Постоянная составляющая в сигнале переменного тока
По
определению постоянная составляющая
(среднее значение) равна сумме площади
положительной и отрицательной части
импульса напряжения или тока деленная
на период следования импульсов,
U0
= (S+
+ S—)
/Tи.
Рассмотрим
два синусоидальных сигнала, изображенных
на рис. 2.8. Левый сигнал не имеет постоянной
составляющей, так как его положительный
пик равен отрицательному. Правый же
сигнал содержит составляющую постоянного
тока величиной 5 В.
Рис.2.8
Постоянная
составляющая переменного тока называется
также
средним,
или
усредненным,
значением сигнала переменного тока.
Определим постоянную составляющую
сигнала, имеющего прямоугольную
форму (Рис.2.9):
Рис.2.9
-
определим
положение нулевого уровня; -
вычислим
площадь лежащую выше нулевого уровня
S+
= U+
×t+
=
4 × 1 = 4;
-
вычислим
площадь лежащую ниже нулевого уровня
S—
=
U—
×t—
= -1×2
= -2;
-
вычислим
суммарную площадь
S+
+ S—
= 4+(- 2) = 2;
-
вычислим
среднее значение напряжения за период
равно
(S+
+ S—
)/ T = (S+
+ S—
)/ (t+
+
t—)
= 2/(1+ 2) = 0,67 В.
Среднеквадратическое значение (действующее) переменного тока
Постоянный
ток имеет постоянное значение, и это
значение можно использовать во всех
вычислениях. Значение же переменного
тока изменяется
во времени. Чтобы преодолеть эту
трудность, за «постоянное» значение
переменного тока приняли и используют
его среднеквадратическое значение.
Среднеквадратическое значение переменного
тока является эквивалентом значения
постоянного тока, при котором вырабатывается
такая же мощность, что и при исходном
значении переменного тока. Если известно
среднеквадратическое значение переменного
тока, то его можно использовать для
вычисления мощности так же, как если бы
это было постоянное напряжение или ток.
Например:
-
мощность
пост, тока = Постоянный ток х Постоянное
напряжение; -
мощность
переменного,
тока
= Среднеквадратическое значение тока
х
х
среднеквадратическое значение напряжения.
Значения
переменного тока и напряжения всегда
задают в виде среднеквадратической
величины, за исключением специально
оговоренных случаев.
Пример
1
Какое
сопротивление имеет электрический
обогреватель мощностью 1 кВт?
Решение:
Домашние
обогреватели работают от сетевого
напряжения, имеющего среднеквадратическое
значение 220 В.
Мощность, потребляемая обогревателем,
составляет 1 кВт = 1000 Вт. Из формулы
Р
= U2/R
определяем
R
= U2/P
= 2402/1000
= 57,6
Ом.
Соотношение между пиковыми и среднеквадратическими значениями
Действующее
значение тока Iд
– это среднеквадратичное значение за
период переменного тока.
Iд
=
√ (i²) ср
= √ Sср.²/T
,
где
Т период частоты сигнала.
Действующее
значение переменного тока выбрано в
качестве главной характеристики на том
основании, что действие электрического
тока в ряде случаев пропорционально
квадрату тока или напряжения, например,
тепловое действие, механическое
взаимодействие прямого и обратного
провода, взаимодействие заряженных
пластин и т.д. Для косинусоидального
тока квадрат площади за период равен,
S²
= 0∫Т
I²m
cos² ωt dωt = I²m
π.
Среднеквадратическое
значениями значение косинусоидального
тока равно,
Iср.кв.
= √ I²mπ
/2π × = Im/√2
= 0,707Im.
Среднеквадратическое
значение сигнала переменного тока
зависит от его формы. Так, среднеквадратическое
значение синусоидального сигнала
составляет 0,707 его пикового значения
(амплитуды). Это справедливо только для
синусоидального сигнала. Например, если
амплитуда синусоидального сигнала
U=
= 10 В, то его среднеквадратическое
значение составит Iср.кв
=
0,707 ×
Um
=
0,707 × 10 = 7,07 В Из соотношения Ucp.KB.
= 0,707 ×
Um,
Um
= 1/0,707 = 1,414 Ucp.KB
Рис.2.10
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Содержание
- РЕЛЕ ЭЛЕКТРИЧЕСКИЕ
- ГОСТ 27916—88 (МЭК 255—11)
- напряжения*
- Питание **
- Статическое измерительное реле
Значение постоянной составляющей сигнала – это среднее значение этого сигнала на рассматриваемом промежутке времени. Теоретически постоянная составляющая сигнала вычисляется интегральным выражением
где интервал времени T стремится к бесконечности. При практической интерпретации этого понятия в задачах обработки сигнала интеграл берётся на скользящем интервале времени заданного размера (т.е. по выборке изучаемого участка сигнала). Постоянная составляющая сигнала, исходя из геометрического смысла интеграла, хорошо видна на графике сигнала во времени как величина, равная площади между осью нулевого значения сигнала и графиком (учитывая, что под осью площадь отрицательна, а над осью – положительна). На графике показано красной кривой значение постоянной составляющей X0 для скользящего окна интегрирования с размером, сравнимым с периодом сигнала.
Для цифрового сигнала оценка постоянной составляющей – это среднее арифметическое выборки из N отсчетов.
В спектральном представлении сигнала информацию о постоянной составляющей сигнала несёт нулевая гармоника спектра этого сигнала.
Размер выборки для вычисления постоянной составляющей зависит от условий задачи. Например, если сигнал имеет выраженные гармонические составляющие с известной частотой, то целесообразно, чтобы выборка включала целое число периодов этих составляющих (иначе на выходе будут пульсации). Если спектр сигнала не известен заранее, можно применить оконную функцию – например, окно Ханна:
Это позволяет уменьшить влияние нецелых периодов на концах выборки. Примеры оконных функций можно найти, например, .
На практике, когда сигналы представлены напряжением или током, для обозначения режима измерения постоянного напряжения или тока, который по сути является режимами измерения постоянной составляющей этих сигналов, широко применяется термин DC (direct current).
Не во всех сигналах постоянная составляющая информационна. Для удаления постоянной составляющей из сигнала применяют фильтры высокой частоты.
Некоторые среды передачи сигнала не позволяют передавать постоянную составляющую сигнала (например, среды, имеющие емкостную или индуктивую гальваническую развязку), Для передачи постоянной составляющей сигнала через такие среды используют различные технические принципы, связанные со специальными способами модуляции и кодирования сигнала.
Постоянная составляющая может быть и не связана с сигналом, а порождаться самим прибором или преобразователем (из-за неидельности его характеристик) в виде смещения нуля.
БЗ 11-88/795
ГОСУДАРСТВЕННЫЙ СТАНДАРТ
СОЮЗА ССР
РЕЛЕ ЭЛЕКТРИЧЕСКИЕ
ОТКЛЮЧЕНИЕ И ПЕРЕМЕННАЯ СОСТАВЛЯЮЩАЯ ВСПОМОГАТЕЛЬНЫХ ВОЗДЕЙСТВУЮЩИХ ВЕЛИЧИН ПОСТОЯННОГО ТОКА ИЗМЕРИТЕЛЬНЫХ РЕЛЕ
ГОСТ 27916—88 (МЭК 255—11)
Издание официальное
ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
Москва
УДК 621.318.5-83:006.354 Группа Е71
ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР
РЕЛЕ ЭЛЕКТРИЧЕСКИЕ
Отключение и переменная составляющая вспомогательных воздействующих величин постоянного тока измерительных реле
ГОСТ
27916—88
(МЭК 255—11)
ОКП 34 2500
Срок действия с 01.01.91 до 01.01.96
Несоблюдение стандарта преследуется по закону
1. ОБЩИЕ ПОЛОЖЕНИЯ
1.1. Область распространения
Настоящий стандарт устанавливает дополнительные требования, которые должны обеспечиваться, и дополнительные параметры, значения которых должны уточняться изготовителем, относящиеся к отключениям и переменным составляющим, влияющим на вспомогательные воздействующие величины постоянного тока статических измерительных реле.
