22% – 880
28% – х, отсюда х = 1120

2) для определения длины ДНК нужно узнать, сколько всего нуклеотидов содержится в 1 цепи:

(880 + 880 + 1120 + 1120) : 2 = 2000
2000 × 0,34 = 680 (нм)

Задача № 11. Дана молекула ДНК с относительной  молекулярной массой 69 000, из них 8625 приходится на долю адениловых нуклеотидов. Найдите количество всех нуклеотидов в этой ДНК. Определите длину этого фрагмента.

Решение:

1) 69 000 : 345 = 200 (нуклеотидов в ДНК), 8625 : 345 = 25 (адениловых нуклеотидов в этой ДНК),∑(Г+Ц) = 200 – (25+25)= 150, т.е. их по 75;
2) 200 нуклеотидов в двух цепях, значит в одной – 100. 100 × 0,34 = 34 (нм)

Задача № 12. Что тяжелее: белок или его ген?

Решение: Пусть х – количество аминокислот в белке, тогда масса этого белка – 120х, количество нуклеотидов в гене, кодирующем этот белок, – 3х, масса этого гена – 345 × 3х.  120х < 345 × 3х, значит ген тяжелее белка.

Задача № 13. Гемоглобин крови человека содержит 0, 34% железа. Вычислите минимальную молекулярную массу гемоглобина.

Решение: Мmin = 56 : 0,34% · 100% = 16471

Задача №14. Альбумин сыворотки крови человека имеет молекулярную массу 68400. Определите количество аминокислотных остатков в молекуле этого белка.

Решение: 68400 : 120 = 570 (аминокислот в молекуле альбумина)

Задача №15. Белок содержит 0,5% глицина. Чему равна минимальная молекулярная масса этого белка, если М глицина = 75,1? Сколько аминокислотных остатков в этом белке?

Решение: Мmin = 75,1 : 0,5% · 100% = 15020 ; 15020 : 120 = 125 (аминокислот в этом белке)

