Как найти потенциальную энергию тела формула

Potential energy
Mediaeval archery reenactment.jpg

In the case of a bow and arrow, when the archer does work on the bow, drawing the string back, some of the chemical energy of the archer’s body is transformed into elastic potential energy in the bent limb of the bow. When the string is released, the force between the string and the arrow does work on the arrow. The potential energy in the bow limbs is transformed into the kinetic energy of the arrow as it takes flight.

Common symbols

PE, U, or V
SI unit joule (J)

Derivations from
other quantities

U = mgh (gravitational)

U = 12kx2 (elastic)
U = 12CV2 (electric)
U = −mB (magnetic)

U = {textstyle int F(r),dr}

In physics, potential energy is the energy held by an object because of its position relative to other objects, stresses within itself, its electric charge, or other factors.[1][2] The term potential energy was introduced by the 19th-century Scottish engineer and physicist William Rankine,[3][4][5] although it has links to the ancient Greek philosopher Aristotle’s concept of potentiality.

Common types of potential energy include the gravitational potential energy of an object, the elastic potential energy of an extended spring, and the electric potential energy of an electric charge in an electric field. The unit for energy in the International System of Units (SI) is the joule, which has the symbol J.

Potential energy is associated with forces that act on a body in a way that the total work done by these forces on the body depends only on the initial and final positions of the body in space. These forces, whose total work is path independent, are called conservative forces. If the force acting on a body varies over space, then one has a force field; such a field is described by vectors at every point in space, which is in-turn called a vector field. A conservative vector field can be simply expressed as the gradient of a certain scalar function, called a scalar potential.

Overview

There are various types of potential energy, each associated with a particular type of force. For example, the work of an elastic force is called elastic potential energy; work of the gravitational force is called gravitational potential energy; work of the Coulomb force is called electric potential energy; work of the strong nuclear force or weak nuclear force acting on the baryon charge is called nuclear potential energy; work of intermolecular forces is called intermolecular potential energy. Chemical potential energy, such as the energy stored in fossil fuels, is the work of the Coulomb force during rearrangement of configurations of electrons and nuclei in atoms and molecules. Thermal energy usually has two components: the kinetic energy of random motions of particles and the potential energy of their configuration.

Forces derivable from a potential are also called conservative forces. The work done by a conservative force is

{displaystyle W=-Delta U}

where Delta U is the change in the potential energy associated with the force. The negative sign provides the convention that work done against a force field increases potential energy, while work done by the force field decreases potential energy. Common notations for potential energy are PE, U, V, and Ep.

Potential energy is the energy by virtue of an object’s position relative to other objects.[6] Potential energy is often associated with restoring forces such as a spring or the force of gravity. The action of stretching a spring or lifting a mass is performed by an external force that works against the force field of the potential. This work is stored in the force field, which is said to be stored as potential energy. If the external force is removed the force field acts on the body to perform the work as it moves the body back to the initial position, reducing the stretch of the spring or causing a body to fall.

Consider a ball whose mass is m and whose height is h. The acceleration g of free fall is approximately constant, so the weight force of the ball mg is constant. The product of force and displacement gives the work done, which is equal to the gravitational potential energy, thus

{displaystyle U_{g}=mgh.}

The more formal definition is that potential energy is the energy difference between the energy of an object in a given position and its energy at a reference position.

Work and potential energy

Potential energy is closely linked with forces. If the work done by a force on a body that moves from A to B does not depend on the path between these points (if the work is done by a conservative force), then the work of this force measured from A assigns a scalar value to every other point in space and defines a scalar potential field. In this case, the force can be defined as the negative of the vector gradient of the potential field.

If the work for an applied force is independent of the path, then the work done by the force is evaluated from the start to the end of the trajectory of the point of application. This means that there is a function U(x), called a «potential», that can be evaluated at the two points xA and xB to obtain the work over any trajectory between these two points. It is tradition to define this function with a negative sign so that positive work is a reduction in the potential, that is

{displaystyle W=int _{C}mathbf {F} cdot dmathbf {x} =U(mathbf {x} _{text{A}})-U(mathbf {x} _{text{B}})}

where C is the trajectory taken from A to B. Because the work done is independent of the path taken, then this expression is true for any trajectory, C, from A to B.

The function U(x) is called the potential energy associated with the applied force. Examples of forces that have potential energies are gravity and spring forces.

Derivable from a potential

In this section the relationship between work and potential energy is presented in more detail. The line integral that defines work along curve C takes a special form if the force F is related to a scalar field U′(x) so that

{displaystyle mathbf {F} ={nabla U'}=left({frac {partial U'}{partial x}},{frac {partial U'}{partial y}},{frac {partial U'}{partial z}}right).}

This means that the units of U′ must be this case, work along the curve is given by

{displaystyle W=int _{C}mathbf {F} cdot dmathbf {x} =int _{C}nabla U'cdot dmathbf {x} ,}

which can be evaluated using the gradient theorem to obtain

{displaystyle W=U'(mathbf {x} _{text{B}})-U'(mathbf {x} _{text{A}}).}

This shows that when forces are derivable from a scalar field, the work of those forces along a curve C is computed by evaluating the scalar field at the start point A and the end point B of the curve. This means the work integral does not depend on the path between A and B and is said to be independent of the path.

Potential energy U = −U′(x) is traditionally defined as the negative of this scalar field so that work by the force field decreases potential energy, that is

{displaystyle W=U(mathbf {x} _{text{A}})-U(mathbf {x} _{text{B}}).}

In this case, the application of the del operator to the work function yields,

{displaystyle {nabla W}=-{nabla U}=-left({frac {partial U}{partial x}},{frac {partial U}{partial y}},{frac {partial U}{partial z}}right)=mathbf {F} ,}

and the force F is said to be «derivable from a potential».[7] This also necessarily implies that F must be a conservative vector field. The potential U defines a force F at every point x in space, so the set of forces is called a force field.

Computing potential energy

Given a force field F(x), evaluation of the work integral using the gradient theorem can be used to find the scalar function associated with potential energy. This is done by introducing a parameterized curve γ(t) = r(t) from γ(a) = A to γ(b) = B, and computing,

{displaystyle {begin{aligned}int _{gamma }nabla Phi (mathbf {r} )cdot dmathbf {r} &=int _{a}^{b}nabla Phi (mathbf {r} (t))cdot mathbf {r} '(t)dt,\&=int _{a}^{b}{frac {d}{dt}}Phi (mathbf {r} (t))dt=Phi (mathbf {r} (b))-Phi (mathbf {r} (a))=Phi left(mathbf {x} _{B}right)-Phi left(mathbf {x} _{A}right).end{aligned}}}

For the force field F, let v = dr/dt, then the gradient theorem yields,

{displaystyle {begin{aligned}int _{gamma }mathbf {F} cdot dmathbf {r} &=int _{a}^{b}mathbf {F} cdot mathbf {v} ,dt,\&=-int _{a}^{b}{frac {d}{dt}}U(mathbf {r} (t)),dt=U(mathbf {x} _{A})-U(mathbf {x} _{B}).end{aligned}}}

The power applied to a body by a force field is obtained from the gradient of the work, or potential, in the direction of the velocity v of the point of application, that is

{displaystyle P(t)=-{nabla U}cdot mathbf {v} =mathbf {F} cdot mathbf {v} .}

Examples of work that can be computed from potential functions are gravity and spring forces.[8]

Potential energy for near Earth gravity

A trebuchet uses the gravitational potential energy of the counterweight to throw projectiles over two hundred meters

For small height changes, gravitational potential energy can be computed using

{displaystyle U_{g}=mgh,}

where m is the mass in kg, g is the local gravitational field (9.8 metres per second squared on earth), h is the height above a reference level in metres, and U is the energy in joules.

In classical physics, gravity exerts a constant downward force F = (0, 0, Fz) on the center of mass of a body moving near the surface of the Earth. The work of gravity on a body moving along a trajectory r(t) = (x(t), y(t), z(t)), such as the track of a roller coaster is calculated using its velocity, v = (vx, vy, vz), to obtain

{displaystyle W=int _{t_{1}}^{t_{2}}{boldsymbol {F}}cdot {boldsymbol {v}},dt=int _{t_{1}}^{t_{2}}F_{z}v_{z},dt=F_{z}Delta z.}

where the integral of the vertical component of velocity is the vertical distance. The work of gravity depends only on the vertical movement of the curve r(t).

Potential energy for a linear spring

Archery is one of humankind’s oldest applications of elastic potential energy

A horizontal spring exerts a force F = (−kx, 0, 0) that is proportional to its deformation in the axial or x direction. The work of this spring on a body moving along the space curve s(t) = (x(t), y(t), z(t)), is calculated using its velocity, v = (vx, vy, vz), to obtain

{displaystyle W=int _{0}^{t}mathbf {F} cdot mathbf {v} ,dt=-int _{0}^{t}kxv_{x},dt=-int _{0}^{t}kx{frac {dx}{dt}}dt=int _{x(t_{0})}^{x(t)}kx,dx={frac {1}{2}}kx^{2}}

For convenience, consider contact with the spring occurs at t = 0, then the integral of the product of the distance x and the x-velocity, xvx, is x2/2.

The function

{displaystyle U(x)={frac {1}{2}}kx^{2},}

is called the potential energy of a linear spring.