Требования, содержащиеся в стандарте, также распространяются на некоторые электромеханические реле с одной вспомогательной воздействующей величиной постоянного тока.
2. ТРЕБОВАНИЯ, ОТНОСЯЩИЕСЯ К ОТКЛЮЧЕНИЯМ ВСПОМОГАТЕЛЬНОЙ ВОЗДЕЙСТВУЮЩЕЙ ВЕЛИЧИНЫ
ПОСТОЯННОГО ТОКА
Этот раздел касается отключений вспомогательной воздействующей величины постоянного тока, рассматриваемой как влияющая величина, имеющая основное стандартное значение, но не имеющая номинального диапазона.
2.1. Отключение
Под отключением понимают как прерывание возбуждения, так и короткое замыкание вспомогательной воздействующей вели-
Издание официальное
Перепечатка воспрещена © Издательство стандартов, 1989
чины*. Рассматривают только одиночные отключения. Отдельные испытания могут быть необходимы для определения результатов отключения или короткого замыкания в цепи возбуждения. Условия испытаний должны оговариваться.
2.2. Стандартные нормальные значения влияющих величин или факторов и допуски при испытаниях
Таблица 1 |
|||
Влияющая величина или фактор |
Принимаемое условие |
Допуски при* испытаниях |
|
Вспомогательные воздействующие величины |
Отключение |
0 мс |
Отсутст вуют |
2.3. Стандартные значения пределов ном и
нальных диапазонов влияющих торов |
величин и фак-Таблица 2 |
|
Влияющая величина или фактор |
Номинальный диапазон |
|
Вспомогательные воздей |
Отключение |
Не оговаривается |
ствующие величины |
2.4. Влияние отключения вспомогательной воздействующей величины постоянного тока
Влияние должно быть определено при отключении, продолжительность которого должна оговариваться изготовителем и выбираться из следующих значений: 2—5—10—20—50—100—200 мс.
Отключение должно быть внезапным, т. е. вспомогательная воздействующая величина должна изменяться от 0 до номинального значения или наоборот. Изготовитель должен точно определить условия испытания.
Примечание, В особых случаях могут потребоваться дополнительные сведения, чтобы показать влияние скорости изменения вспомогательного напряжения, например, влияние на преобразователь Постоянного тока одного напряжения в постоянный ток другого напряжения.
Если необходимо, то изготовитель оговаривает влияние отключений на:
точность;
* Для исключения короткого замыкания в цепь питания можно включить последовательно полное сопротивление; влияние полного сопротивления из срабатывание реле должно оговариваться изготовителем, если необходимо.
время срабатывания;
характеристику возврата;
другие характеристики, если это имеет значение.
Реле не должно ложно изменять своего выходного состояния, когда происходит включение или отключение вспомогательной воздействующей величины (см. приложение 1).
3. ТРЕБОВАНИЯ, ОТНОСЯЩИЕСЯ К ПЕРЕМЕННОЙ СОСТАВЛЯЮЩЕЙ ВСПОМОГАТЕЛЬНОЙ ВОЗДЕЙСТВУЮЩЕЙ ВЕЛИЧИНЫ В УСТАНОВИВШЕМСЯ РЕЖИМЕ
Раздел касается переменной составляющей вспомогательной воздействующей величины постоянного тока, рассматриваемой в качестве влияющей величины, имеющей основное стандартное значение и пределы номинального диапазона.
3*1. Определение переменной составляющей
В настоящем стандарте переменную составляющую постоянного тока определяют по формуле
Ртт—Цв .10р Uo
где Umm — максимальное мгновенное значение напряжения;
UB — минимальное мгновенное значение напряжения;
Uo — постоянная составляющая.
3.2. Условия определения влияния переменной составляющей вспомогательной воздействующей величины
Для статических реле очень важно, чтобы влияния переменной составляющей напряжения были проверены при максимальных и минимальных значениях напряжения постоянного тока (110 и 80% номинального значения).
Форма волны должна быть синусоидальной (или волна выпрямлена двухполупериодно) и ее частота должны быть двойной по отношению к частоте сети, если не оговорено особо изготовите-
л ем (см. приложение 1). 3.3. Стандартные значения нального диапазона |
пределов номи* Таблица 3 |
|
Влияющая: величина или фактор |
Номинальный диапазон |
|
Вспомогательные воздействующие величины |
Переменная составляющая постоянного тока |
От 0 до 12% номинального значения напряжения постоянного тока |
ПРИЛОЖЕНИЕ
Рекомендуемое
ПОЯСНЕНИЯ, КАСАЮЩИЕСЯ ВСПОМОГАТЕЛЬНЫХ ИСТОЧНИКОВ СТАТИЧЕСКИХ ИЗМЕРИТЕЛЬНЫХ РЕЛЕ
Особые требования, относящиеся к двум влияющим факторам: отключениям и переменной составляющей постоянного тока, которые распространяются на вспомогательные источники, указаны в табл, 1—3 настоящего стандарта, Несмотря на то, что они касаются измерительных реле, требующих одного вспомогательного источника, в этом приложении содержится информация, помогающая определить точку приложения влияющих величин, когда требуется определить их влияние на рабочие характеристики реле. Для объяснения критериев выбора условий испытаний даны дополнительные сведения.
Хотя в некоторых случаях статические измерительные реле автономны в части питания, т. е. они имеют свой внутренний источник постоянного тока от входной воздействующей величины (выходных величин трансформатора тока или напряжения), для правильного срабатывания большая часть статических реле требует отдельного внешнего источника напряжения при переменном или постоянном токе, Почти всегда неотъемлемой частью измерительного реле является вспомогательный источник питания реле, который может быть простым регулятором (стабилизатором), преобразователем переменного тока в-постоянный или преобразователем постоянного тока одного напряжения в постоянный ток другого напряжения, Этот источник питания выполняет в основном три функции:
а) понижает уровень напряжения внешнего источника до уровня напряжения, соответствующего для статических цепей;
б) уменьшает изменения напряжения внешнего источника, подавая внутреннее стабилизированное напряжение (собственное напряжение);
в) обеспечивает изоляционный и фильтровый барьер между собственным и общим источниками таким образом, чтобы напряжение помех, возникающее в последнем, не передавалось на чувствительные статические цепи,
В случае необходимости источники питания для статических измерительных реле получают от внешнего источника напряжения переменного или постоянного тока, Этот внешний источник, если только он не предусмотрен для особой группы устройств защиты, расположен в центральном здании или подстанции и не зависит от изготовителя устройства защиты, Этот источник питания, как правило, подвержен влиянию помех, напряжений высокой частоты, колебаний и т. д. Примером такого источника является общеподстанционная батарея, которая питает включающие катушки, реле защиты и т д. Считается, что на практике могут выполняться многочисленные отключения, и полное результирующее сопротивление источника до входных зажимов измерительного реле может также изменяться от нуля до бесконечности. Однако фактически условия испытаний, оговоренные в настоящем стандарте, ограничены единичными отключениями в виде короткого замыкания или размыкания цепи на зажимах измерительного реле, Значения продолжительности этого отключения, охватывающего промежуток от 0 до 200 мс, были оговорены. Это предусмотрено в основном для учета повреждений в вспомогательных цепях питания и соответствующего времени срабатывания автоматических выключателей.