Задачи для самостоятельной работы

  1. Молекула ДНК распалась на две цепочки. одна из них имеет строение : ТАГ  АЦТ  ГГТ  АЦА  ЦГТ  ГГТ  ГАТ  ТЦА … Какое строение будет иметь  вторая молекула ДНК ,когда указанная цепочка достроится до полной двухцепочечной молекулы ?
  2. Полипептидная цепь одного белка животных имеет следующее начало : лизин-глутамин-треонин-аланин-аланин-аланин-лизин-… С какой последовательности нуклеотидов начинается ген, соответствующий этому белку?
  3. Участок молекулы белка имеет следующую последовательность аминокислот: глутамин-фенилаланин-лейцин-тирозин-аргинин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.
  4. Участок молекулы белка имеет следующую последовательность аминокислот: глицин-тирозин-аргинин-аланин-цистеин. Определите одну из возможных последовательностей нуклеотидов в молекуле ДНК.
  5. Одна из цепей рибонуклеазы (фермента поджелудочной железы) состоит из 16 аминокислот: Глу-Гли-асп-Про-Тир-Вал-Про-Вал-Про-Вал-Гис-фен-Фен-Асн-Ала-Сер-Вал. Определите  структуру участка ДНК , кодирующего эту часть рибонуклеазы.
  6. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ГТЦ  ЦТА  АЦЦ  ГГА  ТТТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  7. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТЦГ  ГТЦ  ААЦ  ТТА  ГЦТ. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  8. Фрагмент гена ДНК имеет следующую последовательность нуклеотидов ТГГ  АЦА  ГГТ  ТТЦ  ГТА. Определите последовательность нуклеотидов и-РНК и аминокислот в полипептидной цепи белка.
  9. Определите порядок следования аминокислот в участке молекулы белка, если известно, что он кодируется такой последовательностью нуклеотидов ДНК: ТГА  ТГЦ   ГТТ  ТАТ  ГЦГ  ЦЦЦ. Как изменится  белок , если химическим путем будут удалены 9-й и 13-й нуклеотиды?
  10. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ  ЦГТ  ТТЦ  ТЦГ  ГТА. Как изменится структура молекулы белка, если произойдет удвоение шестого нуклеотида в цепи ДНК. Объясните результаты.
  11. Кодирующая цепь ДНК имеет последовательность нуклеотидов: ТАГ  ТТЦ  ТЦГ  АГА. Как изменится структура молекулы белка, если произойдет удвоение восьмого нуклеотида в цепи ДНК. Объясните результаты.
  12. Под воздействием мутагенных факторов во фрагменте гена: ЦАТ  ТАГ  ГТА  ЦГТ  ТЦГ произошла замена второго триплета на триплет АТА. Объясните, как изменится структура молекулы белка.
  13. Под воздействием мутагенных факторов во фрагменте гена: АГА  ТАГ  ГТА  ЦГТ  ТЦГ произошла замена четвёртого триплета на триплет АЦЦ. Объясните, как изменится структура молекулы белка.
  14. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГЦА  УГУ  АГЦ  ААГ  ЦГЦ. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.
  15. Фрагмент молекулы и-РНК имеет следующую последовательность нуклеотидов: ГАГ  ЦЦА  ААУ  АЦУ  УУА. Определите последовательность аминокислот в молекуле белка и её молекулярную массу.
  16. Ген ДНК включает 450пар нуклеотидов. Какова длина, молекулярная масса гена и сколько аминокислот закодировано в нём?
  17. Сколько нуклеотидов содержит ген ДНК, если в нем закодировано 135 аминокислот. Какова молекулярная масса данного гена и его длина?
  18. Фрагмент одной цепи ДНК имеет следующую структуру: ГГТ АЦГ АТГ ТЦА АГА. Определите первичную структуру белка, закодированного в этой цепи, количество (%) различных видов нуклеотидов в двух цепях фрагмента и его длину.
  19. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 1500 г/моль?
  20. Какова молекулярная масса гена и его длина, если в нем закодирован белок с молекулярной массой 42000 г/моль?
  21. В состав белковой молекулы входит 125 аминокислот. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.
  22. В состав белковой молекулы входит 204 аминокислоты. Определите количество нуклеотидов в и-РНК и гене ДНК, а также количества молекул т-РНК принявших участие в синтезе данного белка.
  23. В синтезе белковой молекулы приняли участие 145 молекул   т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.
  24. В синтезе белковой молекулы приняли участие 128 молекул   т-РНК. Определите число нуклеотидов в и-РНК, гене ДНК и количество аминокислот в синтезированной молекуле белка.
  25. Фрагмент цепи и-РНК имеет следующую последовательность: ГГГ  УГГ  УАУ  ЦЦЦ  ААЦ  УГУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.
  26. Фрагмент цепи и-РНК имеет следующую последовательность: ГУУ  ГАА  ЦЦГ  УАУ  ГЦУ. Определите, последовательность нуклеотидов на ДНК, антикодоны т-РНК, и последовательность аминокислот соответствующая фрагменту гена ДНК.
  27. В молекуле и-РНК содержится 13% адениловых, 27% гуаниловых и 39% урациловых нуклеотидов. Определите соотношение всех видов  нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК.
  28. В молекуле и-РНК содержится 21% цитидиловых, 17% гуаниловых и 40% урациловых нуклеотидов. Определите соотношение всех видов  нуклеотидов в ДНК, с которой была транскрибирована данная и-РНК
  29. Молекула и-РНК содержит 21% гуаниловых нуклеотидов, сколько цитидиловых нуклеотидов содержится в кодирующей цепи участка ДНК?
  30. Если в цепи молекулы ДНК, с которой транскрибирована генетическая информация, содержалось 11% адениловых нуклеотидов, сколько урациловых нуклеотидов будет содержаться в соответствующем ему отрезке и-РНК?

Используемая литература.

  1. Болгова И.В. Сборник задач по общей биологии с решениями для поступающих в вузы–М.: ООО «Издательство Оникс»:»Издательство.»Мир и Образование», 2008г.
  2. Воробьев О.В. Уроки биологии с применением информационных технологий .10 класс. Методическое пособие с электронным приложением–М.:Планета,2012г.
  3. Чередниченко И.П. Биология. Интерактивные дидактические материалы.6-11 класс. Методическое пособие с электронным интерактивным приложением. – М.:Планета,2012г.
  4. Интернет-ссылки:
  5. http://ru.convdocs.org/download/docs-8406/8406.doc
  6. https://bio.1sept.ru/articles/2009/06

logologo

    Журнал

    Геномика: постановка задачи и методы секвенирования

    Сергей Николенко

    Сергей Николенко

    Сохранить в закладки

    47398

    10

    Сохранить в закладки

    Методы определения последовательности нуклеотидов в молекуле ДНК

    16.05.2012

    Над материалом работали

    Сергей Николенко

    Сергей Николенко

    кандидат физико-математических наук, старший научный сотрудник проблемной лаборатории вычислительной биологии СПбАУ РАН

    icon-checkmark Читать полностью
    Дружба

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    ПРОМО Вы нужны нам: как поддержать ПостНауку