Elastic potential energy is the potential energy of an elastic object (for example a bow or a catapult) that is deformed under tension or compression (or stressed in formal terminology). It arises as a consequence of a force that tries to restore the object to its original shape, which is most often the electromagnetic force between the atoms and molecules that constitute the object. If the stretch is released, the energy is transformed into kinetic energy.

Potential energy for gravitational forces between two bodies

The gravitational potential function, also known as gravitational potential energy, is:

{displaystyle U=-{frac {GMm}{r}},}

The negative sign follows the convention that work is gained from a loss of potential energy.

Derivation

The gravitational force between two bodies of mass M and m separated by a distance r is given by Newton’s law of universal gravitation

{displaystyle mathbf {F} =-{frac {GMm}{r^{2}}}mathbf {hat {r}} ,}

where mathbf {hat {r}} is a vector of length 1 pointing from M to m and G is the gravitational constant.

Let the mass m move at the velocity v then the work of gravity on this mass as it moves from position r(t1) to r(t2) is given by

{displaystyle W=-int _{mathbf {r} (t_{1})}^{mathbf {r} (t_{2})}{frac {GMm}{r^{3}}}mathbf {r} cdot dmathbf {r} =-int _{t_{1}}^{t_{2}}{frac {GMm}{r^{3}}}mathbf {r} cdot mathbf {v} ,dt.}

The position and velocity of the mass m are given by

{displaystyle mathbf {r} =rmathbf {e} _{r},qquad mathbf {v} ={dot {r}}mathbf {e} _{r}+r{dot {theta }}mathbf {e} _{t},}

where er and et are the radial and tangential unit vectors directed relative to the vector from M to m. Use this to simplify the formula for work of gravity to,

{displaystyle W=-int _{t_{1}}^{t_{2}}{frac {GmM}{r^{3}}}(rmathbf {e} _{r})cdot ({dot {r}}mathbf {e} _{r}+r{dot {theta }}mathbf {e} _{t}),dt=-int _{t_{1}}^{t_{2}}{frac {GmM}{r^{3}}}r{dot {r}}dt={frac {GMm}{r(t_{2})}}-{frac {GMm}{r(t_{1})}}.}

This calculation uses the fact that

{displaystyle {frac {d}{dt}}r^{-1}=-r^{-2}{dot {r}}=-{frac {dot {r}}{r^{2}}}.}

Potential energy for electrostatic forces between two bodies

The electrostatic force exerted by a charge Q on another charge q separated by a distance r is given by Coulomb’s Law

{displaystyle mathbf {F} ={frac {1}{4pi varepsilon _{0}}}{frac {Qq}{r^{2}}}mathbf {hat {r}} ,}

where mathbf {hat {r}} is a vector of length 1 pointing from Q to q and ε0 is the vacuum permittivity.

The work W required to move q from A to any point B in the electrostatic force field is given by the potential function

{displaystyle U(r)={frac {1}{4pi varepsilon _{0}}}{frac {Qq}{r}}.}

Reference level

The potential energy is a function of the state a system is in, and is defined relative to that for a particular state. This reference state is not always a real state; it may also be a limit, such as with the distances between all bodies tending to infinity, provided that the energy involved in tending to that limit is finite, such as in the case of inverse-square law forces. Any arbitrary reference state could be used; therefore it can be chosen based on convenience.

Typically the potential energy of a system depends on the relative positions of its components only, so the reference state can also be expressed in terms of relative positions.

Gravitational potential energy

Gravitational energy is the potential energy associated with gravitational force, as work is required to elevate objects against Earth’s gravity. The potential energy due to elevated positions is called gravitational potential energy, and is evidenced by water in an elevated reservoir or kept behind a dam. If an object falls from one point to another point inside a gravitational field, the force of gravity will do positive work on the object, and the gravitational potential energy will decrease by the same amount.

Gravitational force keeps the planets in orbit around the Sun

Consider a book placed on top of a table. As the book is raised from the floor to the table, some external force works against the gravitational force. If the book falls back to the floor, the «falling» energy the book receives is provided by the gravitational force. Thus, if the book falls off the table, this potential energy goes to accelerate the mass of the book and is converted into kinetic energy. When the book hits the floor this kinetic energy is converted into heat, deformation, and sound by the impact.

The factors that affect an object’s gravitational potential energy are its height relative to some reference point, its mass, and the strength of the gravitational field it is in. Thus, a book lying on a table has less gravitational potential energy than the same book on top of a taller cupboard and less gravitational potential energy than a heavier book lying on the same table. An object at a certain height above the Moon’s surface has less gravitational potential energy than at the same height above the Earth’s surface because the Moon’s gravity is weaker. «Height» in the common sense of the term cannot be used for gravitational potential energy calculations when gravity is not assumed to be a constant. The following sections provide more detail.

Local approximation

The strength of a gravitational field varies with location. However, when the change of distance is small in relation to the distances from the center of the source of the gravitational field, this variation in field strength is negligible and we can assume that the force of gravity on a particular object is constant. Near the surface of the Earth, for example, we assume that the acceleration due to gravity is a constant g = 9.8 m/s2 (standard gravity). In this case, a simple expression for gravitational potential energy can be derived using the W = Fd equation for work, and the equation

{displaystyle W_{F}=-Delta U_{F}.}

The amount of gravitational potential energy held by an elevated object is equal to the work done against gravity in lifting it. The work done equals the force required to move it upward multiplied with the vertical distance it is moved (remember W = Fd). The upward force required while moving at a constant velocity is equal to the weight, mg, of an object, so the work done in lifting it through a height h is the product mgh. Thus, when accounting only for mass, gravity, and altitude, the equation is:[9]

{displaystyle U=mgh}

where U is the potential energy of the object relative to its being on the Earth’s surface, m is the mass of the object, g is the acceleration due to gravity, and h is the altitude of the object.[10]

Hence, the potential difference is

{displaystyle Delta U=mgDelta h.}

General formula

However, over large variations in distance, the approximation that g is constant is no longer valid, and we have to use calculus and the general mathematical definition of work to determine gravitational potential energy. For the computation of the potential energy, we can integrate the gravitational force, whose magnitude is given by Newton’s law of gravitation, with respect to the distance r between the two bodies. Using that definition, the gravitational potential energy of a system of masses m1 and M2 at a distance r using the Newtonian constant of gravitation G is

{displaystyle U=-G{frac {m_{1}M_{2}}{r}}+K,}

where K is an arbitrary constant dependent on the choice of datum from which potential is measured. Choosing the convention that K = 0 (i.e. in relation to a point at infinity) makes calculations simpler, albeit at the cost of making U negative; for why this is physically reasonable, see below.

Given this formula for U, the total potential energy of a system of n bodies is found by summing, for all {textstyle {frac {n(n-1)}{2}}} pairs of two bodies, the potential energy of the system of those two bodies.

Gravitational potential summation {displaystyle U=-mleft(G{frac {M_{1}}{r_{1}}}+G{frac {M_{2}}{r_{2}}}right)}

Considering the system of bodies as the combined set of small particles the bodies consist of, and applying the previous on the particle level we get the negative gravitational binding energy. This potential energy is more strongly negative than the total potential energy of the system of bodies as such since it also includes the negative gravitational binding energy of each body. The potential energy of the system of bodies as such is the negative of the energy needed to separate the bodies from each other to infinity, while the gravitational binding energy is the energy needed to separate all particles from each other to infinity.

{displaystyle U=-mleft(G{frac {M_{1}}{r_{1}}}+G{frac {M_{2}}{r_{2}}}right)}

therefore,

{displaystyle U=-msum G{frac {M}{r}},}

Negative gravitational energy

As with all potential energies, only differences in gravitational potential energy matter for most physical purposes, and the choice of zero point is arbitrary. Given that there is no reasonable criterion for preferring one particular finite r over another, there seem to be only two reasonable choices for the distance at which U becomes zero: r=0 and r=infty . The choice of {displaystyle U=0} at infinity may seem peculiar, and the consequence that gravitational energy is always negative may seem counterintuitive, but this choice allows gravitational potential energy values to be finite, albeit negative.

The singularity at r=0 in the formula for gravitational potential energy means that the only other apparently reasonable alternative choice of convention, with {displaystyle U=0} for r=0, would result in potential energy being positive, but infinitely large for all nonzero values of r, and would make calculations involving sums or differences of potential energies beyond what is possible with the real number system. Since physicists abhor infinities in their calculations, and r is always non-zero in practice, the choice of {displaystyle U=0} at infinity is by far the more preferable choice, even if the idea of negative energy in a gravity well appears to be peculiar at first.

The negative value for gravitational energy also has deeper implications that make it seem more reasonable in cosmological calculations where the total energy of the universe can meaningfully be considered; see inflation theory for more on this.[11]

Uses

Gravitational potential energy has a number of practical uses, notably the generation of pumped-storage hydroelectricity. For example, in Dinorwig, Wales, there are two lakes, one at a higher elevation than the other. At times when surplus electricity is not required (and so is comparatively cheap), water is pumped up to the higher lake, thus converting the electrical energy (running the pump) to gravitational potential energy. At times of peak demand for electricity, the water flows back down through electrical generator turbines, converting the potential energy into kinetic energy and then back into electricity. The process is not completely efficient and some of the original energy from the surplus electricity is in fact lost to friction.[12][13][14][15][16]

Gravitational potential energy is also used to power clocks in which falling weights operate the mechanism.