На черт, 1 и 2 представлены схемы соединений статических реле со своим источником питания, На черт, 1 внешний источник соединен непосредственно с входными зажимами измерительного реле. Вспомогательный источник реле или «входной интерфейс» расположен в корпусе, и его выходное напряжение подают на статические цепи реле в пределах корпуса.
Для некоторых исполнений устройств защиты из-за мощности, требующейся для питания, и результирующей мощности рассеяния во вспомогательном источнике, необходимо, чтобы последний размещался в отдельном корпусе* В этом случае источник поставляется либо непосредственно изготовителем реле, либо соответствует спецификациям реле, применяющегося с определенным устройством защиты, Сочетание вспомогательного источника и измерительного реле рассматривают как сложное устройство ввиду того, что источник является дополнительным элементом, который необходим для работы измерительного реле и испытывается вместе с ним На черт, 2 показан пример, когда источник расшь ложен в отдельном корпусе. Внешний источник соединен с его входными зажимами, и вспомогательный источник реле представляет собой интерфейс между общим источником и питанием собственным напряжением. В основном его применяют для соединения выходных зажимов вспомогательного источника с входными зажимами реле, используя экранированные штепсельные разъемы с особыми типами вилок и розеток, Это обусловливает защиту от высокочастотных помех, препятствует применению по недосмотру других источников, предотвращает ошибочное соединение автономного питания реле с устройством, для которого оно не предусмотрено,
В обоих рассмотренных выше случаях влияния отключения и колебаний внешнего источника должны быть рассмотрены на зажимах устройства, к которым этот источник непосредственно подсоединен, т. е, к точкам А (черт. 1 и 2), Даже когда вспомогательный источник реле помещен в корпус, отделенный от корпуса измерительного реле, эти влияющие факторы относятся к входным зажимам вспомогательного источника реле, если только последний составляет неотъемлемую часть измерительного реле, поставлен и испытан как составная часть оборудования реле, Следует учесть, что если плавкие предохранители помещены между источником питания и реле (см. черт, 2), это условие должно рассматриваться как выполненное в соответствии со схемой черт, 1, даже если вспомогательный источник в действительности располагается вне корпуса реле.
Внутренний вспомогательный источник
О
*
напряжения*
О
т
Питание **
—О |
|||
ч |
ч |
||
—О О» |
—О |
||
Автономное питание |
Статическое измерительное реле
i — вспомогательный источник реле (входной интерфейс); 2 — статические цепи
* Внешний отдаленный (общий источник, см. примечание 1),
** Других аппаратов, например, отключающих катушек, других реле и т, д(
Черт. 1
Внешний вспомогательный источник
1 — вспомогательный источник реле (входной интерфейс); 2 — статическое измерительное реле; 3 — статические измерительные реле (см.
примечание 3)
* Внешний отдаленный (общий источник, см, примечание 1),
** Других устройств.
*** См. примечание 2,
Черт, 2
Примечания:
1. Этот источник напряжения может быть переменного или постоянного тока.
2. Экранированные провода и специальные штепсельные разъемы применялись в основном для этих соединений,
3. Внешний вспомогательный источник может питать несколько реле.
ИНФОРМАЦИОННЫЕ ДАННЫЕ
1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности СССР
ИСПОЛНИТЕЛИ
Г. С. Нудельман (руководитель разработки), Т. Т. Кан
2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 29.11.88 № 3868
3. Срок первой проверки — 1993 г.; периодичность проверки —
5 лет
4. В стандарт введен международный стандарт МЭК 255—11 (1979 г.)
5. ВВЕДЕН ВПЕРВЫЕ
1. Общие положения
1.1, Область распространения …… I
2, Требования, относящиеся к отключениям вспомогательной воздействующей величины постоянного тока . .•…»»•.> 1
2.1. Отключение , , . 1
2.2, Стандартные нормальные значения влияющих величин или факторов и допуски при испытаниях * г 2
2.3, Стандартные значения пределов номинальных диапазонов влияющих величин и факторов » …2
2.4, Влияние отключения вспомогательной воздействующей величины
постоянного тока , . t ж . ( 2
3. Требования, относящиеся к переменной составляющей вспомогательной
воздействующей величины в установившемся режиме ….
3J, Определение переменной составляющей ,
3.2, Условия определения влияния переменной составляющей вспомога тельной воздействующей величины ,
3.3. Стандартные значения пределов номинального диапазона .
Приложение. Пояснения, касающиеся вспомогательных источников стати
ческих измерительных реле , ,
Информационные данные . . , , ……. «
Как найти постоянную составляющую напряжения
Компьютерная техника, радиоэлектроника, электрика
- Главная На главную
- Электроника Статьи на тему
- Электрика Статьи на тему
- Компьютерная техника ПК, сети, комплектующие, обзоры
- Обзоры устройств Посылки, гаджеты, тесты, видео
Переменный ток
Переменный ток все время изменяет свое направление в отличие от постоянного, который протекает только в одном направлении. Постоянный ток вырабатывают батареи и источники постоянного тока, а переменный – генераторы сигналов и государственные энергетические системы.
Синусоидальные колебания
Форма переменного тока или напряжения может принимать самые различные виды. Наиболее распространенной является синусоидальная форма переменного напряжения или тока (рис. 2.1). Синусоидальное колебание имеет два максимальных значения, или пика: положительный пик и отрицательный. Пиковое значение называется также амплитуде синусоиды. Значение синусоидального напряжения, измеренное от пика до пика (размах), является разностью потенциалов между положительным пиком и отрицательным.
Размах = Положительная амплитуда + Отрицательная амплитуда = Удвоенная амплитуда.
Рис. 2.1. Синусоидальные колебания переменного тока
Среднеквадратическое значение
Постоянный ток имеет постоянное значение, и это значение можно использовать во всех вычислениях. Значение же переменного тока изменяется во времени. Чтобы преодолеть эту трудность, за «постоянное» значение переменного тока приняли и используют его среднеквадратическое значение.
Среднеквадратическое значение переменного тока является эквивалентом значения постоянного тока, при котором вырабатывается такая же мощность, что и при исходном значении переменного тока. Если известно среднеквадратическое значение переменного тока, то его можно использовать для вычисления мощности так же, как если бы это было постоянное напряжение или ток. Например:
Мощность пост. тока = Постоянный ток х Постоянное напряжение;
Мощность перем. Тока = Среднеквадр. значение тока х Среднеквадр. значение напряжения.
Значения переменного тока и напряжения всегда задают в виде среднеквадратической величины, за исключением специально оговоренных случаев.
Пример 1
Какое сопротивление имеет домашний электрический обогреватель мощностью 1 кВт?
Решение
Домашние обогреватели работают от сетевого напряжения, имеющего среднеквадратическое значение 240 В (в России 220 В. — Прим. перев.). Мощность, потребляемая обогревателем, составляет 1 кВт = 1000 Вт. Из формулы P = V2/R определяем
P = V2/R = 240*240/1000 = 57, б Ом.