    Перспективы: Физики и нейронауки

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    tv Перспективы: Физики и нейронауки

    Синтетическая биология для космических программ

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    Видео

    3236

    Синтетическая биология для космических программ

    Множество групп архей появились в результате заимствования генов у бактерий

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    FAQ Множество групп архей появились в результате заимствования генов у бактерий

    Действие антибиотиков

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    Видео

    61504

    971

    Действие антибиотиков

    Молекулярные белковые моторы

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    Видео

    8243

    Молекулярные белковые моторы

    Неандертальцы

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    Видео

    27118

    95

    Неандертальцы

    Сверхпроводники на основе оксидов меди

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    Видео

    8160

    Сверхпроводники на основе оксидов меди

    Наталья Кошурникова: «Cегодня в природе трудно найти место, не тронутое

    Добавить в закладки

    Вы сможете увидеть эту публикацию в личном кабинете

    talks Наталья Кошурникова: «Сегодня в природе трудно найти место, не тронутое человеком»

    Решение задач на расшифровку генетического кода

    Как установить последовательность нуклеотидов в гене

    Задача № 1.
    Одна из цепочек ДНК имеет последовательность нуклеотид: АГТ АЦЦ ГАТ АЦТ ЦГА ТТТ АЦГ. Какую последовательность нуклеотидов имеет вторая цепочка ДНК той же молекулы. 
    Решение: 
    Комплементарность нуклеотидов: А = Т; Г = Ц. Согласно этого принципа в цепи нуклеотидов молекулы ДНК напротив аденина всегда стоит тимин, а напротив гуанина — цитозин. Тогда вторая цепочка ДНК будет выглядеть следующим образом:

    ТЦА ТГГ ЦТА ТГА ГЦТ ААА ТГЦ.
     


    Установление последовательности аминокислот, зная последовательность нуклеотидов в гене

    Задача № 2. 
    Последовательность нуклеотидов в начале гена, хранящего информацию о белке инсулине, начинается так: ААА ЦАЦ ЦТГ ЦТТ ГТА ГАЦ. Напишите последовательности аминокислот, которой начинается цепь инсулина.
    Решение: 
    Задание выполняется с помощью таблицы генетического кода, в которой нуклеотиды в иРНК (в скобках – в исходной ДНК) соответствуют аминокислотным остаткам.
    Первый триплет ДНК:  ААА, смотрим в таблице первое основание (А), это первый горизонтатьный столбец. Далее ищем второе основание (А). на пересечении этих двух столбцов видим прямоугольник в котором расположены четыре аминокислоты, для того что бы выбрать нужную нам, необходимо в крайнем правом столбце выбрать третье основание (А), это первая строчка -аминовислота «Фен» (фенилаланин).
    Второй триплет ДНК:  ЦАЦ, смотрим в таблице первое основание (Ц), это первый горизонтатьный столбец. Далее ищем второе основание (А). на пересечении этих двух столбцов видим прямоугольник в котором расположены четыре аминокислоты, для того что бы выбрать нужную нам, необходимо в крайнем правом столбце выбрать третье основание (Ц), это первая строчка — аминовислота «Вал» (валанин).
    Точно таким же образом определим аминокислоты, которые кодируются триплетами: ЦТГ ЦТТ ГТА ГАЦ, получим: «Асп» (аспарагиновая кислота) — «Глу» (глутаминовая кислота) — «Гис» (гистидиин) — «Лей» (лейцин).
    Последовательность аминокислот, которой начинается цепь инсулина, будет  иметь вид: 

    Фен-Вал-Асп-Глу-Гис-Лей
    или
    фенилаланин-валанин-аспарагиновая кислота-глутаминовая кислота-гистидиин-лейцин

     



    Как определить последовательность нуклеотидов в участке ДНК, зная аминокислотный набор белка