It’s also used by counterweights for lifting up an elevator, crane, or sash window.

Roller coasters are an entertaining way to utilize potential energy – chains are used to move a car up an incline (building up gravitational potential energy), to then have that energy converted into kinetic energy as it falls.

Another practical use is utilizing gravitational potential energy to descend (perhaps coast) downhill in transportation such as the descent of an automobile, truck, railroad train, bicycle, airplane, or fluid in a pipeline. In some cases the kinetic energy obtained from the potential energy of descent may be used to start ascending the next grade such as what happens when a road is undulating and has frequent dips. The commercialization of stored energy (in the form of rail cars raised to higher elevations) that is then converted to electrical energy when needed by an electrical grid, is being undertaken in the United States in a system called Advanced Rail Energy Storage (ARES).[17][18][19]

Chemical potential energy

Chemical potential energy is a form of potential energy related to the structural arrangement of atoms or molecules. This arrangement may be the result of chemical bonds within a molecule or otherwise. Chemical energy of a chemical substance can be transformed to other forms of energy by a chemical reaction. As an example, when a fuel is burned the chemical energy is converted to heat, same is the case with digestion of food metabolized in a biological organism. Green plants transform solar energy to chemical energy through the process known as photosynthesis, and electrical energy can be converted to chemical energy through electrochemical reactions.

The similar term chemical potential is used to indicate the potential of a substance to undergo a change of configuration, be it in the form of a chemical reaction, spatial transport, particle exchange with a reservoir, etc.

Electric potential energy

An object can have potential energy by virtue of its electric charge and several forces related to their presence. There are two main types of this kind of potential energy: electrostatic potential energy, electrodynamic potential energy (also sometimes called magnetic potential energy).

Plasma formed inside a gas filled sphere

Electrostatic potential energy

Electrostatic potential energy between two bodies in space is obtained from the force exerted by a charge Q on another charge q which is given by

{displaystyle mathbf {F} _{e}=-{frac {1}{4pi varepsilon _{0}}}{frac {Qq}{r^{2}}}mathbf {hat {r}} ,}

where mathbf {hat {r}} is a vector of length 1 pointing from Q to q and ε0 is the vacuum permittivity.

If the electric charge of an object can be assumed to be at rest, then it has potential energy due to its position relative to other charged objects. The electrostatic potential energy is the energy of an electrically charged particle (at rest) in an electric field. It is defined as the work that must be done to move it from an infinite distance away to its present location, adjusted for non-electrical forces on the object. This energy will generally be non-zero if there is another electrically charged object nearby.

The work W required to move q from A to any point B in the electrostatic force field is given by

{displaystyle Delta U_{AB}({mathbf {r} })=-int _{A}^{B}mathbf {F_{e}} cdot dmathbf {r} }

typically given in J for Joules. A related quantity called electric potential (commonly denoted with a V for voltage) is equal to the electric potential energy per unit charge.

Magnetic potential energy

The energy of a magnetic moment {boldsymbol {mu }} in an externally produced magnetic B-field B has potential energy[20]

{displaystyle U=-{boldsymbol {mu }}cdot mathbf {B} .}

The magnetization M in a field is

{displaystyle U=-{frac {1}{2}}int mathbf {M} cdot mathbf {B} ,dV,}

where the integral can be over all space or, equivalently, where M is nonzero.[21]
Magnetic potential energy is the form of energy related not only to the distance between magnetic materials, but also to the orientation, or alignment, of those materials within the field. For example, the needle of a compass has the lowest magnetic potential energy when it is aligned with the north and south poles of the Earth’s magnetic field. If the needle is moved by an outside force, torque is exerted on the magnetic dipole of the needle by the Earth’s magnetic field, causing it to move back into alignment. The magnetic potential energy of the needle is highest when its field is in the same direction as the Earth’s magnetic field. Two magnets will have potential energy in relation to each other and the distance between them, but this also depends on their orientation. If the opposite poles are held apart, the potential energy will be higher the further they are apart and lower the closer they are. Conversely, like poles will have the highest potential energy when forced together, and the lowest when they spring apart.[22][23]

Nuclear potential energy

Nuclear potential energy is the potential energy of the particles inside an atomic nucleus. The nuclear particles are bound together by the strong nuclear force. Weak nuclear forces provide the potential energy for certain kinds of radioactive decay, such as beta decay.

Nuclear particles like protons and neutrons are not destroyed in fission and fusion processes, but collections of them can have less mass than if they were individually free, in which case this mass difference can be liberated as heat and radiation in nuclear reactions (the heat and radiation have the missing mass, but it often escapes from the system, where it is not measured). The energy from the Sun is an example of this form of energy conversion. In the Sun, the process of hydrogen fusion converts about 4 million tonnes of solar matter per second into electromagnetic energy, which is radiated into space.

Forces and potential energy

Potential energy is closely linked with forces. If the work done by a force on a body that moves from A to B does not depend on the path between these points, then the work of this force measured from A assigns a scalar value to every other point in space and defines a scalar potential field. In this case, the force can be defined as the negative of the vector gradient of the potential field.

For example, gravity is a conservative force. The associated potential is the gravitational potential, often denoted by phi or V, corresponding to the energy per unit mass as a function of position. The gravitational potential energy of two particles of mass M and m separated by a distance r is

{displaystyle U=-{frac {GMm}{r}},}

The gravitational potential (specific energy) of the two bodies is

{displaystyle phi =-left({frac {GM}{r}}+{frac {Gm}{r}}right)=-{frac {G(M+m)}{r}}=-{frac {GMm}{mu r}}={frac {U}{mu }}.}

where mu is the reduced mass.

The work done against gravity by moving an infinitesimal mass from point A with U = a to point B with U = b is (b - a) and the work done going back the other way is (a-b) so that the total work done in moving from A to B and returning to A is

{displaystyle U_{Ato Bto A}=(b-a)+(a-b)=0.}

If the potential is redefined at A to be a + c and the potential at B to be b+c, where c is a constant (i.e. c can be any number, positive or negative, but it must be the same at A as it is at B) then the work done going from A to B is

{displaystyle U_{Ato B}=(b+c)-(a+c)=b-a}

as before.

In practical terms, this means that one can set the zero of U and phi anywhere one likes. One may set it to be zero at the surface of the Earth, or may find it more convenient to set zero at infinity (as in the expressions given earlier in this section).

A conservative force can be expressed in the language of differential geometry as a closed form. As Euclidean space is contractible, its de Rham cohomology vanishes, so every closed form is also an exact form, and can be expressed as the gradient of a scalar field. This gives a mathematical justification of the fact that all conservative forces are gradients of a potential field.

Notes

  1. ^ Jain, Mahesh C. (2009). «Fundamental forces and laws: a brief review». Textbook of Engineering Physics, Part 1. PHI Learning Pvt. Ltd. p. 10. ISBN 978-81-203-3862-3.
  2. ^ McCall, Robert P. (2010). «Energy, Work and Metabolism». Physics of the Human Body. JHU Press. p. 74. ISBN 978-0-8018-9455-8.
  3. ^ William John Macquorn Rankine (1853) «On the general law of the transformation of energy», Proceedings of the Philosophical Society of Glasgow, vol. 3, no. 5, pages 276–280; reprinted in: (1) Philosophical Magazine, series 4, vol. 5, no. 30, pp. 106–117 (February 1853); and (2) W. J. Millar, ed., Miscellaneous Scientific Papers: by W. J. Macquorn Rankine, … (London, England: Charles Griffin and Co., 1881), part II, pp. 203–208.
  4. ^ Smith, Crosbie (1998). The Science of Energy – a Cultural History of Energy Physics in Victorian Britain. The University of Chicago Press. ISBN 0-226-76420-6.
  5. ^ Roche, John (1 March 2003). «What is potential energy?». European Journal of Physics. 24 (2): 185–196. doi:10.1088/0143-0807/24/2/359. Retrieved 15 February 2023.
  6. ^ Brown, Theodore L. (2006). Chemistry The Central Science. Upper Saddle River, New Jersey: Pearson Education, Inc. pp. 168. ISBN 0-13-109686-9.
  7. ^ John Robert Taylor (2005). Classical Mechanics. University Science Books. p. 117. ISBN 978-1-891389-22-1.
  8. ^ Burton Paul (1979). Kinematics and dynamics of planar machinery. Prentice-Hall. ISBN 978-0-13-516062-6.
  9. ^ The Feynman Lectures on Physics Vol. I Ch. 13: Work and Potential Energy (A)
  10. ^ «Hyperphysics – Gravitational Potential Energy».
  11. ^ Guth, Alan (1997). «Appendix A, Gravitational Energy». The Inflationary Universe. Perseus Books. pp. 289–293. ISBN 0-201-14942-7.
  12. ^ «Energy storage – Packing some power». The Economist. 3 March 2011.
  13. ^ Jacob, Thierry.Pumped storage in Switzerland – an outlook beyond 2000 Archived 17 March 2012 at the Wayback Machine Stucky. Accessed: 13 February 2012.
  14. ^ Levine, Jonah G. Pumped Hydroelectric Energy Storage and Spatial Diversity of Wind Resources as Methods of Improving Utilization of Renewable Energy Sources Archived 1 August 2014 at the Wayback Machine page 6, University of Colorado, December 2007. Accessed: 12 February 2012.
  15. ^ Yang, Chi-Jen. Pumped Hydroelectric Storage Archived 5 September 2012 at the Wayback Machine Duke University. Accessed: 12 February 2012.
  16. ^ Energy Storage Archived 7 April 2014 at the Wayback Machine Hawaiian Electric Company. Accessed: 13 February 2012.
  17. ^ Packing Some Power: Energy Technology: Better ways of storing energy are needed if electricity systems are to become cleaner and more efficient, The Economist, 3 March 2012
  18. ^ Downing, Louise. Ski Lifts Help Open $25 Billion Market for Storing Power, Bloomberg News online, 6 September 2012
  19. ^ Kernan, Aedan. Storing Energy on Rail Tracks Archived 12 April 2014 at the Wayback Machine, Leonardo-Energy.org website, 30 October 2013
  20. ^ Aharoni, Amikam (1996). Introduction to the theory of ferromagnetism (Repr. ed.). Oxford: Clarendon Pr. ISBN 0-19-851791-2.
  21. ^ Jackson, John David (1975). Classical electrodynamics (2d ed.). New York: Wiley. ISBN 0-471-43132-X.
  22. ^ Livingston, James D. (2011). Rising Force: The Magic of Magnetic Levitation. President and Fellows of Harvard College. p. 152.
  23. ^ Kumar, Narinder (2004). Comprehensive Physics XII. Laxmi Publications. p. 713.

