Как найти потенциалы узлов в цепи

ads

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Важно отличать метод узловых напряжений (потенциалов) от метода узлового напряжения (метод двух узлов).

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Рис.1. Схема постоянного тока

        

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4  φ4 = 0.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

 – сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

 – сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

 – сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

 – сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

Аналогично

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

Главная

Примеры решения задач ТОЭ

РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ

1 Методы расчета электрических цепей при постоянных токах и напряжениях

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

Методы и примеры решения задач ТОЭ

РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ

1 Методы расчета электрических цепей при постоянных токах и напряжениях

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).

Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+E, если идеальный источник ЭДС направлен от опорного узла и –E в противном случае).

Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.


Решение задач методом узловых потенциалов и методом двух узлов


Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов.

Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов

Рис. 1.4.1

Решение. В рассматриваемой схеме четыре узла. Заземлим узел 4 (опорный узел)

φ 4 =0.

Тогда

φ 3 = φ 4 + E 2 =200  B.

Необходимо найти потенциалы узлов 1 и 2. Составим систему уравнений по методу узловых потенциалов для узлов 1 и 2.

Рассматривая узел 1, получим

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 − φ 3 ⋅ g 13 =J+ E 1 R 1 + R ′ 1

или

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 =J+ E 1 R 1 + R ′ 1 + E 1 ⋅ g 13 .

В правой части этого уравнения оба слагаемых учтены со знаком плюс, так как J и E1 направлены к узлу 1.

Рассматривая узел 2 (правая часть уравнения равна нулю, так как в ветвях, подсоединенных к узлу 2, нет источников энергии), получим

Индивидуалка Лиза (25 лет) т.8 929 529-57-81 Москва, метро Полянка. газификатор — вся актуальная информация на нашем сайте.

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 − φ 3 ⋅ g 23 =0

или

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 = E 2 ⋅ g 23 .

Найдем собственную проводимость первого узла

g 11 = 1 R 6 + 1 R 1 + R ′ 1 + 1 R ИТ + 1 R 2 + 1 R 5 = 1 20 + 1 25 + 1 25 + 1 40 =0,155  См.

Проводимость ветви с идеальным источником тока равна нулю, так как внутреннее сопротивление идеального источника тока RИТ равно бесконечности.

Собственная проводимость узла 2

g 22 = 1 R 2 + 1 R 3 + 1 R 4 = 1 25 + 1 30 + 1 35 =0,102  См.

Взаимные проводимости между узлами

g 13 = 1 R 6 + 1 R 1 + R ′ 1 = 1 20 + 1 25 =0,09  См; g 21 = g 12 = 1 R 2 = 1 25 =0,04  См; g 23 = 1 R 3 = 1 30 =0,033  См.

Подставив в уравнения известные величины, получим

{ φ 1 ⋅0,155− φ 2 ⋅0,04=39 − φ 1 ⋅0,04+ φ 2 ⋅0,102=6,6

Для решения этой системы используем метод определителей. Главный определитель системы

Δ=| 0,155 −0,04 −0,04 0,102 |=0,01421.

Частные определители

Δ 1 =| 39 −0,04 6,6 0,102 |=4,242; Δ 2 =| 0,155 39 −0,04 6,6 |=2,583.

Находим потенциалы узлов

φ 1 = Δ 1 Δ = 4,242 0,01421 =298,6   В;    φ 2 = Δ 2 Δ = 2,583 0,01421 =181,8   В.

Определяем токи в ветвях (положительные направления токов в ветвях с ЭДС выбираем по направлению ЭДС, в остальных ветвях произвольно)

I 1 = φ 3 − φ 1 + E 1 R 1 + R ′ 1 = 200−298,6+150 10+15 =2,056  А.

В числителе этого выражения от потенциала узла 3, из которого вытекает ток I1, вычитается потенциал узла 1, к которому ток подтекает. Если ЭДС ветви совпадает (не совпадает) с выбранным направлением тока, то она учитывается со знаком плюс (минус). В знаменателе выражения учитываются сопротивления ветви.

Аналогично определяем другие токи (направления токов указаны на схеме рис. 1.4.1)

I 1 = φ 3 − φ 1 R 6 = 200−298,6 20 =−4,93  А; I 2 = φ 1 − φ 2 R 2 = 298,6−181,8 25 =4,67  А; I 3 = φ 3 − φ 2 R 3 = 200−181,8 30 =0,607  А; I 4 = φ 2 − φ 4 R 4 = 181,8−0 35 =5,194  А.

Для определения тока в ветви с идеальной ЭДС зададимся направлением тока I7. По первому закону Кирхгофа для узла 3 составим уравнение

− I 7 + I 3 + I 1 + I 6 =0.