Соотношение между пиковыми и среднеквадратическими значениями
Среднеквадратическое значение сигнала переменного тока зависит от его формы. Так, среднеквадратическое значение синусоидального сигнала составляет 0,707 его пикового значения (амплитуды). Заметим, что это справедливо только для синусоидального сигнала. Например, если амплитуда синусоидального сигнала Vр = 10 В, то его среднеквадратическое значение составит Vср.кв. = 0,707 * Vр = 0,707 * 10 = 7,07 В (см. рис. 2.2). Из соотношения Vср.кв. = 0,707 * Vр следует, что
Vр = 1/0,707 * Vср.кв. = 1,414 * Vср.кв.
Рис. 2.2. Среднеквадратическое значение синусоидального сигнала.
Рис. 2.3. Постоянная составляющая сигнала переменного тока.
Постоянная составляющая в сигнале переменного тока
До сих пор мы имели дело с сигналами переменного тока, которые не содержали постоянной составляющей. Рассмотрим два синусоидальных сигнала, изображенных на рис. 2.3. Левый сигнал не имеет постоянной составляющей, и его положительный пик равен отрицательному. Правый же сигнал содержит составляющую постоянного тока величиной 5 В.
Постоянная составляющая переменного тока называется также средним, или усредненным значением сигнала переменного тока.
Определим постоянную составляющую сигнала, имеющего прямоугольную форму (рис. 2.4).
1. Сначала определим положение нулевого уровня.
2. Вычислим площадь А1, лежащую выше нулевого уровня:
А1 = 4*1 = 4.
3. Вычислим площадь А2, лежащую ниже нулевого уровня:
А2 = 2*1 = 2.
4. Вычислим суммарную площадь:
А1 – А2 = 4 – 2 = 2.
5. Отсюда среднее значение напряжения за период равно
Суммарная площадь/Время периода = 2/3 = 0,67 В.
Среднеквадратическое значение сложных сигналов
Как уже говорилось, соотношение
Среднеквадратическое значение = 0,707 амплитуды
справедливо только для синусоидальных сигналов. Среднеквадратическое значение сигналов, имеющих другую форму, может быть определено следующим образом.
1. Определить площадь сигнала за один период. Заметим, что при определении площади отрицательное значение превращается в положительное.
2. Определить среднее значение площади сигнала за период.
3. Вычислить квадратный корень из средней площади сигнала за период.
Определим среднеквадратическое значение сигнала, имеющего форму меандра (рис. 2.5(а)). Площадь положительного полупериода этого сигнала равна 3 * 3 = 9. Площадь отрицательного полупериода составля¬ет (-3) * (-3) = 9. Среднее значение площади за период, следовательно, равно 9. Отсюда среднеквадратическое значение напряжения будет корень из 9 = 3 В.
Рис. 2.5. Сравнение среднеквадратических значений
прямоугольного и синусоидального сигналов.
Для сравнения определим среднеквадратическое значение синусоидального напряжения, имеющего значение положительной и отрицательной амплитуды +3 В и –3 В соответственно (рис. 2.5(б)): 0,707 * 3 В = 2,12 В.
Как видим, прямоугольный сигнал имеет большее среднеквадратическое значение. Это объясняется тем, что площадь под прямоугольной огибающей больше, чем площадь под синусоидой, хотя оба сигнала имеют одинаковые значения положительного и отрицательного пиков. В данном случае среднеквадратическое значение прямоугольного сигнала равно его пиковому значению.
На рис. 2.6 изображен прямоугольный сигнал, имеющий только положительные значения. Среднеквадратическое значение этого сигнала меньше его пикового значения.
При однополупериодном выпрямлении среднеквадратическое значение напряжения равно половине его амплитуды.
При двухполупериодном выпрямлении среднеквадратическое значение такое же, как у полной синусоиды, т. е. 0,707 амплитуды (рис. 2.7), поскольку при вычислении среднеквадратического значения положительная полуволна сигнала идентична отрицательной, положительный полупериод идентичен отрицательному.
Заметим, что постоянная составляющая, или среднее значение сигнала, это просто усредненное значение напряжения за один период, не имеющее никакого отношения к среднеквадратическому значению.
Рис. 2.6. Среднеквадратическое значение прямоугольного сигнала, имеющего только положительную полярность.
Рис. 2.7. (а) При однополупериодном выпрямлении синусоидального напряжения его среднеквадратическое значение равно 0,5 амплитуды.
(б) При двухполупериодном выпрямлении синусоидального напряжения его среднеквадратическое значение равно 0,707 амплитуды.
В этом видео наглядно рассказывается о типах тока, в том числе о переменном токе:
Источник
Эта непостоянная постоянная составляющая: что делать?
Analog Devices AD822
Владимир Рентюк, Запорожье, Украина
Ситуация, когда в полезном сигнале имеется постоянная составляющая, достаточно обычна. Эта составляющая может быть представлена некоторым фиксированным смещением или иметь нестационарный, плавающий характер. Как правило, она является паразитной и мешает производить обработку полезного переменного сигнала. Таким образом, возникает необходимость ее устранения, и обычно для этого используется разделительный конденсатор. Безусловно, это самое распространенное решение, и сразу вспоминается шутка, которой маститые инженеры вводят в ступор новичков, задавая им простой вопрос: как быстро доказать, что конденсатор проводит переменный ток и не пропускает постоянный. И на все их долгие и пространные объяснения показывают свое (Рисунок 1).
|
|||
Рисунок 1. | Конденсатор для напряжения постоянного и переменного токов. Постоянный ток «уперся» в конденсатор и дальше пройти не может (а), а переменный его «обходит» (б). |
Если бы все было настолько просто… Но вернемся к сути проблемы. Действительно, первое, что приходит на ум – разделительный конденсатор. И это верно, но не всегда. Если по тем или иным причинам входное сопротивление каскада невелико, а диапазон рабочих частот составляет единицы или десятые доли герц, то потребуются разделительные конденсаторы большой емкости. Как правило, используются электролитические конденсаторы. Но здесь возникают уже совсем иные проблемы. Это габариты и связанная с этим проблема ударо- и вибростойкости, токи утечки, шумы, чувствительность к внешним электромагнитным помехам, необходимость наличия поляризующего напряжения. И не просто, как некоторые думают, любого поляризующего напряжения – лишь бы оно было, что мы часто видим, и не только в радиолюбительской практике. А ведь нужно соблюдать заданное в спецификации соотношение между переменной и постоянной составляющими в области рабочих частот, если вы подходите к процессу проектирования должным образом, а не по принципу «оно же работает». Есть еще такая неприятность, о которой вспоминают, когда устройство уже собрано на плате, как заряд разделительного конденсатора и соответствующий этому переходной процесс. А ведь часто это – весьма ощутимый удар по всей схеме.
Если все изложенное является критичным, то на первый план выходит компенсация постоянной составляющей внешним смещением или задание строго необходимого при наличии некоторой постоянной составляющей в структуре сигнала. Подход хороший, но только если точно известно, какая она (постоянная составляющая) будет, и будет ли она постоянной. Причем, не только во времени, а и, в зависимости от внешних условий, как минимум, от температуры. Если не будет точной компенсации, то в случае, например, измерения среднеквадратичного значения сигнала, будет допущена ошибка. Еще один момент кроется в том, что если аналоговая часть, допустим некоторый масштабирующий усилитель, подключается на вход АЦП микроконтроллера, то для получения максимального динамического диапазона необходимо поднять аналоговый сигнал на величину напряжения, равную половине напряжения питания микроконтроллера или половине максимального номинального напряжения, допустимого для входа его АЦП.