References

  • Serway, Raymond A.; Jewett, John W. (2010). Physics for Scientists and Engineers (8th ed.). Brooks/Cole cengage. ISBN 978-1-4390-4844-3.
  • Tipler, Paul (2004). Physics for Scientists and Engineers: Mechanics, Oscillations and Waves, Thermodynamics (5th ed.). W. H. Freeman. ISBN 0-7167-0809-4.

External links

  • What is potential energy?

Содержание:

Потенциальная энергия:

По определению потенциальная энергия — это энергия взаимодействия. Т. е. потенциальную энергию имеют все взаимодействующие тела. Для каждого вида механического взаимодействия можно рассчитать потенциальную энергию, учитывая особенности данного взаимодействия.

Самым распространенным в природе является гравитационное взаимодействие, проявлением которого является сила тяжести. При определенных условиях эта сила может выполнять работу.

Допустим, тело массой т подвешено над полом на высоте Потенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия в физике - формулы и определения с примерами

Если нить перерезать, то тело начнет падать под действием силы тяжести.

По определению работа А = Fs cosПотенциальная энергия в физике - формулы и определения с примерами = mgs cosПотенциальная энергия в физике - формулы и определения с примерами.

Если учесть, что Потенциальная энергия в физике - формулы и определения с примерами a Потенциальная энергия в физике - формулы и определения с примерами то Потенциальная энергия в физике - формулы и определения с примерами или Потенциальная энергия в физике - формулы и определения с примерами

Поскольку работа равна изменению энергии, то можно считать, что выражение mgh определяет потенциальную энергию тела в поле силы тяжести Земли на высоте Л. Движение под действием силы тяжести может происходить по разным траекториям. Выясним, будет ли это влиять на значение работы.

Дадим возможность телу свободно скользить без трения по наклонной плоскости под действием силы тяжести (рис. 2.70).

Потенциальная энергия в физике - формулы и определения с примерами

Если учитывать, что А = mgscosПотенциальная энергия в физике - формулы и определения с примерами, s=AB, то А = mgABcosПотенциальная энергия в физике - формулы и определения с примерами.

Из треугольника ABC ABcosПотенциальная энергия в физике - формулы и определения с примерами  = ВС и вместе с тем BD = Потенциальная энергия в физике - формулы и определения с примерами— h.

Тогда работа силы тяжести при скольжении тела без трения по наклонной плоскости будет равна А = mg(h — Потенциальная энергия в физике - формулы и определения с примерами).

Следовательно, работа силы тяжести по перемещению тела по наклонной плоскости будет такой же, как и при его падении из точки В, расположенной на высоте Потенциальная энергия в физике - формулы и определения с примерами, в точку D, находящуюся на высоте Л.

Таким образом, работа силы тяжести определяется положением точек начала и конца движения и не зависит от формы траектории.

В тех случаях, когда работа силы не зависит от формы траектории, а определяется начальным и конечным положением тела, пользуются понятием потенциальной энергии.

Если записать формулу для работы силы тяжести в виде

Потенциальная энергия в физике - формулы и определения с примерами

т. е. работа определяется изменением величины mgh, которая называется потенциальной энергией тела в поле силы тяжести: Потенциальная энергия в физике - формулы и определения с примерами

Работа силы тяжести равна изменению потенциальной энергии тела с противоположным знаком. Это означает, что при падении тела, когда сила тяжести выполняет положительную работу, его потенциальная энергия уменьшается. И наоборот, при движении тела вверх, когда сила тяжести выполняет отрицательную работу, его потенциальная энергия увеличивается. Эта особенность характерна для всех случаев, когда работа силы не зависит от формы траектории.

Что такое потенциальная энергия

Потенциальная энергия (от латинского слова потенциал — возможность) — это энергия, которая определяется взаимным положением взаимодействующих тел или частей одного тела.

Поскольку любое тело и Земля притягивают друг друга, т. е. взаимодействуют, то потенциальная энергия тела, поднятого над Землей, будет зависеть от высоты подъёма h. Чем больше высота подъёма тела, тем больше его потенциальная энергия.

Опытами установлено, что потенциальная энергия тела зависит не только от высоты, на которую оно поднято, но и от массы тела. Если тела подняты на одинаковую высоту, то тело, у которого масса больше, будет иметь и ббльшую потенциальную энергию. Во время падения поднятого тела на поверхность Земли сила тяжести выполнила работу, соответствующую изменению потенциальной энергии тела со значения её на высоте И до значения на поверхности Земли. Если для удобства принять, что потенциальная энергия тела на поверхности Земли равна нулю, то потенциальная энергия поднятого тела будет равна выполненной во время падения работе:Потенциальная энергия в физике - формулы и определения с примерами

Итак, потенциальную энергию тела, поднятого на некоторую высоту, будем определять по формуле: Потенциальная энергия в физике - формулы и определения с примерами

где Еп — потенциальная энергия поднятого тела; m — масса тела; Потенциальная энергия в физике - формулы и определения с примерами = 9,81

h — высота, на которую поднято тело.

Большой запас потенциальной энергии у воды горных или равнинных рек, поднятых плотинами. Падая с высоты вниз, вода выполняет работу: приводит в движение турбины гидроэлектростанций. В Украине на Днепре построено несколько гидроэлектростанций, в которых используют энергию воды для получения электроэнергии. На рисунке 174 изображено сечение такой станции. Вода с более высокого уровня падает вниз и вращает колесо гидротурбины. Вал турбины соединён с генератором электрического тока.

Потенциальной энергией обладает самолёт, летящий высоко в небе; дождевые капли в туче; молот копра при забивании свай. Открывая двери с пружиной, мы растягиваем её, преодолевая силу упругости, т. е. выполняем работу. Вследствие этого пружина приобретает потенциальную энергию. За счёт этой энергии пружина, сокращаясь, выполняет работу — закрывает двери. Потенциальную энергию пружин используют в часах, разнообразных заводных игрушках. В автомобилях, вагонах пружины амортизаторов и буферов, деформируясь, уменьшают толчки.

Потенциальная энергия пружины зависит от её удлинения (изменения длины при сжатии или растяжении) и жёсткости (зависит от конструкции пружины и упругости материала, из которого она изготовлена). Чем больше удлинение (деформация) пружины, и чем больше её жёсткость, тем большую потенциальную энергию она приобретает при деформации. Такая зависимость свойственна любому упруго деформированному телу.

Потенциальную энергию упругодеформированного тела определяют по формуле:   Потенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия в физике - формулы и определения с примерами

где Потенциальная энергия в физике - формулы и определения с примерами — потенциальная энергия упруго деформированного тела (пружины); Потенциальная энергия в физике - формулы и определения с примерами — жёсткость тела (единица жёсткости — 1 Потенциальная энергия в физике - формулы и определения с примерами — удлинение (деформация) тела (пружины).

Потенциальная энергия в физике - формулы и определения с примерами
Но тела могут обладать энергией не только потому, что они находятся в определённом положении или деформируются, а и потому, что они находятся в движении.

Определение потенциальной энергии

В повседневной жизни можно обнаружить множество различных тел, при перемещении которых может выполняться работа. Так, выпавший из рук шарик начнет падать под действием силы притяжения, которая будет выполнять работу по перемещению шарика.

Сжатая пружина может поднять на определенную высоту груз. В этом случае сила упругости выполняет работу по перемещению груза.

Что такое энергия

Энергия — это физическая величина, показывающая, какая работа может быть выполнена при перемещении тела.