    Задача № 3. 
    Большая из двух цепей белка инсулина имеет (так называемая цепь В) начинается со следующих аминокислот: фенилаланин-валин-аспарагин-глутаминовая кислота-гистидин-лейцин. Напишите последовательность нуклеотидов в начале участка молекулы ДНК, хранящего информацию об этом белке.
    Решение:
    Так ка одну аминокислоту могут кодировать несколько триплетов, точную структуру и-РНК и участка ДНК определить невозможно, структура может варьировать. Используя принцип комплементарности и таблицу генетического кода получаем один из вариантов:

    Цепь белка: Фен-Вал-Асн-Глу-Гис-Лей;

    и-РНК: УУУ ГУУ ААУ ГАА ЦАЦ УУА;

    ДНК:
    1-я цепь — ААА ЦАА ТТА ЦТТ ГТГ ААТ
    2-я цепь — ТТТ ГТТ ААТ ГАА ЦАЦ ТТА

     



    Задача 4.
    Начальный участок цепи А инсулина представлен следующими пятью аминокислотами:
    глицин-изолейцин-валин-глутамин-глутамин. Определите участок ДНК, кодирующий эту часть инсулина.
    Решение:
    Участок ДНК кодирующий часть цепи А инсулина представленный аминокислотами: глицин-изолейцин-валин-глутамин-глутамин будет имеет вид:

    ЦЦА ТАА ЦАА ЦТТ ЦТТ — 1-й вариант;

    ЦЦГ ТАГ ЦАГ ЦТЦ ЦТЦ — 2-й вариант;

    ЦЦТ ТАТ ЦАТ ЦТЦ ЦТЦ — 3-й вариант;

    ЦЦЦ ТАТ ЦАЦ ЦТЦ ЦТЦ — 4-й вариант.

    Представлены четыре возможных варианта участка цепи ДНК, кодирующих пептид: глицин-изолейцин-валин-глутамин-глутамин. Кодоны, соответствующие одной аминокислоте, могут различаться по третьей позиции, чаще всего две первые позиции у таких кодонов совпадают, а различается только последняя. Одну аминокислоту могут кодировать один или несколько кодонов. Например, аминокислоту триптофан кодирует только один кодон АЦЦ, глицин — четыре кодона: ЦЦА; ЦЦТ; ЦЦГ и ЦЦЦ. Поэтому и было предложено четыре варианта участка ДНК, кодирующую часть инсулина, указанную в условии задачи.


    From Wikipedia, the free encyclopedia

    In the fields of bioinformatics and computational biology, Genome survey sequences (GSS) are nucleotide sequences similar to expressed sequence tags (ESTs) that the only difference is that most of them are genomic in origin, rather than mRNA.[1]

    Genome survey sequences are typically generated and submitted to NCBI by labs performing genome sequencing and are used, amongst other things, as a framework for the mapping and sequencing of genome size pieces included in the standard GenBank divisions.[1]

    Contributions[edit]

    Genome survey sequencing is a new way to map the genome sequences since it is not dependent on mRNA. Current genome sequencing approaches are mostly high-throughput shotgun methods, and GSS is often used on the first step of sequencing. GSSs can provide an initial global view of a genome, which includes both coding and non-coding DNA and contain repetitive section of the genome unlike ESTs. For the estimation of repetitive sequences, GSS plays an important role in the early assessment of a sequencing project since these data can affect the assessment of sequences coverage, library quality and the construction process.[2] For example, in the estimation of dog genome, it can estimate the global parameters, such as neutral mutation rate and repeat content.[3]

    GSS is also an effective way to large-scale and rapidly characterizing genomes of related species where there is only little gene sequences or maps.[4] GSS with low coverage can generate abundant information of gene content and putative regulatory elements of comparative species.[5] It can compare these genes of related species to find out relatively expanded or contracted families. And combined with physical clone coverage, researchers can navigate the genome easily and characterize the specific genomic section by more extensive sequencing.[3]

    Limitation[edit]

    The limitation of genomic survey sequence is that it lacks long-range continuity because of its fragmentary nature, which makes it harder to forecast gene and marker order. For example, to detect repetitive sequences in GSS data, it may not be possible to find out all the repeats since the repetitive genome may be longer than the reads, which is difficult to recognize.[2]

    Types of data[edit]

    The GSS division contains (but is not limited to) the following types of data:

    Random «single pass read» genome survey sequences[edit]

    Random “single pass read” genome survey sequences is GSSs that generated along single pass read by random selection. Single-pass sequencing with lower fidelity can be used on the rapid accumulation of genomic data but with a lower accuracy.[6] It includes RAPD, RFLP, AFLP and so on.[7]