Откуда

I 7 = I 3 + I 1 + I 6 =0,607+2,056−4,98=−2,317  A.

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения.

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения

Рис. 1.4.2

Решение

1 Находим напряжение между двумя узлами по методу двух узлов

U ab = φ a − φ b = E 1 ⋅ g 1 +J g 1 + g 2 + g 3 = 32⋅ 1 1 +18 1 1 + 1 6 + 1 2 =30   B.

При составлении этого уравнения по методу двух узлов в числителе необходимо брать произведение ЭДС на проводимость своей ветви со знаком плюс, если ЭДС направлена к узлу a, и минус — если направлена от узла a к узлу b.

Аналогичное правило определяет и знаки токов источников тока.

2 Находим токи по закону Ома (по закону Ома для ветви с ЭДС)

I 1 = E 1 + φ b − φ a R 1 = E 1 − U ab R 1 = 32−30 1 =2  А; I 2 = U ab R 2 = 30 6 =5  А; I 3 = U ab R 3 = 30 2 =15  А.

Правильность решения проверим по первому закону Кирхгофа

I 1 − I 2 + I 3 +J=0; 2−5−15+18=0.


Метод узловых потенциалов в статье ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА. Основные положения и соотношения. Упражнения и задачи

опорный узел,
метод двух узлов,
метод узловых напряжений,
метод узловых потенциалов,
собственная проводимость,
взаимная проводимость

      1. Метод узловых потенциалов

Ток в любой ветви
схемы можно найти по обобщенному закону
Ома. Для того, чтобы можно было применить
закон Ома, необходимо знать значение
потенциалов узлов схемы. Метод расчета
электрических цепей, в котором за
неизвестные принимают потенциалы узлов
схемы, называют методом узловых
потенциалов. Число неизвестных в методе
узловых потенциалов равно числу
уравнений, которые необходимо составить
для схемы по I
закону Кирхгофа. Метод узловых потенциалов,
как и метод контурных токов, – один из
основных расчетных методов. В том случае,
когда п-1
<
p
(n

количество узлов, p – количество
независимых контуров), данный метод
более экономичен, чем метод контурных
токов.

Проиллюстрируем
на простом примере получение методики
расчета электрической цепи методом
узловых потенциалов:

1. Записываем (n
– 1
)
уравнение по I
закону Кирхгофа (при выбранном опорном
узле 4,
потенциал которого условно принимаем
равным нулю)

узел
1
:
I
1
+ I
4
— I
6
= 0

узел 2:
I
1
– I
2
+
J
3
= 0

узел 3:
I
2
– I
4
+ I
5
= 0

2. Для каждого
из m
токов записываем выражение по обобщенному
закону Ома через потенциалы узлов с
учетом, что потенциал 4
=
0:

3. Полученные в
п. 2 выражения подставляем в уравнения,
составленные по I
закону Кирхгофа

Приведем подобные
слагаемые при различных потенциалах и
получим каноническую систему уравнений:

(2.10)

Введем обозначения:

В окончательном
виде система уравнений для контурных
токов приобретает следующий вид:

(2.11)

в матричной форме

(2.12)

Собственная
проводимость узла (
Gii)
представляет
собой арифметическую сумму проводимостей
всех ветвей, соединенных в i-ом
узле.

Общая проводимость
i-ого
и
j-ого
узлов (
Gij
=
G
ji)
представляет
собой взятую со знаком «–» сумму
проводимостей ветвей, присоединенных
одновременно к i-ому
и jому
узлам.

Проводимости
ветвей с источниками тока полагаются
равными нулю и в собственные и общие
проводимости не входят
!

Узловой ток
(
Jii)
состоит из двух алгебраических сумм:
первая содержит токи источников тока,
содержащиеся в ветвях, соединенных в i
ом узле;
вторая представляет собой произведение
ЭДС источников напряжения на проводимости
соответствующих ветвей, соединенных в
i
ом узле. Со
знаком «+» в эту сумму входят E
и J
источников,
действие которых направлено к узлу, со
знаком «–» остальные.

Решение системы
уравнений по методу узловых потенциалов
в общем случае выполняется методом
Крамера при помощи определителей:

Тогда неизвестные
потенциалы могут вычислены следующим
образом:

(2.14)

Нетрудно, показать,
что аналогичную систему уравнений можно
построить для случая n
узлов в цепи.
Тогда необходимо составить для (n-1)
узлов
соответствующие уравнения, полагая
потенциал n-ого
узла, равным нулю.