Можно привести еще много разных примеров из природы, из повседневной жизни, из техники, в которых речь идет о телах, находящихся в таком состоянии, что при определенных условиях может выполняться работа при их перемещении. О таких телах говорят, что они обладают энергией. При различных условиях результат выполнения работы может быть разным. Поэтому и энергия может иметь различные значения и может быть рассчитана.

Единицы энергии

Поскольку речь идет о возможности выполнения работы, то энергию целесообразно измерять в таких же единицах, что и работу. Поэтому единицей энергии есть 1 Дж.

Виды механической энергии

В физике выделяют два вида механической энергии: потенциальную и кинетическую. Если тело неподвижно, но па него действует определенная сила, то говорят, что оно обладает потенциальной энергией.

Потенциальной энергией обладает тело, поднятое над поверх-136 ностью Земли, сжатая пружина, сжатый газ, речная вода в водоеме и другие тела.

Как рассчитывают потенциальную энергию

Рассчитывают потенциальную энергию с учетом природы сил, действующих на эти тела. Проще всего рассчитать потенциальную энергию тела, поднятого над поверхностью Земли, поскольку сила, действующая на него, остается практически постоянной на протяжении всего времени его движения под действием этой силы.

Пусть тело массой Потенциальная энергия в физике - формулы и определения с примерами находится на высоте Потенциальная энергия в физике - формулы и определения с примерами над землей. Если оно упадет на поверхность, то будет выполнена работа

Потенциальная энергия в физике - формулы и определения с примерами

Следовательно, о таком теле можно сказать, что оно обладает потенциальной энергией

Потенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия тела, поднятого над поверхностью Земли, пропорциональна массе тела и его высоте над поверхностью Земли.

При расчете потенциальной энергии важно помнить, что высота Потенциальная энергия в физике - формулы и определения с примерами является путем, который тело преодолеет в вертикальном направлении. Таким образом, всегда следует указывать, относительно какой поверхности определяется потенциальная энергия. Например, тело массой 2 кг, поднятое над столом на высоту 1,5 м, будет обладать потенциальной энергией, равной примерно 30 Дж, а потенциальная энергия этого тела, рассчитанная для высоты 3 м над полом, будет 60 Дж.

Потенциальная энергия упруго деформированного тела

Расчет работы силы упругости усложняется тем, что в ходе выполнения работы значение силы изменяется. Поскольку изменение силы упругости происходит линейно, то при расчетах работы используют среднее значение силы:

Потенциальная энергия в физике - формулы и определения с примерами

где Потенциальная энергия в физике - формулы и определения с примерами — значения силы упругости в начале и в конце процесса.

Учитывая, что Потенциальная энергия в физике - формулы и определения с примерами (по закону Гука), то

Потенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия в физике - формулы и определения с примерами
В случае, когда Потенциальная энергия в физике - формулы и определения с примерами = 0, т. е. сила упругости действует вдоль прямой, по которой происходит перемещение, получим выражение для расчета работы силы упругости:

Потенциальная энергия в физике - формулы и определения с примерами
где Потенциальная энергия в физике - формулы и определения с примерами — удлинение, характеризующее начальную и конечную деформации соответственно.

Для потенциальной энергии тела в поле силы тяжести можно записать:
Потенциальная энергия в физике - формулы и определения с примерами
Потенциальная энергия упруго деформированного тела зависит от его деформации.

Работа силы упругости равна изменению потенциальной энергии упруго деформированного тела, взятой с противоположным знаком.

Как и в случае работы силы тяжести, работа силы упругости зависит не от формы траектории, а только от начальной и конечной деформации тела.

Механическая работа и кинетическая энергия

Чтобы шли механические часы, их нужно завести — закрутить пружину; раскручиваясь, пружина совершит работу. Поднявшись на вершину горы, лыжник создаст «запас работы» и в результате сможет скатиться вниз; при этом работу совершит сила тяжести. Самый простой способ разбить окно в горящем доме — бросить в окно камень. Если скорость движения камня достаточна, он разобьет окно — совершит работу. О теле или системе тел, которые могут совершить работу, говорят, что они обладают энергией.

Когда сила совершает механическую работу

Основная задача механики — определение механического состояния тела (координат тела и скорости его движения) в любой момент времени. Механическое состояние тела не изменяется само по себе — необходимо взаимодействие, то есть наличие силы. Когда тело перемещается (изменяет свое механическое состояние) под действием силы, говорят, что данная сила совершает механическую работу.

Механическая работа (работа силы) A — физическая величина, характеризующая изменение механического состояния тела и равная произведению модуля силы F, модуля перемещения s и косинуса угла a между вектором силы и вектором перемещения:

Потенциальная энергия в физике - формулы и определения с примерами

Единица работы в СИ — джоуль: Потенциальная энергия в физике - формулы и определения с примерами

1 Дж равен механической работе, которую совершает сила 1 Н, перемещая тело на 1 м в направлении действия этой силы.

Работа силы — величина скалярная, однако она может быть положительной, отрицательной, равной нулю — в зависимости от того, куда направлена сила относительно направления движения тела (см. таблицу).

Потенциальная энергия в физике - формулы и определения с примерами

Геометрический смысл работы силы

Рассмотрим силу, действующую под некоторым углом α к направлению движения тела. Найдем проекцию этой силы на направление перемещения тела, для чего ось ОХ направим в сторону движения тела (рис. 15.1, а). Из рисунка видим, что Потенциальная энергия в физике - формулы и определения с примерами, следовательно, Потенциальная энергия в физике - формулы и определения с примерами.

Построим график Потенциальная энергия в физике - формулы и определения с примерами — зависимости проекции силы от модуля перемещения. Если сила, действующая на тело, постоянна, график этой зависимости представляет собой отрезок прямой, параллельной оси перемещения (рис. 15.1, б). Из рисунка видим, что произведение Потенциальная энергия в физике - формулы и определения с примерами и s соответствует площади S прямоугольника под графиком.

Потенциальная энергия в физике - формулы и определения с примерамиПотенциальная энергия в физике - формулы и определения с примерами

Рис. 15.1. Если направление оси ОХ совпадает с направлением движения тела, то работа A силы численно равна площади S фигуры под графиком зависимости Потенциальная энергия в физике - формулы и определения с примерами

В этом состоит геометрический смысл работы силы: работа силы численно равна площади фигуры под графиком зависимости проекции силы от модуля перемещения. Это утверждение распространяется и на случаи, когда сила переменная (рис. 15.1, в, г).

Когда тело имеет кинетическую энергию

Рассмотрим тело массой m, которое под действием равнодействующей силы Потенциальная энергия в физике - формулы и определения с примерами увеличивает скорость своего движения от v0 до v. Пусть равнодействующая Потенциальная энергия в физике - формулы и определения с примерами не изменяется со временем и направлена в сторону движения тела. Определим работу этой силы.

Потенциальная энергия в физике - формулы и определения с примерами

Величину Потенциальная энергия в физике - формулы и определения с примерами называют кинетической энергией тела Потенциальная энергия в физике - формулы и определения с примерами.

Кинетическая энергия — физическая величина, которая характеризует механическое состояние движущегося тела и равна половине произведения массы m тела на квадрат скорости v его движения:

Потенциальная энергия в физике - формулы и определения с примерами

Теорема о кинетической энергии: работа равнодействующей всех сил, которые действуют на тело, равна изменению кинетической энергии тела:

Потенциальная энергия в физике - формулы и определения с примерами

Если в начальный момент времени тело неподвижно (Потенциальная энергия в физике - формулы и определения с примерами = 0), то естьПотенциальная энергия в физике - формулы и определения с примерами= 0, то теорема о кинетической энергии сводится к равенству:

Потенциальная энергия в физике - формулы и определения с примерами

Кинетическая энергия тела, движущегося со скоростью v, равна работе, которую совершает сила, чтобы придать неподвижному телу данную скорость.

Мощность

До сих пор мы говорили о работе силы. Но любая сила характеризует действие определенного тела (или поля). Поэтому работу силы часто называют работой тела (работой поля), со стороны которого действует эта сила. На практике большое значение имеет не только выполненная работа, но и время, за которое эта работа была выполнена. Поэтому для характеристики механизмов, предназначенных для совершения работы, используют понятие мощности.

Мощность P (или N) — физическая величина, характеризующая скорость выполнения работы и равная отношению работы А к интервалу времени t, за который эта работа выполнена:

Потенциальная энергия в физике - формулы и определения с примерами

Единица мощности в СИ — ватт:

Потенциальная энергия в физике - формулы и определения с примерами

(Названа в честь Джеймса Ватта (1736–1819). Как единицу мощности он ввел лошадиную силу, которую иногда используют и сейчас: 1 л. с. = 746 Вт.)

Мощность, которую развивает транспортное средство, удобно определять через силу тяги и скорость движения. Если тело движется равномерно, а направление силы тяги совпадает с направлением перемещения, тяговую мощность двигателя можно вычислить по формуле:

Потенциальная энергия в физике - формулы и определения с примерами

Обратите внимание! Данная формула справедлива для любого движения: мощность, которую развивает двигатель в данный момент времени, равна произведению модуля силы тяги двигателя на модуль его мгновенной скорости: P = Fv (рис. 15.3).