    Cosmid/BAC/YAC end sequences[edit]

    Cosmid/BAC/YAC end sequences use Cosmid/Bacterial artificial chromosome/Yeast artificial chromosome to sequence the genome from the end side. These sequences act like very low copy plasmids that there is only one copy per cell sometimes. To get enough chromosome, they need a large number of E. coli culture that 2.5 — 5 litres may be a reasonable amount.[8]

    Cosmid/BAC/YAC can also be used to get bigger clone of DNA fragment than vectors like plasmid and phagemid. A larger insert is often helpful for the sequence project in organizing clones.
    [9]

    Eukaryotic proteins can be expressed by using YAC with posttranslational modification.[10]
    BAC can’t do that, but BACs can reliably represent human DNA much better than YAC or cosmid.[11]

    Exon trapped genomic sequences[edit]

    Exon trapped sequence is used to identify genes in cloned DNA, and this is achieved by recognizing and trapping carrier containing exon sequence of DNA. Exon trapping has two main features: First, it is independent of availability of the RNA expressing target DNA. Second, isolated sequences can be derived directly from clone without knowing tissues expressing the gene which needs to be identified.[12] During slicing, exon can be remained in mRNA and information carried by exon can be contained in the protein. Since fragment of DNA can be inserted into sequences, if an exon is inserted into intron, the transcript will be longer than usual and this transcript can be trapped by analysis.

    Alu PCR sequences[edit]

    Alu repetitive element is member of Short Interspersed Elements (SINE) in mammalian genome. There are about 300 to 500 thousand copies of Alu repetitive element in human genome, which means one Alu element exists in 4 to 6 kb averagely. Alu elements are distributed widely in mammalian genome, and repeatability is one of the characteristics, that is why it is called Alu repetitive element. By using special Alu sequence as target locus, specific human DNA can be obtained from clone of TAC, BAC, PAC or human-mouse cell hybrid.

    PCR is an approach used to clone a small piece of fragment of DNA. The fragment could be one gene or just a part of gene. PCR can only clone very small fragment of DNA, which generally does not exceed 10kbp.

    Alu PCR is a «DNA fingerprinting» technique. This approach is rapid and easy to use. It is obtained from analysis of many genomic loci flanked by Alu repetitive elements, which are non-autonomous retrotransposons present in high number of copies in primate genomes.[13] Alu element can be used for genome fingerprinting based on PCR, which is also called Alu PCR.

    Transposon-tagged sequences[edit]

    There are several ways to analyze the function of a particular gene sequence, the most direct method is to replace it or cause a mutation and then to analyze the results and effects. There are three method are developed for this purpose: gene replacement, sense and anti-sense suppression, and insertional mutagenesis. Among these methods, insertional mutagenesis was proved to be very good and successful approach.

    At first, T-DNA was applied for insertional mutagenesis. However, using transposable element can bring more advantages. Transposable elements were first discovered by Barbara McClintock in maize plants. She identified the first transposable genetic element, which she called the Dissociation (Ds) locus.[14] The size of transposable element is between 750 and 40000bp. Transposable element can be mainly classified as two classes: One class is very simple, called insertion sequence (IS), the other class is complicated, called transposon. Transposon has one or several characterized genes, which can be easily identified. IS has the gene of transposase.

    Transposon can be used as tag for a DNA with a know sequence. Transposon can appear at other locus through transcription or reverse transcription by the effect of nuclease. This appearance of transposon proved that genome is not statistical, but always changing the structure of itself.

    There are two advantages by using transposon tagging. First, if a transposon is inserted into a gene sequence, this insertion is single and intact. The intactness can make tagged sequence easily to molecular analysis. The other advantage is that, many transposons can be found eliminated from tagged gene sequence when transposase is analyzed. This provides confirmation that the inserted gene sequence was really tagged by transposon.[15]

    Example of GSS file[edit]

    The following is an example of GSS file that can be submitted to GenBank:[16]