Автору статьи пришлось однажды искать решение для, скажем так, «изделия специального назначения». В нем был блок обработки сигналов с большим динамическим диапазоном, поступающих с некого сенсора через систему сложных, переключаемых в зависимости от ситуации фильтров. Причем спектр этого сигнала достаточно широк, а его низкочастотная составляющая могла лежать в области инфранизких частот. Вычислитель осуществлял контроль среднеквадратичного уровня сигнала и при его отклонении в пределах ±1% выдавал некую очень важную команду. Кроме переменной составляющей, входной сигнал в своей структуре содержал еще и неизвестное по величине и меняющееся по уровню постоянное напряжение смещения. Вдобавок, на печатной плате не было лишнего места, и даже ее высота была ограничена, Ну и, коль это было «изделие специального назначения», то и требования к нему по ударо- и вибростойкости были специальные. Как видим, ни о каких разделительных конденсаторах или о подаче компенсирующего смещения речь даже не могла идти. Схемное решение, которое решило проблему такой необычной компенсации постоянной составляющей исходного сигнала (без разделительного конденсатора) и задания фиксированного и строго определенного смещения, приведено на Рисунке 2. Впервые в общем виде оно было опубликовано в [1].
Рисунок 2. | Схема цепи ультразвукового сенсора, использующая компенсацию постоянной составляющей входного сигнала [1]. |
Для предлагаемой схемы желательно использовать операционный усилитель (ОУ) типа «rail-to-rail» по входу и выходу, естественно, допускающий включение в режиме с однополярным источником питания, например, AD822 [2]. Это увеличивает динамический диапазон компенсации постоянной составляющей входного напряжения. Заданная величина выходного смещения, не зависящая от величины постоянной составляющей в структуре сигнала, устанавливается подачей необходимого уровня опорного напряжения VREF. На Рисунке 2 он формируется при помощи построечного резистора R1, но этот резистор может быть заменен источником опорного напряжения или резистивным делителем. (Автором успешно использовались оба варианта). Как уже отмечалось выше, для получения максимального динамического диапазона выходной уровень опорного постоянного напряжения устанавливается равным половине напряжения питания VCC. Усилитель, выполненный на ОУ IC1B, усиливает и инвертирует высокочастотную составляющую напряжения входного сигнала с коэффициентом усиления равным R4/R3, обычным для схем усилителей на базе ОУ в инвертирующем включении.
Инвертирующий вычитающий интегратор, выполненный на ОУ IC1A, обеспечивает компенсацию любого неподходящего для работы схемы напряжения смещения внутри контура отрицательной обратной связи. Переменная составляющая сигнала ослабляется выбором соответствующей постоянной времени интегратора R2C1, оставляя, таким образом, лишь усредненную постоянную составляющую смещения на выходе ОУ IC1B ниже нижней граничной рабочей частоты входного сигнала. Это смещение выходного сигнала в рабочем диапазоне частот будет равно заданному уровню опорного напряжения. На Рисунке 2 показана временная диаграмма действия такой компенсации для случая ступенчатого изменения смещения постоянной составляющей во входном сигнале на величину 4 В. То есть, если учитывать коэффициент усиления схемы, приведенной на Рисунке 2, равный
это будет в условиях очень глубокого перерегулирования, как минимум в 29 дБ! Тем не менее, и это можно видеть из Рисунка 3, время установления предлагаемой схемы с учетом переходных процессов составляет менее 100 мс.
Рисунок 3. | Процесс компенсации ступеньки смещения входного напряжения в 4 В. Время установления менее 100 мс. |
Рассмотренное схемотехническое решение имеет еще две дополнительные полезные области применения. Во-первых, это ФВЧ первого порядка без входных емкостей, в котором амплитудно-частотная характеристика имеет спад 6 дБ/октава с частотой среза по уровню –3 дБ. Во-вторых, эта схема также может служить удобным в использовании дифференциатором (инвертирующим и без входного конденсатора) с реакцией на шаг ступенчатого изменения входного напряжения. Как известно, такие дифференциаторы являются потенциально неустойчивыми и, следственно, не очень удобны в применении.
Нижняя частота среза схемы, приведенной на Рисунке 2, определяется по формуле:
(1) |
Формула получена в результате моделирования. Для значений элементов, приведенных на Рисунке 2, частота среза в области низких частот равна 47 Гц.
А где же обещанные инфранизкие частоты, спросит читатель? Заменим элементы в интеграторе на R2 = 2 МОм и C1 = 2.2 мкФ и зададим коэффициент усиления, например, равный 12, то есть k = R4/R3 = 12. Это будет соответствовать той задаче, которую решал автор статьи в своем, упомянутом в начале статьи, проекте.
АЧХ такого варианта каскада приведена на Рисунке 4.
Рисунок 4. | Амплитудно-частотная характеристика в области инфранизких частот. |
Как видим, все обошлось без нежелательного разделительного электролитического конденсатора. В противном случае пришлось бы использовать электролитический конденсатор емкостью, как минимум, в 470 мкФ и, естественно, схему формирования сдвига выходного напряжения. Приведенное схемное решение было использовано автором в целом ряде проектов и ни разу не имело нареканий.
- Vladimir Rentyuk «Use an integrator instead of coupling capacitors», EDN, February 16, 2012
- AD822 Single-Supply, Rail-to-Rail Low Power FET-Input Op Amp, Analog Devices Inc., Rev1, 2010
Источник
Постоянный электрический ток
Постоянный ток
(DC — Direct Current) — электрический ток, не меняющий своей величины и направления с течением времени.
В реальности постоянный ток не может сохранять величину постоянной. Например, на выходе выпрямителей всегда присутствует переменная составляющая пульсаций. При использовании гальванических элементов, батареек или аккумуляторов, величина тока будет уменьшаться по мере расхода энергии, что актуально при больших нагрузках.
Постоянный ток существует условно в тех случаях, где можно пренебречь изменениями его постоянной величины.
Постоянная составляющая тока и напряжения. DC
Если рассмотреть форму тока в нагрузке на выходе выпрямителей или преобразователей, можно увидеть пульсации — изменения величины тока, существующие, как результат ограниченных возможностей фильтрующих элементов выпрямителя. В некоторых случаях величина пульсаций может достигать достаточно больших значений, которые нельзя не учитывать в расчётах, например, в выпрямителях без применения конденсаторов. Такой ток обычно называют пульсирующим или импульсным. В этих случаях следует рассматривать постоянную DC
и переменную
AC
составляющие.
Постоянная составляющая DC
— величина, равная среднему значению тока за период.
AVG
— аббревиатура Avguste — Среднее.
Переменная составляющая AC
— периодическое изменение величины тока, уменьшение и увеличение относительно среднего значения
.
Следует учитывать при расчётах, что величина пульсирующего тока будет равна не среднему значению, а квадратному корню из суммы квадратов двух величин — постоянной составляющей (DC
) и среднеквадратичного значения переменной составляющей (
AC
), которая присутствует в этом токе, обладает определённой мощностью и суммируется с мощностью постоянной составляющей.
Вышеописанные определения, а так же термины AC
и
DC
могут быть использованы в равной степени как для тока, так и для напряжения .