Потенциальная энергия в физике - формулы и определения с примерами

Рис. 15.3. Когда для движения автомобиля требуется большая сила тяги, водитель переходит на меньшую скорость или нажимает на газ, увеличивая таким образом мощность двигателя

Чтобы определить механическую работу и мощность, нужно знать силу, действующую на тело, перемещение тела и время его движения. Поэтому обычно решение задач на определение работы и мощности сводится к решению задач по кинематике и динамике.

Пример №1

Автомобиль массой 2 т движется равномерно со скоростью 20 м/с по горизонтальному участку дороги. Какие силы действуют на автомобиль? Найдите работу каждой силы и тяговую мощность двигателя автомобиля, если коэффициент сопротивления движению равен 0,01, а время движения — 50 с.

Потенциальная энергия в физике - формулы и определения с примерамиПотенциальная энергия в физике - формулы и определения с примерами

Решение:

Выполним пояснительный рисунок, на котором укажем силы, действующие на автомобиль: силу тяжести Потенциальная энергия в физике - формулы и определения с примерами, силу тяги Потенциальная энергия в физике - формулы и определения с примерами, силу сопротивления движению Потенциальная энергия в физике - формулы и определения с примерами, силу Потенциальная энергия в физике - формулы и определения с примерами нормальной реакции опоры. По определению работы: A = Fscosα

Чтобы определить работу каждой силы, нужно найти::

  • угол между направлением этой силы и направлением перемещения;
  • модуль силы и модуль перемещения.

1. Автомобиль движется равномерно, поэтому действующие на него силы скомпенсированы: — сила тяжести уравновешена силой нормальной реакции опоры: N = mg; — сила тяги уравновешена силой сопротивления движению: Потенциальная энергия в физике - формулы и определения с примерами

2. Перемещение автомобиля можно найти по формуле: s = vt .

3. Сила тяжести и сила нормальной реакции опоры перпендикулярны направлению движения автомобиля (α = 90°, cosα = 0). Следовательно, работа этих сил равна нулю. Сила тяги направлена в сторону движения тела: α = 0, cosα = 1, поэтому:

Потенциальная энергия в физике - формулы и определения с примерами

Сила сопротивления противоположна движению: α = 180°, cosα = −1, поэтому:

Потенциальная энергия в физике - формулы и определения с примерами

4. Тяговую мощность двигателя автомобиля определим по формуле Потенциальная энергия в физике - формулы и определения с примерамиПроверим единицы, найдем значения искомых величин:

Потенциальная энергия в физике - формулы и определения с примерамиПотенциальная энергия в физике - формулы и определения с примерами

Выводы:

Потенциальная энергия и закон сохранения механической энергии

Поднятый молот не обладает кинетической энергией, так как его скорость равна нулю. Но если молот отпустить, он совершит работу (расплющит металл). Натянутая тетива лука не имеет кинетической энергии, но, выпрямляясь, она придаст скорость стреле, а значит, совершит работу. И деформированное тело, и тело, поднятое над поверхностью Земли, способны совершить работу, то есть обладают энергией. Что это за энергия и как ее рассчитать?

Когда тело обладает потенциальной энергией

Механическая энергия E — физическая величина, характеризующая способность тела (системы тел) совершить работу.

Единица энергии (как и работы) в СИ — джоуль [E] = 1 Дж (J).

Любое движущееся тело может совершить работу, поскольку оно обладает кинетической энергией, или «живой силой», как ее называли раньше. Есть еще один вид механической энергии — ее называли «мертвая сила». Это — потенциальная энергия (от лат. potentia — сила, возможность), — энергия, которую имеет тело в результате взаимодействия с другими телами.

Потенциальная энергия — энергия, которой обладает тело вследствие взаимодействия с другими телами или вследствие взаимодействия частей тела.

Потенциальная энергия в физике - формулы и определения с примерамиПотенциальная энергия в физике - формулы и определения с примерами

Рис. 16.1. И девочка в результате взаимодействия с Землей (а), и сжатая пружина в результате взаимодействия ее витков (б) обладают потенциальной энергией

Девочка на вершине горки (рис. 16.1, а) обладает потенциальной энергией, поскольку в результате взаимодействия с Землей может начать движение и сила тяжести совершит работу. Но как вычислить эту работу, ведь горка неровная и в течение всего времени движения угол между направлением силы тяжести и направлением перемещения будет изменяться?

Сжатая пружина (рис. 16.1, б) тоже обладает потенциальной энергией: при распрямлении пружины сила упругости совершит работу — подбросит брусок. Но как вычислить эту работу, ведь во время действия пружины на брусок сила упругости непрерывно уменьшается?

Оказывается, все не так сложно. И сила тяжести, и сила упругости имеют одно «замечательное» свойство — работа этих сил не зависит от формы траектории. Силы, работа которых не зависит от формы траектории, а определяется только начальным и конечным механическими состояниями тела (системы тел), называют потенциальными, или консервативными, силами (от лат. conservare — сохранять, охранять).

Потенциальная энергия поднятого тела

Докажем, что сила тяжести — консервативная сила. Для этого определим работу силы тяжести при движении тела из точки K в точку B по разным траекториям.

Случай 1. Пусть траектория движения тела — «ступенька» (рис. 16.2, а): сначала тело падает с некоторой высоты Потенциальная энергия в физике - формулы и определения с примерами до высоты h и сила тяжести совершает работу Потенциальная энергия в физике - формулы и определения с примерами, затем тело движется горизонтально и сила тяжести совершает работу Потенциальная энергия в физике - формулы и определения с примерами. Работа — величина аддитивная, поэтому общая работа Потенциальная энергия в физике - формулы и определения с примерами.

Потенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия в физике - формулы и определения с примерами = 0, так как сила тяжести перпендикулярна перемещению тела. Итак: Потенциальная энергия в физике - формулы и определения с примерами.

Случай 2. Пусть тело перемещается из точки K в точку В, скользя по наклонной плоскости (рис. 16.2, б). В этом случае работа силы тяжести равна:Потенциальная энергия в физике - формулы и определения с примерамиПотенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия в физике - формулы и определения с примерамиПотенциальная энергия в физике - формулы и определения с примерами

Рис. 16.2. При перемещении тела с высоты Потенциальная энергия в физике - формулы и определения с примерами до высоты h работа силы тяжести, независимо от траектории движения тела, определяется по формуле:Потенциальная энергия в физике - формулы и определения с примерами

Тот же результат получим и для случаев перемещения тела по произвольной траектории. Следовательно, работа силы тяжести не зависит от траектории движения тела, то есть сила тяжести — консервативная сила. Величину mgh называют потенциальной энергией поднятого тела:

Потенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия поднятого тела зависит от высоты, на которой находится тело, то есть зависит от выбора нулевого уровня, — уровня, от которого будет отсчитываться высота. Нулевой уровень выбирают из соображений удобства. Так, находясь в комнате, за нулевой уровень целесообразно взять пол, определяя высоту горы — поверхность Мирового океана.

Обратите внимание! Изменение потенциальной энергии, а следовательно, и работа силы тяжести от выбора нулевого уровня не зависят.

  • Заказать решение задач по физике

Потенциальная энергия упруго деформированного тела

Пусть имеется упруго деформированное тело — растянутая пружина. Определим работу, которую совершит сила упругости при уменьшении удлинения пружины от Потенциальная энергия в физике - формулы и определения с примерами до x (рис. 16.3). Воспользуемся для этого геометрическим смыслом механической работы (рис. 16.4):

Потенциальная энергия в физике - формулы и определения с примерамиПотенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия в физике - формулы и определения с примерами

Таким образом, работа силы упругости определяется только начальным и конечным состояниями пружины, то есть сила упругости — консервативная сила. Величину Потенциальная энергия в физике - формулы и определения с примерами называют потенциальной энергией упруго деформированного тела:

Потенциальная энергия в физике - формулы и определения с примерами

Работа силы упругости (как и силы тяжести) равна изменению потенциальной энергии тела, взятому с противоположным знаком:

Потенциальная энергия в физике - формулы и определения с примерами

Данное выражение — математическая запись теоремы о потенциальной энергии: работа всех консервативных сил, действующих на тело, равна изменению потенциальной энергии тела, взятому с противоположным знаком.

Состояние с меньшей потенциальной энергией является энергетически выгодным; любая замкнутая система стремится перейти в такое состояние, в котором ее потенциальная энергия минимальна, — в этом заключается принцип минимума потенциальной энергии. Действительно, камень, выпущенный из руки, никогда не полетит вверх — он будет падать, стремясь достичь состояния с наименьшей потенциальной энергией. Недеформированная пружина никогда не станет сама растягиваться или сжиматься, а деформированная пружина стремится перейти в недеформированное состояние.

Закон сохранения полной механической энергии

Как правило, тело или система тел обладают и потенциальной, и кинетической энергиями. Сумму кинетических и потенциальных энергий тел системы называют полной механической энергией системы тел: Потенциальная энергия в физике - формулы и определения с примерами (рис. 16.5).