    TYPE: GSS
    STATUS:  New
    CONT_NAME: Sikela JM
    GSS#: Ayh00001
    CLONE: HHC189
    SOURCE: ATCC
    SOURCE_INHOST: 65128
    OTHER_GSS:  GSS00093, GSS000101
    CITATION: 
    Genomic sequences from Human 
    brain tissue
    SEQ_PRIMER: M13 Forward
    P_END: 5'
    HIQUAL_START: 1
    HIQUAL_STOP: 285
    DNA_TYPE: Genomic
    CLASS: shotgun
    LIBRARY: Hippocampus, Stratagene (cat. #936205)
    PUBLIC: 
    PUT_ID: Actin, gamma, skeletal
    COMMENT:
    SEQUENCE:
    AATCAGCCTGCAAGCAAAAGATAGGAATATTCACCTACAGTGGGCACCTCCTTAAGAAGCTG
    ATAGCTTGTTACACAGTAATTAGATTGAAGATAATGGACACGAAACATATTCCGGGATTAAA
    CATTCTTGTCAAGAAAGGGGGAGAGAAGTCTGTTGTGCAAGTTTCAAAGAAAAAGGGTACCA
    GCAAAAGTGATAATGATTTGAGGATTTCTGTCTCTAATTGGAGGATGATTCTCATGTAAGGT
    GCAAAAGTGATAATGATTTGAGGATTTCTGTCTCTAATTGGAGGATGATTCTCATGTAAGGT
    TGTTAGGAAATGGCAAAGTATTGATGATTGTGTGCTATGTGATTGGTGCTAGATACTTTAAC
    TGAGTATACGAGTGAAATACTTGAGACTCGTGTCACTT
    ||
    

    References[edit]

    1. ^ a b GenBank Flat File 96.0 Release Notes
    2. ^ a b Otto, Thomas D., et al. «ReRep: Computational detection of repetitive sequences in genome survey sequences (GSS).» Bmc Bioinformatics 9.1 (2008): 366.
    3. ^ a b Kirkness, E. F. (2003-09-26). «The Dog Genome: Survey Sequencing and Comparative Analysis». Science. American Association for the Advancement of Science (AAAS). 301 (5641): 1898–1903. Bibcode:2003Sci…301.1898K. doi:10.1126/science.1086432. ISSN 0036-8075. PMID 14512627. S2CID 22366556.
    4. ^ Venkatesh, Byrappa, et al. «Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome.» PLoS biology 5.4 (2007): e101.
    5. ^ Hitte, Christophe, et al. «Facilitating genome navigation: survey sequencing and dense radiation-hybrid gene mapping.» Nature Reviews Genetics 6.8 (2005): 643-648.
    6. ^ «DNA sequencing How to determine the sequence of bases in a DNA molecule». Archived from the original on 2013-10-21. Retrieved 2013-10-21.
    7. ^ DDBJ-GSS
    8. ^ MEGA- and GIGA preps of cosmid-, BAC-, PAC, YAC-, and P1-DNA with JETSTAR 2.0
    9. ^ «WSSP-04 Chapter 2 – Vectors» (PDF). Archived from the original (PDF) on 2013-10-23. Retrieved 2013-10-22.
    10. ^ Yeast artificial chromosome
    11. ^ Venter, J. Craig, Hamilton O. Smith, and Leroy Hood. «A New Cooperative Strategy for Sequencing the Human and Other Genomes.»
    12. ^ Martin C. Wapenaar; Johan T. Den Dunnen (2001). Exon Trapping: Application of a Large-Insert Multiple-Exon-Trapping System. Methods in Molecular Biology. Vol. 175. pp. 201–215. doi:10.1385/1-59259-235-X:201. ISBN 978-1-59259-235-7. PMID 11462836.
    13. ^ Cardelli M (2011). «Alu PCR». PCR Protocols. Methods in Molecular Biology. Vol. 687. pp. 221–9. doi:10.1007/978-1-60761-944-4_15. ISBN 978-1-60761-943-7. PMID 20967611.
    14. ^ Tsugeki R, Olson ML, Fedoroff NV (May 2007). «Transposon tagging and the study of root development in Arabidopsis». Gravitational and Space Biology. 11 (2): 79–87. PMID 11540642.
    15. ^ Ramachandran S, Sundaresan V (2001). «Transposons as tools for functional genomics». Plant Physiology and Biochemistry. 39 (3–4): 243–252. doi:10.1016/s0981-9428(01)01243-8.
    16. ^ dbGSS_submit

    Понравилась статья? Поделить с друзьями:
  • Fl studio тормозит как исправить
  • Как составить свой идеальный вес
  • Как найти центр фланца
  • Как найти репетитора студента по математике
  • Как найти проценты от покупки