Как вычислить апериодическую компоненту
Первоначальная величина апериодической части в модульном выражении определяется как разница между мгновенным показателем периодической части в начале КЗ и величиной тока непосредственно перед замыканием. То есть, апериодическая составляющая с максимальным первоначальным значением, сравняется с амплитудными параметрами периодической части тока при появлении КЗ. Это утверждение определяет формула: ia0 = √2Iп0, действующая при условии сниженной активной доли сопротивления в точке КЗ относительно индуктивной составляющей.
Кроме того, перед началом замыкания в расчетной точке не должно быть нагрузки, а напряжение какой-либо фазы к этому времени проходит по нулевому проводнику. Если же перечисленные требования не будут выполнены, то апериодическая часть в первоначальной стадии снизит свои показатели по отношению к амплитуде периодической составляющей.
Для того чтобы выполнить расчет апериодической составляющей тока короткого замыкания в любое произвольное время, заранее прорабатывается вариант замещения. Согласно первоначальной расчетной схеме, все составные элементы учитываются в качестве активных и индуктивных сопротивлений. Учет синхронных генераторов и компенсаторов, асинхронных и синхронных электродвигателей проводится путем перевода их в категорию индуктивных сопротивлений с обратной последовательностью. Обязательно учитываются сопротивления обмоток статора постоянному току с рабочей температурой установленной нормы.
Когда в изначальной схеме расчетов присутствуют лишь компоненты, соединенные последовательно, в этом случае величина апериодической доли в любой момент времени определяется формулой 1, в которой Та является постоянной величиной, определяющей время затухания данной части. В свою очередь, Та можно вычислить по формуле 2, в которой Xэк и Rэк будут индуктивной и активной составляющими, а ωсинх является синхронной угловой частотой сетевого напряжения. Если же при расчетах необходимо учесть величину генераторного тока непосредственно перед коротким замыканием, тогда уже используется формула 3.
Отличие постоянного тока от переменного
По ассоциативным предпочтениям в технической литературе импульсный ток часто называют постоянным, так как он имеет одно постоянное направление. В таком случае необходимо уточнять, что имеется в виду постоянный ток с переменной составляющей. А иногда его называют переменным, по той причине, что периодически меняет величину. Переменный ток с постоянной составляющей. Обычно берут за основу составляющую, которая больше по величине или которая наиболее значима в контексте.
Следует помнить, что постоянный ток или напряжение характеризует, кроме направления, главный критерий — постоянная его величина, которая служит основой физических законов и является определяющей в расчётных формулах электрических цепей. Постоянная составляющая DC, как среднее значение, является лишь одним из параметров переменного тока.
Для переменного тока (напряжения) в большинстве случаев бывает важен критерий — отсутствие постоянной составляющей, когда среднее значение равно нулю. Это ток, который протекает в конденсаторах, силовых трансформаторах, линиях электропередач. Это напряжение на обмотках трансформаторов и в бытовой электрической сети. В таких случаях постоянная составляющая может существовать только в виде потерь, вызванных нелинейным характером нагрузок.
Переменный ток все время изменяет свое направление в отличие от постоянного, который протекает только в одном направлении. Постоянный ток вырабатывают батареи и источники постоянного тока, а переменный – генераторы сигналов и государственные энергетические системы.
Синусоидальные колебания
Форма переменного тока или напряжения может принимать самые различные виды. Наиболее распространенной является синусоидальная форма переменного напряжения или тока (рис. 2.1). Синусоидальное колебание имеет два максимальных значения, или пика: положительный пик и отрицательный. Пиковое значение называется также амплитуде синусоиды. Значение синусоидального напряжения, измеренное от пика до пика (размах), является разностью потенциалов между положительным пиком и отрицательным. Размах = Положительная амплитуда + Отрицательная амплитуда = Удвоенная амплитуда.
Рис. 2.1. Синусоидальные колебания переменного тока
Среднеквадратическое значение
Постоянный ток имеет постоянное значение, и это значение можно использовать во всех вычислениях. Значение же переменного тока изменяется во времени. Чтобы преодолеть эту трудность, за «постоянное» значение переменного тока приняли и используют его среднеквадратическое значение. Среднеквадратическое значение переменного тока является эквивалентом значения постоянного тока, при котором вырабатывается такая же мощность, что и при исходном значении переменного тока. Если известно среднеквадратическое значение переменного тока, то его можно использовать для вычисления мощности так же, как если бы это было постоянное напряжение или ток. Например:
Мощность пост. тока = Постоянный ток х Постоянное напряжение; Мощность перем. Тока = Среднеквадр. значение тока х Среднеквадр. значение напряжения.
Значения переменного тока и напряжения всегда задают в виде среднеквадратической величины, за исключением специально оговоренных случаев. Пример 1 Какое сопротивление имеет домашний электрический обогреватель мощностью 1 кВт? Решение Домашние обогреватели работают от сетевого напряжения, имеющего среднеквадратическое значение 240 В (в России 220 В. — Прим. перев.). Мощность, потребляемая обогревателем, составляет 1 кВт = 1000 Вт. Из формулы P = V2/R определяем
P = V2/R = 240*240/1000 = 57, б Ом.
Соотношение между пиковыми и среднеквадратическими значениями
Среднеквадратическое значение сигнала переменного тока зависит от его формы. Так, среднеквадратическое значение синусоидального сигнала составляет 0,707 его пикового значения (амплитуды). Заметим, что это справедливо только для синусоидального сигнала. Например, если амплитуда синусоидального сигнала Vр = 10 В, то его среднеквадратическое значение составит Vср.кв. = 0,707 * Vр = 0,707 * 10 = 7,07 В (см. рис. 2.2). Из соотношения Vср.кв. = 0,707 * Vр следует, что
Vр = 1/0,707 * Vср.кв. = 1,414 * Vср.кв.
Рис. 2.2. Среднеквадратическое значение синусоидального сигнала.
Рис. 2.3. Постоянная составляющая сигнала переменного тока.
Постоянная составляющая в сигнале переменного тока
До сих пор мы имели дело с сигналами переменного тока, которые не содержали постоянной составляющей. Рассмотрим два синусоидальных сигнала, изображенных на рис. 2.3. Левый сигнал не имеет постоянной составляющей, и его положительный пик равен отрицательному. Правый же сигнал содержит составляющую постоянного тока величиной 5 В. Постоянная составляющая переменного тока называется также средним, или усредненным значением сигнала переменного тока. Определим постоянную составляющую сигнала, имеющего прямоугольную форму (рис. 2.4).
Рис. 2.4.
1. Сначала определим положение нулевого уровня. 2. Вычислим площадь А1, лежащую выше нулевого уровня: А1 = 4*1 = 4.
3. Вычислим площадь А2, лежащую ниже нулевого уровня: А2 = 2*1 = 2.
4. Вычислим суммарную площадь: А1 – А2 = 4 – 2 = 2.
5. Отсюда среднее значение напряжения за период равно Суммарная площадь/Время периода = 2/3 = 0,67 В.
Среднеквадратическое значение сложных сигналов
Как уже говорилось, соотношение Среднеквадратическое значение = 0,707 амплитуды справедливо только для синусоидальных сигналов. Среднеквадратическое значение сигналов, имеющих другую форму, может быть определено следующим образом. 1. Определить площадь сигнала за один период. Заметим, что при определении площади отрицательное значение превращается в положительное. 2. Определить среднее значение площади сигнала за период. 3. Вычислить квадратный корень из средней площади сигнала за период. Определим среднеквадратическое значение сигнала, имеющего форму меандра (рис. 2.5(а)). Площадь положительного полупериода этого сигнала равна 3 * 3 = 9. Площадь отрицательного полупериода составля¬ет (-3) * (-3) = 9. Среднее значение площади за период, следовательно, равно 9. Отсюда среднеквадратическое значение напряжения будет корень из 9 = 3 В.