Таким образом,
методика расчета цепи постоянного тока
методом узловых потенциалов следующая:

  1. Обозначить все
    токи ветвей и их положительное
    направление.

  2. Произвольно
    выбрать опорный узел (n)и
    пронумеровать все остальные (n-1)-e
    узлы.

  3. Определить
    собственные и общие проводимости узлов,
    а также узловые токи, т.е. рассчитать
    коэффициенты в системе уравнений.

  4. Записать систему
    уравнений в виде

–матричная форма

Или в развернутом
виде:

алгебраическая
форма

В этой системе
каждому узлу соответствует отдельное
уравнение.

  1. Полученную систему
    уравнений решить относительно неизвестных
    (n – 1)
    потенциалов при помощи метода Крамера.

  2. С помощью обобщенного
    закона Ома рассчитать неизвестные
    токи.

  1. Проверить
    правильность расчетов при помощи
    баланса мощности.

Порядок расчета
не зависит от вида источников, действующих
в цепи. Однако, расчет упрощается в
случае, когда между одной или несколькими
парами узлов включены идеализированные
источники ЭДС. Тогда напряжения между
этими парами узлов становятся известными
величинами, определенными условиями
задачи. Для успешного решения подобных
задач необходимо правильно обозначить
опорный узел, в качестве которого может
быть выбран только один из узлов, к
которым присоединена ветвь с
идеализированным источником ЭДС.

Если таких ветвей
q,
то количество уравнений в системе
сократится до

k
=
n
1
– q
.

Пример.

Если в данной схеме
в качестве опорного узла выбрать узел
1 (1=0),
то потенциалы второго и третьего узлов
можно считать известными и равными
соответственно 2=E1
и
3=E1–E2.
Тогда неизвестным остается только
потенциал четвертого узла, для которого
составим уравнение по методу узловых
потенциалов:

Следует отметить,
что уравнения для 2 и 3 узлов составить
не представляется возможным из-за
появляющихся неопределенностей вида
,
т.к. сопротивление ветви, содержащей
идеализированный источник ЭДС, равно
нулю, а проводимость соответственно.

Подставим известные
значения:

Из полученного
уравнения найдем неизвестный
,
а далее и все токи.

Для разветвленной
цепи, имеющей только два узла и произвольное
количество ветвей, метод узловых
потенциалов вырождается в
метод двух узлов
.
Решение сводится к отысканию значения
потенциала одного из узлов, т.к. потенциал
другого узла может быть принятым равным
нулю.

Система уравнений
превращается в одно уравнение:

(2.15)

при условии, что

После определения
U12
токи ветвей
и напряжения источников тока находят
при помощи обобщенного закона Ома.

Пример.

Пусть
,
тогда

По обобщенному
закону Ома:

Соседние файлы в папке Часть 1

  • #
  • #
  • #
  • #
  • #

В этих уравнениях — суммы проводимостей ветвей, присоединенных соответственно к узлам 1 и 2; — сумма проводимостей ветвей, соединяющих эти узлы.
Правая часть каждого из уравнений (1.30) равна алгебраической сумме произведений ЭДС в каждой ветви на проводимость ветви, присоединенной к рассматриваемому узлу.
Произведение вида Eg записывается с положительным знаком в том случае, если ЭДС направлена к узлу, для которого записывается уравнение, и с отрицательным, если ЭДС направлена от узла.
Уравнения (1.30) не зависят от выбранных положительных направлений токов в ветвях.
Чтобы подтвердить это положение, рассмотрим опять схему, показанную на рис. 1.16, и для каждого узла примем положительные направления токов от узла.
Для узлов 1 и 2 справедливы уравнения

Принимая, как и раньше, φ3 = 0 напишем выражения для токов ветвей:
для узла 1

для узла 2

После подстановки (1.32) в (1.31) и группировки слагаемых получаются уравнения, совпадающие с (1.30).
Таким образом, можно написать уравнения для определения потенциалов узлов произвольной электрической цепи, не задаваясь положительными направлениями токов в ветвях, при этом потенциал одного из узлов надо принять равным нулю.
Если электрическая схема содержит не только источники ЭДС, но и источники тока, то в уравнения, составленные по первому закону Кирхгофа, войдут и токи источников тока. При составлении уравнений вида (1.30) токи заданных источников тока учитываются для каждого узла в виде слагаемых в правой части, причем, как было отмечено выше, с положительными знаками должны быть взяты токи источников тока, направленные к узлу, с отрицательными — от узла.
Например, для узлов 1, 2 и 3 схемы, показанной на рис. 1.17, при φ4
 = 0 получим соответственно следующие уравнения:

где

Если электрическая схема имеет в своем составе У узлов (У — любое целое число), а потенциал, например, У-го узла принят равным нулю, то для определения У — 1 потенциалов остальных узлов получается У — 1 уравнений:

или в более общей форме для любого узла р при φу = О

В этих уравнениях, так же как и в уравнениях (1.30), проводимость gpp (с двумя одинаковыми индексами) представляет собой суммарную проводимость ветвей, присоединенных к узлу р, и называется собственной узловой проводимостью этого узла; проводимость gjp = gpj с двумя различными индексами равна сумме проводимостей ветвей, соединяющих между собой рассматриваемые узлы j и р, и называется общей узловой проводимостью этих узлов. Правая часть каждого из уравнений содержит алгебраические суммы произведений ЭДС на соответствующие проводимости для всех ветвей, присоединенных к узлу р, ток Jp равен алгебраической сумме токов всех источников тока, присоединенных к тому же узлу. В свою очередь, ток узловой ток — равен алгебраической сумме Jp и токов, определяемых источниками ЭДС, которые присоединены к узлу р, при этом следует иметь в виду, что для замкнутых поверхностей сумма всех узловых токов, как это вытекает из первого закона Кирхгофа, равна нулю. К узловым токам можно отнести и уже известные в каких-либо ветвях токи. Проводимости таких ветвей в выражения вида gpp и gjp не входят.
Решив уравнения (1.33), можно определить потенциалы узлов, а зная потенциалы, найти токи во всех ветвях по закону Ома (1.12а).
Если в цепи имеются ветви с идеальными источниками ЭДС и сопротивлениями этих ветвей можно пренебречь, то при составлении уравнений (1.33) получается неопределенность, поскольку проводимости таких ветвей бесконечно большие. Такое затруднение преодолевается путем переноса заданной ЭДС из ветви с нулевым сопротивлением через соответствующий узел в другие ветви, присоединенные к тому же узлу и имеющие конечные значения сопротивлений. В результате такого преобразования токи во всех ветвях заданной схемы не изменяются.
Для иллюстрации рассмотрим схему (рис. 1.18, а), у которой сопротивление ветви 2-4 равно нулю, а ЭДС равна Е. Если в каждую ветвь, присоединенную, например, к узлу 2, включить источник напряжения с ЭДС, равной Е и направленной от узла 2 (на рис. 1.18, а эти ЭДС изображены штриховой линией), то токи во всех ветвях останутся без изменения, поскольку разности потенциалов между точками 1‘, 3′, 4’ будут, так же как и в заданной схеме, равны нулю. Теперь потенциалы узлов 2 и 4, очевидно, одинаковы и их можно объединить в одну точку (рис. 1.18,6). Для полученной схемы с тремя узлами (вместо четырех) можно составить два независимых уравнения вида (1.33), из которых определяются искомые потенциалы двух узлов, а затем по закону Ома токи во всех ветвях схемы (рис. 1.18,6), после чего легко найти ток в ветви с сопротивлением r = 0 (рис. 1.18, а) по первому закону Кирхгофа.

Рассмотренную и аналогичные ей задачи можно решить и без предварительного переноса ЭДС через узел в другие ветви. Действительно, если принять в заданной схеме (рис. 1.18, а) φ4 = 0, то потенциал φ2 узла 2, очевидно, будет равен Е. Для определения двух неизвестных потенциалов φ1 и φ3 нужно составить уравнения (1.33), которые полностью совпадут с уравнениями, составленными для тех же узлов эквивалентной схемы (рис. 1.18,6).
Полезно еще рассмотреть применение уравнений (1.33) для частного случая схемы с двумя узлами и произвольным числом ветвей, все или часть которых содержат источники ЭДС. Требуется определить напряжение между этими узлами.
Пусть между узлами 1 и 2 включено
m ветвей (рис. 1.19). Найдем напряжение U12, записав уравнение (1.33) для первого узла

откуда

где числитель представляет собой алгебраическую сумму произведений ЭДС на проводимость для всех ветвей, содержащих ЭДС (с положительным знаком записываются ЭДС, направленные к узлу 1), а знаменатель — арифметическую сумму проводимостей всех ветвей, включенных между узлами.
Если между узлами 1 и 2 включены еще источники тока, то их значения следует добавить в числитель (1.34), причем со знаком плюс записываются токи, направленные к узлу 1.