Потенциальная энергия в физике - формулы и определения с примерами

Рассмотрим замкнутую систему тел, взаимодействующих друг с другом только консервативными силами (силами тяготения или силами упругости). По теореме о потенциальной энергии работа A, совершаемая этими силами, равна: Потенциальная энергия в физике - формулы и определения с примерами. С другой стороны, согласно теореме о кинетической энергии эта же работа равна: Потенциальная энергия в физике - формулы и определения с примерами. Приравняв правые части равенств, получим закон сохранения и превращения полной механической энергии:

В замкнутой системе тел, взаимодействующих только консервативными силами, полная механическая энергия остается неизменной (сохраняется):

Потенциальная энергия в физике - формулы и определения с примерами

Закон сохранения полной механической энергии предполагает превращение кинетической энергии в потенциальную и наоборот (рис. 16.6). Однако сохраняется ли при этом полная механическая энергия? Наш опыт подсказывает, что нет. И действительно, закон сохранения полной механической энергии справедлив только в случаях, когда в системе отсутствует трение. Однако в природе не существует движений, не сопровождающихся трением. Сила трения всегда направлена против движения тела, поэтому при движении она совершает отрицательную работу, при этом полная механическая энергия системы уменьшается:

Потенциальная энергия в физике - формулы и определения с примерами

где Потенциальная энергия в физике - формулы и определения с примерами — работа силы трения; E, Потенциальная энергия в физике - формулы и определения с примерами — полная механическая энергия системы в конце и в начале наблюдения соответственно.

Потери энергии наблюдаются и в случае неупругого удара. Так что, при наличии трения или при неупругой деформации энергия бесследно исчезает? Казалось бы, да. Однако измерения показывают, что в результате и трения, и неупругого удара температуры взаимодействующих тел увеличиваются, то есть увеличиваются внутренние энергии тел. Значит, кинетическая энергия не исчезает, а переходит во внутреннюю энергию.

Энергия никуда не исчезает и ниоткуда не появляется: она только переходит из одного вида в другой, передается от одного тела к другому.

Потенциальная энергия в физике - формулы и определения с примерами

Алгоритм решения задач с применением закона сохранения механической энергии

  1. Прочитайте условие задачи. Выясните, является ли система замкнутой, можно ли пренебречь действием сил сопротивления. Запишите краткое условие задачи.
  2. Выполните пояснительный рисунок, на котором укажите нулевой уровень, начальное и конечное состояния тела (системы тел).
  3. Запишите закон сохранения механической энергии. Конкретизируйте запись, воспользовавшись данными условия задачи и соответствующими формулами для определения энергии.
  4. Решите полученное уравнение относительно неизвестной величины.
  5. Проверьте единицу, найдите значение искомой величины.
  6. Проанализируйте результат, запишите ответ.

Пример №2

Какую минимальную скорость нужно сообщить шарику, подвешенному на нити длиной 0,5 м, чтобы он смог совершить полный оборот в вертикальной плоскости? Сопротивлением воздуха пренебречь.

Анализ физической проблемы

  • Сопротивлением воздуха пренебрегаем, поэтому система «шарик — нить — Земля» является замкнутой и можно воспользоваться законом сохранения механической энергии.
  • За нулевой уровень примем самое низкое положение шарика.
  • В самой высокой точке траектории шарик имеет некоторую скорость, иначе он не продолжил бы вращаться, а стал бы падать вертикально вниз.
  • Для определения скорости движения шарика в наивысшей точке траектории воспользуемся определением центростремительного ускорения и вторым законом Ньютона.
  • Нужно найти минимальную скорость движения шарика в момент толчка, поэтому понятно, что в наивысшей точке траектории нить натянута не будет, то есть сила ее натяжения будет равна нулю.

Потенциальная энергия в физике - формулы и определения с примерамиПотенциальная энергия в физике - формулы и определения с примерами

Решение:

На рисунке отметим положения шарика в самой нижней и самой верхней точках траектории; силы, действующие на шарик в верхней точке; направление ускорения. По закону сохранения механической энергии: Потенциальная энергия в физике - формулы и определения с примерами

Потенциальная энергия в физике - формулы и определения с примерами

Согласно второму закону Ньютона: Потенциальная энергия в физике - формулы и определения с примерами.

Поскольку Потенциальная энергия в физике - формулы и определения с примерами

Подставим выражение (2) в выражение (1): Потенциальная энергия в физике - формулы и определения с примерамиПроверим единицу, найдем значение искомой величины: Потенциальная энергия в физике - формулы и определения с примерами

Ответ: Потенциальная энергия в физике - формулы и определения с примерами

Выводы:

  • Кинетическая энергия
  • Закон сохранения и превращения механической энергии
  • Работа, мощность и энергия
  • Движение и силы
  • Мощность в физике
  • Взаимодействие тел
  • Механическая энергия и работа
  • Золотое правило механики

Энергия характеризует способность тела совершать работу. Натянутая тетива лука, сжатая пружина, поднятый с земли камень, сжатый газ при определённых условиях могут совершать работу.

Потенциальной энергией обладают: 
 

1. тела, поднятые над поверхностью земли (например, камень при падении с высоты образует на земле воронку);
2. упруго деформированные тела (например, человек натягивает тетиву лука и выпускает стрелу);
3. сжатые газы (расстояние между молекулами газа уменьшается, и увеличивается сила отталкивания между ними).
 

Слово «потенциальный» (potentia) на латинском языке означает «возможность».

Огромной потенциальной энергией обладают воды водопада. Потенциальная энергия воды совпадает с работой силы притяжения Земли.

Потенциальная энергия накапливается в водах рек. Сила притяжения Земли производит работу, заставляя реки течь в более низко расположенное место — в море. Человек научился полезно использовать потенциальную энергию рек. В древние времена строили водяные мельницы, а с (20)-го века — гидроэлектростанции (ГЭС).

Гидроэлектростанция в Итайпу, находящаяся на границе между Бразилией и Парагваем на реке Паране, на сегодня является крупнейшим действующим сооружением такого рода в мире. У её плотины (через которую протекает вода) имеются шлюзы, состоящие из (14) ворот, через которые за секунду проходит (62200) кубометров воды.

Itaipu-dam.jpg

Рис. (1). Шлюзовая система

Потенциальную энергию тела, поднятого над опорой на высоту (h), рассчитывают по формуле:

Epot=mgh

, где 

m

 — масса тела, а 

g

 — ускорение свободного падения у поверхности Земли.

Потенциальную энергию тела измеряют относительно некоторого условного уровня отсчёта, чаще всего относительно поверхности Земли. В таком случае принимают, что потенциальная энергия тела на поверхности Земли равна нулю.

Обрати внимание!

Тело одновременно может обладать и потенциальной, и кинетической энергией, и они могут переходить одна в другую.

качель.svg

Рис. (2). Мальчик на качелях

Человек, качающийся на качелях, обладает максимальной потенциальной энергией в наивысшей точке подъёма, в этой точке качели на мгновение замирают, и, значит, в этот момент кинетическая энергия человека равна нулю.

При движении из состояния (1) в состояние (2) потенциальная энергия уменьшается, а кинетическая растёт (так как высота тела над уровнем земли уменьшается, а скорость движения тела возрастает).

Когда человек находится в самой нижней точке траектории движения (2), кинетическая энергия является наибольшей, так как в этот его момент скорость самая высокая. При движении из состояния (2) в состояние (3) увеличивается потенциальная энергия (так как увеличивается высота подъёма тела), а кинетическая энергия уменьшается (так как скорость движения тела уменьшается).

В замкнутой системе сумма кинетической и потенциальной энергии в любой момент времени остаётся неизменной.

Сумма потенциальной и кинетической энергии тела называется полной механической энергией тела.

Привязанный отвес на высоте (h) обладает максимальной потенциальной энергией, а кинетическая энергия (энергия движения) в это время равна (0).

1.png

Рис. (3). Изменение энергии

Когда верёвку перерезают, отвес начинает свободно падать, высота уменьшается, а скорость увеличивается (с ускорением (g)), соответственно, потенциальная энергия уменьшается, а кинетическая энергия возрастает.

В каждый момент времени, до момента соударения, сумма потенциальной и кинетической энергии отвеса одинакова.

В момент соударения энергия отвеса не исчезает, она передаётся другому телу — гвоздю, который под воздействием этой энергии начинает движение, уходя глубже в брус. Некоторая часть энергии преобразуется во внутреннюю — тепловую энергию (так как отвес при соударении нагревается).

Любое тело обладает внутренней энергией, которая не связана с движением тела.

Внутреннюю энергию образует движение атомов и молекул тела.

Например, в результате удара частички начинают двигаться интенсивнее — это проявляется в виде нагрева тела. При сжатии пружины изменяется потенциальная энергия частиц.

elast.bmp

Рис. (4). Натянутая резинка

Натянутая резинка обладает потенциальной энергией, причиной этого является взаимное притяжение молекул.

Закон сохранения энергии:

энергия не исчезает и не возникает снова, она только преобразуется из одного вида энергии в другой вид энергии или переходит от одного тела к другому.

Полная энергия тела — это сумма его механической и внутренней энергии.

Полная энергия тела 

↗↖

Механическая энергия                Внутренняя энергия

↗↖↗↖

Тела

Eпот

   Тела

Eкин

     Частиц

Eпот

   Частиц

Eкин

Источники:

Рис. 2. Указание автора не требуется, 2021-07-22. Vecteezy License, https://www.vecteezy.com/vector-art/304022-boy-playing-hand-swing.

Рис. 3. Изменение энергии. © ЯКласс.