Рис. 2.5. Сравнение среднеквадратических значений прямоугольного и синусоидального сигналов.
Для сравнения определим среднеквадратическое значение синусоидального напряжения, имеющего значение положительной и отрицательной амплитуды +3 В и –3 В соответственно (рис. 2.5(б)): 0,707 * 3 В = 2,12 В.
Как видим, прямоугольный сигнал имеет большее среднеквадратическое значение. Это объясняется тем, что площадь под прямоугольной огибающей больше, чем площадь под синусоидой, хотя оба сигнала имеют одинаковые значения положительного и отрицательного пиков. В данном случае среднеквадратическое значение прямоугольного сигнала равно его пиковому значению.
На рис. 2.6 изображен прямоугольный сигнал, имеющий только положительные значения. Среднеквадратическое значение этого сигнала меньше его пикового значения. При однополупериодном выпрямлении среднеквадратическое значение напряжения равно половине его амплитуды. При двухполупериодном выпрямлении среднеквадратическое значение такое же, как у полной синусоиды, т. е. 0,707 амплитуды (рис. 2.7), поскольку при вычислении среднеквадратического значения положительная полуволна сигнала идентична отрицательной, положительный полупериод идентичен отрицательному. Заметим, что постоянная составляющая, или среднее значение сигнала, это просто усредненное значение напряжения за один период, не имеющее никакого отношения к среднеквадратическому значению.
Рис. 2.6. Среднеквадратическое значение прямоугольного сигнала, имеющего только положительную полярность.
Рис. 2.7. (а) При однополупериодном выпрямлении синусоидального напряжения его среднеквадратическое значение равно 0,5 амплитуды. (б) При двухполупериодном выпрямлении синусоидального напряжения его среднеквадратическое значение равно 0,707 амплитуды.
В этом видео наглядно рассказывается о типах тока, в том числе о переменном токе:
Добавить комментарий
JComments
Параметры постоянного тока и напряжения
Сразу следует отметить, что устаревший термин «сила тока» в современной отечественной технической литературе используется уже нечасто и признан некорректным. Электрический ток характеризует не сила, а скорость и интенсивность перемещения заряженных частиц. А именно, количество заряда, прошедшее за единицу времени через поперечное сечение проводника. Основным параметром для постоянного тока является величина тока.
Единица измерения тока — Ампер. Величина тока 1 Ампер — перемещение заряда 1 Кулон за 1 секунду.
Единица измерения напряжения — Вольт. Величина напряжения 1 Вольт — разность потенциалов между двумя точками электрического поля, необходимая для совершения работы 1 Джоуль при прохождения заряда 1 Кулон.
Для выпрямителей и преобразователей часто бывает важными следующие параметры для постоянного напряжения или тока:
Размах пульсаций
напряжения (тока) — величина, равная разности между максимальным и минимальным значениями.
Коэффициент пульсаций
— величина, равная отношению действующего значения переменной составляющей AC напряжения или тока к его постоянной составляющей DC.
Замечания и предложения принимаются и приветствуются!
Источник
Термин: Постоянная составляющая сигнала
Значение постоянной составляющей сигнала – это среднее значение этого сигнала на рассматриваемом промежутке времени. Теоретически постоянная составляющая сигнала вычисляется интегральным выражением
где интервал времени T стремится к бесконечности. При практической интерпретации этого понятия в задачах обработки сигнала интеграл берётся на скользящем интервале времени заданного размера (т.е. по выборке изучаемого участка сигнала). Постоянная составляющая сигнала, исходя из геометрического смысла интеграла, хорошо видна на графике сигнала во времени как величина, равная площади между осью нулевого значения сигнала и графиком (учитывая, что под осью площадь отрицательна, а над осью – положительна). На графике показано красной кривой значение постоянной составляющей X для скользящего окна интегрирования с размером, сравнимым с периодом сигнала.
Для цифрового сигнала оценка постоянной составляющей – это среднее арифметическое выборки из N отсчетов.
В спектральном представлении сигнала информацию о постоянной составляющей сигнала несёт нулевая гармоника спектра этого сигнала.
Размер выборки для вычисления постоянной составляющей зависит от условий задачи. Например, если сигнал имеет выраженные гармонические составляющие с известной частотой, то целесообразно, чтобы выборка включала целое число периодов этих составляющих (иначе на выходе будут пульсации). Если спектр сигнала не известен заранее, можно применить оконную функцию – например, окно Ханна:
Это позволяет уменьшить влияние нецелых периодов на концах выборки. Примеры оконных функций можно найти, например, здесь.
На практике, когда сигналы представлены напряжением или током, для обозначения режима измерения постоянного напряжения или тока, который по сути является режимами измерения постоянной составляющей этих сигналов, широко применяется термин DC (direct current).
Не во всех сигналах постоянная составляющая информационна. Для удаления постоянной составляющей из сигнала применяют фильтры высокой частоты.
Некоторые среды передачи сигнала не позволяют передавать постоянную составляющую сигнала (например, среды, имеющие емкостную или индуктивую гальваническую развязку), Для передачи постоянной составляющей сигнала через такие среды используют различные технические принципы, связанные со специальными способами модуляции и кодирования сигнала.
Постоянная составляющая может быть и не связана с сигналом, а порождаться самим прибором или преобразователем (из-за неидельности его характеристик) в виде смещения нуля.
Источник
Переменная составляющая — ток
Переменная составляющая тока , потребляемого этой схемой от анодного источника питания, в идеальном случае равна нулю. В реальных схемах она также достаточно мала, что ослабляет опасность появления паразитных обратных связей через источник анодного питания и облегчает условия фильтрации напряжения автоматического смещения. [2]
Переменная составляющая тока усиливается трехкас-кадным усилителем напряжения. Выходное напряжение усилителя выпрямляется фазочувствительным синхронным детектором. Выпрямленное и сглаженное фильтром напряжение подается на сетку выходного каскада. [4]
Переменная составляющая тока , потребляемого от источников питания, в идеальном случае равна нулю. [5]
Переменная составляющая тока 100 Гц получается с дополнительной обмотки дросселя 3 — 1ДР, выпрямляется диодами 3 — ЗД и 3 — 4Д и после сглаживания направляется в обмотку магнитоэлектрического реле встречно относительно постоянной составляющей тока от схемы сравнения. [6]
Переменная составляющая тока — та часть периодически изменяющегося тока, которая остается после вычета из этого тока постоянной составляющей. [7]
Переменная составляющая тока проходит через конденсатор С, сопротивление которого значительно меньше сопротивления дросселя L. Постоянная составляющая тока проходит через дроссель L и нагрузочное сопротивление R, на котором выделяется выпрямленное напряжение. [9]
Переменная составляющая тока , текущего через лазер, выделяется трансформатором Т, усиливается и преобразуется АЦП в цифровой вид F для дальнейшей компьютерной обработки. Отсчеты тока во временном цикле накапливаются и компонуются в массив, который приводится к спектральному представлению программой быстрого преобразования Фурье и фильтруется с целью выделения мод, значимых для идентификации. [11]
Переменная составляющая тока через стабилитрон должна составлять — 0 02 от постоянного тока смещения. Переменное напряжение на стабилитроне и калибровочном резисторе RK измеряют вольтметром с избирательным усилителем. [13]
Чем отличаются и где используются постоянный и переменный ток
В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.
Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.
Что такое электрический ток и напряжение
Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:
- сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
- мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
- частота, измеряемая в герцах (Гц).
Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.
Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.
Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).
Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.
Что такое переменный ток
Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.
Что такое постоянный ток
Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.
Среднеквадратическое значение (действующее) переменного тока
Постоянный ток имеет постоянное значение, и это значение можно использовать во всех вычислениях. Значение же переменного тока изменяется во времени. Чтобы преодолеть эту трудность, за «постоянное» значение переменного тока приняли и используют его среднеквадратическое значение. Среднеквадратическое значение переменного тока является эквивалентом значения постоянного тока, при котором вырабатывается такая же мощность, что и при исходном значении переменного тока. Если известно среднеквадратическое значение переменного тока, то его можно использовать для вычисления мощности так же, как если бы это было постоянное напряжение или ток.
мощность пост, тока = Постоянный ток х Постоянное напряжение;
мощность переменного, тока = Среднеквадратическое значение тока х
х среднеквадратическое значение напряжения.
Значения переменного тока и напряжения всегда задают в виде среднеквадратической величины, за исключением специально оговоренных случаев.
Какое сопротивление имеет электрический обогреватель мощностью 1 кВт?
Домашние обогреватели работают от сетевого напряжения, имеющего среднеквадратическое значение 220 В.
Мощность, потребляемая обогревателем, составляет 1 кВт = 1000 Вт. Из формулы
R = U2/P = 240
2/1000 =
57,6 Ом.
Источники электрического тока
Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.
Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.
Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.
Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.
Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.
Преобразование переменного тока в постоянный
Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.
Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.
В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.
Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.
Физические свойства апериодической составляющей
Подобное состояние тока возникает в момент короткого замыкания. Его продолжительность и характеристики могут быть разными, в зависимости от многих факторов. Например, при наличии у двигателя демпферной обмотки, апериодическая составляющая тока короткого замыкания будет ниже, чем при ее отсутствии. Вначале возникает сверхпереходный ток, который вначале становится просто переходным, и лишь потом он начинает затухать.
Во время двухфазного замыкания, в статоре не появляются скачкообразные изменения тока. В подобных ситуациях, на холостом ходе возникает апериодическая составляющая, параметры которой совпадают с начальной величиной переменной компоненты. Поскольку ток КЗ внутри статора является однофазным, в отдельных случаях появление апериодической компоненты полностью исключается. В двигателях асинхронного типа этот показатель не учитывается, поскольку данные процессы очень быстро затухают. Он не принимается во внимание даже при расчетных вычислениях ударных токов КЗ.
В общем и целом, величина данных компонентов будет отличаться для каждой фазы. Ее начальные параметры будут зависеть от момента появления КЗ. На графиках она представляет собой сплошную кривую линию, поскольку все начальные амплитуды других составляющих будут ей равны, но направлены в обратную сторону.
Наличие апериодической составляющей устанавливается при расхождении контактов. Для ее оценки существует специальный параметр, представляющий собой соотношение между ней и периодической амплитудой в момент размыкания контактов. Время затухания составляет примерно 0,1-0,2 с и сопровождается значительным выделением тепла. Под действием высокой температуры заметно нагреваются токоведущие части и вся аппаратура в целом, несмотря на столь короткий промежуток времени.
Где используется и в чём преимущества переменного и постоянного тока
Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.
Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.
Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.
Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).
Обозначения на электроприборах и схемах
Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.
Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.
На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.
Полный ток при наступлении КЗ
Сама по себе апериодическая компонента не может быть рассмотрена, поскольку она является одной из составных частей тока короткого замыкания. В электрической сети присутствуют сопротивления индуктивного характера, не дающие току мгновенно изменяться в момент появления КЗ. Рост нагрузочного тока проистекает не скачкообразно, а согласно определенных законов, предполагающих переходный период от нормального к аварийному значению. Расчетно-аналитическая работа значительно упрощается, когда ток КЗ во время перехода рассматривается как две составные части – апериодическая и периодическая.
Почему переменный ток используется чаще
Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.
Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.
Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.
Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.
В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.
Электрификация железных дорог на переменном токе
подаётся на контактный провод, вторым (обратным) проводом служат рельсы. Также проводится электрификация по системе 2 × 25 кВ(два по двадцать пять киловольт)
, когда на отдельный питающий провод подаётся напряжение
50 кВ (обычно до 55 кВ, с учётом потерь)
, а на контактный провод от автотрансформаторов подаётся половинное напряжение от 50 кВ
(то есть 25 кВ)
. Электровозы и электропоезда переменного тока при работе на участках 2 × 25 кВ в переделке не нуждаются.
Проводится политика на дальнейшее расширение полигона тяги переменного тока как за счёт вновь электрифицируемых участков, так и за счёт перевода некоторых линий с постоянного тока на переменный ток. Переведены в 1990-е — 2000-е годы:
— на Восточно-Сибирской железной дороге: участок Слюдянка — Иркутск — Зима; — на Октябрьской железной дороге: участок Лоухи — Мурманск; — на Приволжской железной дороге: Саратовский и Волгоградский железнодорожные узлы; — на Северо-Кавказской железной дороге: участки Минеральные Воды — Кисловодск и Бештау — Железноводск.
Значение постоянной составляющей сигнала – это среднее значение этого сигнала на рассматриваемом промежутке времени. Теоретически постоянная составляющая сигнала вычисляется интегральным выражением
где интервал времени T стремится к бесконечности. При практической интерпретации этого понятия в задачах обработки сигнала интеграл берётся на скользящем интервале времени заданного размера (т.е. по выборке изучаемого участка сигнала). Постоянная составляющая сигнала, исходя из геометрического смысла интеграла, хорошо видна на графике сигнала во времени как величина, равная площади между осью нулевого значения сигнала и графиком (учитывая, что под осью площадь отрицательна, а над осью – положительна). На графике показано красной кривой значение постоянной составляющей X0 для скользящего окна интегрирования с размером, сравнимым с периодом сигнала.
Для цифрового сигнала оценка постоянной составляющей – это среднее арифметическое выборки из N отсчетов.
В спектральном представлении сигнала информацию о постоянной составляющей сигнала несёт нулевая гармоника спектра этого сигнала.
Размер выборки для вычисления постоянной составляющей зависит от условий задачи. Например, если сигнал имеет выраженные гармонические составляющие с известной частотой, то целесообразно, чтобы выборка включала целое число периодов этих составляющих (иначе на выходе будут пульсации). Если спектр сигнала не известен заранее, можно применить оконную функцию – например, окно Ханна:
Это позволяет уменьшить влияние нецелых периодов на концах выборки. Примеры оконных функций можно найти, например, здесь.
На практике, когда сигналы представлены напряжением или током, для обозначения режима измерения постоянного напряжения или тока, который по сути является режимами измерения постоянной составляющей этих сигналов, широко применяется термин DC (direct current).
Не во всех сигналах постоянная составляющая информационна. Для удаления постоянной составляющей из сигнала применяют фильтры высокой частоты.
Некоторые среды передачи сигнала не позволяют передавать постоянную составляющую сигнала (например, среды, имеющие емкостную или индуктивую гальваническую развязку), Для передачи постоянной составляющей сигнала через такие среды используют различные технические принципы, связанные со специальными способами модуляции и кодирования сигнала.
Постоянная составляющая может быть и не связана с сигналом, а порождаться самим прибором или преобразователем (из-за неидельности его характеристик) в виде смещения нуля.