Определение потенциальной энергии

Энергия, говоря простым языком, это возможность что-либо сделать, возможность совершить работу. То есть, если какое-либо тело может совершить какую-либо работу, то про это тело можно сказать, что оно обладает энергией. По сути, энергия — это мера различных форм движения и взаимодействия материи, а её изменение происходит при совершении некоторой работы. Таким образом, совершённая работа всегда равна изменению какой-либо энергии. А значит, рассматривая вопрос о совершённой телом работе, мы неизбежно приходим к изменению какого-либо вида энергии. Вспомним также и тот факт, что работа совершается только в том случае, когда тело под действием некоторой силы движется, и при этом сама работа определяется как скалярное произведение вектора этой силы и вектора перемещения, то есть А = F*s*cosa, где а — угол между вектором силы и вектором перемещения. Это нам пригодится в дальнейшем для вывода формул различных видов энергии.

Энергию, связанную с взаимодействием тел, называют ПОТЕНЦИАЛЬНОЙ ЭНЕРГИЕЙ. Иначе говоря, если тело за счёт взаимодействия с другим телом может совершить некоторую работу, то оно будет обладать потенциальной энергией, и при совершении работы будет происходить изменение этой энергии. Обозначают механическую потенциальную энергию чаще всего — Еп.

Виды потенциальной энергии

Существуют различные виды потенциальной энергии. К примеру, любое тело на Земле находится в гравитационном взаимодействии с Землёй, а значит обладает потенциальной энергией гравитационного взаимодействия. И ещё пример — витки растянутой или сжатой пружины находятся в упругом взаимодействии друг с другом, а значит сжатая или растянутая пружина будет обладать потенциальной энергией упругого взаимодействия.

Далее мы рассмотрим только виды механической потенциальной энергии и формулы, по которым их можно рассчитать. Но в дальнейшем вы узнаете и о других видах потенциальной энергии — к примеру, о потенциальной энергии электрического взаимодействия заряженных тел, о потенциальной энергии взаимодействия электрона с атомным ядром.

Знакомьтесь: наш мир. Физика всего на свете.

Знакомьтесь: наш мир. Физика всего на свете.

Книга адресована школьникам старших классов, студентам, преподавателям и учителям физики, а также всем тем, кто хочет понять, что происходит в мире вокруг нас, и воспитать в себе научный взгляд на все многообразие явлений природы. Каждый раздел книги представляет собой, по сути, набор физических задач, решая которые читатель укрепит свое понимание физических законов и научится применять их в практически интересных случаях.

Купить

Формулы потенциальной энергии

Перед тем как приступить к выводу формул потенциальной энергии, ещё раз вспомним, что совершённая телом или над телом работа равна изменению его энергии. При этом, если само тело совершает работу, то его энергия уменьшается, а если над телом совершают работу, то его энергия увеличивается. К примеру, если спортсмен поднимает штангу, то он сообщает ей потенциальную энергию гравитационного взаимодействия, а если он отпускает штангу и она падает, то потенциальная энергия гравитационного взаимодействия штанги с Землёй уменьшается. Также, если вы открываете дверь, растягивая пружину, то вы сообщаете пружине потенциальную энергию упругого взаимодействия, но если потом дверь закрывается, благодаря сжатию пружины в начальное состояние, то и энергия упругой деформации пружины уменьшается до нуля.

А) Чтобы вывести формулу потенциальной энергии гравитационного взаимодействия, рассмотрим, какую работу совершает тело, двигаясь под действием силы тяжести:

А = F*s = mg*s = mg*(h1
— h2) = mgh1
— mgh2
= Eп1
— Еп2, то есть, мы получили, что потенциальная энергия гравитационного взаимодействия тела с Землёй может быть вычислена по формуле: Еп = mgh.

Здесь важно отметить, что поверхность Земли принимается за начало отсчёта высоты, то есть для тела, находящегося на поверхности Земли Еп = 0, для тела, поднятого над Землёй Еп > 0, а для тела, находящегося в яме глубиной h, Еп < 0.

Отметим также и то, что в формуле работы отсутсвовал cosa. Это не случайно. Ведь если тело движется по сложной траектории, то, какой бы сложной она ни была, её можно разбить на множество вертикальных и горизонтальных участков. Но на горизонтальных участках работа силы тяжести будет равна нулю, так как угол между силой тяжести и перемещением будет прямым, а значит работа будет совершаться только на вертикальных участках траектории, для которых cosa = 1 или cosa = −1.

Тогда можно сделать ещё один важный вывод — работа силы тяжести не зависит от формы траектории, а только от расположения начальной и конечной точки. А это не случайность — это свойство любых сил, сообщающих телам потенциальную энергию. Такие силы называют потенциальными и сила тяжести — одна из них. К потенциальным силам относится и сила упругости.

Б) Чтобы вывести формулу потенциальной энергии упругой деформации, рассмотрим, какую работу нужно совершить, чтобы растянуть пружину, изменив её длину на х (х = l — l0):

А = –Fупр(ср.)*s,

Во-первых, знак минус в формуле стоит потому, что угол между силой упругости и перемещением свободного конца пружины равен 180 градусов и cosa = −1.

Во-вторых, возникающая при растяжении пружины сила упругости является переменной силой, в отличие от силы тяжести, поэтому в формуле работы стоит средняя сила упругости. При этом величина силы упругости, в соответствии с законом Гука, прямо пропорциональна изменению длины пружины, а значит её среднее значение можно определить так:

Fупр(ср.) = (Fупр(нач.) + Fупр(конеч.))/2

И так как Fупр(нач.) = 0, а Fупр(конеч.) = kх, то:

А = —kх*s/2

Но s = x, поэтому: А = —kx2/2 = 0 — kх2/2 = Еп1 — Еп2.

В итоге, мы получили формулу потенциальной энергии упругой деформации: Еп = kx2/2.

Методические советы учителям

1) Обязательно обратите внимание учащихся на связь энергии и работы.

2) Не давайте учащимся формулы потенциальной энергии без вывода.

3) Обратите внимание учащихся на то, что оба вида потенциальной энергии зависят от выбора начальной точки, то есть от системы координат.

4) При выводе формул потенциальной энергии обязательно поясните учащимся почему отсутствует cosa в формуле работы.

5) Отметьте, что и работа силы тяжести, и работа силы упругости не зависят от формы траектории и, следовательно равны нулю на замкнутой траектории — это общее и важное свойство всех потенциальных сил.

#ADVERTISING_INSERT#

Потенциальная энергия

Потенциальная энергия положения

Чтобы увеличить расстояние тела от центра Земли (поднять тело), над ним следует совершить работу. Эта работа против силы тяжести запасается в виде потенциальной энергии тела.

Если:
Wп — Потенциальная энергия тела, энергия положения (Джоуль),
G — гравитационная сила (Ньютон),
m — масса тела (кг),
h — высота на которую поднято тело (метр)
g — ускорение свободного падения 9.81 (м/c2)

то, поскольку, работа, затраченная на подъем тела Wп = Gh = mgh, потенциальная энергия тела равна:

[
W_{п} = Gh = mgh
]

Потенциальная энергия, определяемая по формуле (1), не является полной потенциальной энергией тела, а представляет собой только приращение потенциальной энергии при подъеме тела на высоту h, поскольку начало отсчета выбирается произвольно.

Вычислить, найти потенциальную энергию положения по формуле (1)

Потенциальная энергия положения на большой высоте

Формула (1) верна при условии, что ускорение свободного падения g постоянно по всей высоте подъема, т.е. в случае подъема на относительно небольшую высоту. В гравитационном поле любого небесного тела сила тяжести и соответственно ускорение свободного падения тела убывают пропорционально квадрату расстояния от центра этого тела. Поэтому при подъеме на большую высоту следует учитывать, что g = g(h) и, следовательно G = G(h):

[
W = int_{r_1}^{r_2} F dr
= int_{r_1}^{r_2} γ frac{m_a m_b}{r^2} dr
]

[
W = γ m_a m_b int_{r_1}^{r_2} frac{1}{r^2} dr
]

[
W = γ m_a m_b bigg(frac{1}{r_1} — frac{1}{r_2}bigg)
]

Здесь:
W — работа против гравитационной силы (Джоуль),
G — гравитационная сила, с которой два тела притягиваются друг к другу (Ньютон),
ma — масса первого тела (кг),
mb — масса второго тела (кг),
r — расстояние между центрами масс тел (метр),
r1 — начальное расстояние между центрами масс тел (метр),
r2 — конечное расстояние между центрами масс тел (метр),
γ — гравитационная постоянная 6.67 · 10-11
3/(кг · сек2)),

Вычислить, найти потенциальную энергию положения на большой высоте

Потенциальная энергия (примечания)

— Если тело опускается с высоты h, то выделяется определяемая формулами (1) и (4) энергия Wп, зависящая от расстояния, на которое опустилось тело.

— Если тело падает с высоты h, то его потенциальная энергия Wп целиком превращается в кинетическую энергию Wк (энергию движения).

Потенциальная энергия

стр. 468

Понравилась статья? Поделить с друзьями:
  • Как купить акцию найти брокера
  • Как найти спонсоров для детской футбольной команды
  • Как найти голосовые связки у человека
  • Как найти площадь треугольника в паскале abc
  • Как найти объем кубика по длине ребра