Пример 1.3.
На рис. 1.20, к изображена электрическая схема с шестью неизвестными токами; ЭДС источников: Е1
= 6 В, Е2 = 12 В, Е3 = 18 В; сопротивления ветвей: r1 = r2 = r3 = 2 Ом и r4 = r5 = r6 = 6 Ом. Пользуясь методом узловых потенциалов, определить токи во всех ветвях.
Решение.
Пусть потенциал точки 0 равен нулю. Запишем уравнения для узлов с потенциалами φ1, φ2 и φ3:



или после подстановки численных значений проводимостей и ЭДС



Решив совместно эти уравнения, найдем искомые потенциалы: φ1
 = -9 В; φ2 = 3 В; φ3 = 6 В. Для определения токов в ветвях следует задаться их положительными направлениями. При выбранных положительных направлениях токов (рис. 1.20, а)



Матричные уравнения узловых потенциалов.
Уравнения узловых потенциалов (1.33) можно записать в матричной форме:

где


— квадратная матрица узловых проводимостей схемы;

— матрица-столбец потенциалов узлов и матрица-столбец узловых токов, причем по (1.33а) , при этом алгебраическое суммирование, выполняемое с учетом знаков, распространяется на все ветви с источниками токов и с источниками напряжений, присоединенные к i-му узлу.
Умножив слева уравнение (1.35) на
получим уравнение для определения потенциалов узлов схемы в виде

где — матрица, обратная матрице .
Ниже показано, что матрицу узловых проводимостей можно составить непосредственно по соответствующей схеме цепи по формуле

где А — матрица соединений (узловых проводимостей ветвей схемы) или ее направленного графа; g — диагональная матрица проводимостей ветвей; — транспонированная матрица соединений.
Для иллюстрации применения формулы (1.39) рассмотрим схему рис. 1.20, а, для которой на рис. 1.20,6 построен направленный граф. Поскольку у заданной схемы четыре узла, то для нее можно составить три независимых уравнения, чему и соответствует матрица соединения узловых проводимостей ветвей из трех строк и шести столбцов (для узлов 1, 2, 3):

Диагональная матрица проводимостей ветвей

Произведение матриц А и g

Матрица узловых проводимостей цепи (1.39) получается после перемножения матриц Ag и :

Матрица-столбец потенциалов узлов

Матрица-столбец узловых токов

Пользуясь выражением (1.35), легко получить систему уравнений, приведенную в примере 1.3.
Если матрицу А дополнить четвертой строкой, соответствующей узлу О, то по (1.39) получится неопределенная матрица узловых проводимостей цепи, для которой сумма элементов по всем четырем строкам и четырем столбцам равна нулю; определитель такой матрицы также равен нулю. После вычеркивания любой строки и соответствующего этой строке столбца, например четвертой строки и четвертого столбца, получается определенная квадратная матрица третьего порядка.
Определитель неопределенной матрицы симметричен относительно главной диагонали. Если вычеркнутая строка не соответствует вычеркнутому столбцу, то и в этом случае получается определенная квадратная матрица, соответствующая независимой системе уравнений. Однако определитель такой матрицы уже не имеет симметрии относительно главной диагонали.
Здесь следует особо подчеркнуть, что если принять равным нулю потенциал того же узла схемы, который соответствует вычеркнутой строке матрицы А, то напряжения на всех ветвях схемы определяются через потенциалы узлов по формуле

где положительное направление напряжения Ujp совпадает с положительным направлением тока в ветви. Это непосредственно получается из формул для напряжения на каждой ветви. Например, для схемы по рис. 1.20

Из этого выражения следует

как и должно быть.

Содержание:

Метод узловых напряжений:

Метод узловых напряжений (узловых потенциалов) является наиболее общим. Он базируется на первом законе Кирхгофа (ЗТК) и законе Ома. В отличие от методов, рассмотренных в лекции 4, метод позволяет уменьшить число уравнений, описывающих схему, до величины, равной количеству рёбер (ветвей) дерева (2.1)

Метод узловых напряжений

Идея метода состоит в следующем:

  1. Выбирается базисный узел — один из узлов цепи, относительно которого рассчитываются напряжения во всех узлах; базисный               узел помечается цифрой 0.
  2. Потенциал базисного узла принимается равным нулю.
  3. Рассчитываются напряжения во всех узлах относительно базисного.
  4. По закону Ома находятся токи и напряжения в соответствующих ветвях.

Напряжения в узлах цепи, отсчитанные относительно базисного, называют узловыми напряжениями.

Определение:

Метод анализа колебаний в электрических цепях, в котором неизвестными, подлежащими определению, являются узловые напряжения, называется методом узловых напряжений.

В дальнейшем будем полагать, что цепь имеет Метод узловых напряжений

Метод узловых напряжений

Предварительно покажем, что при известных узловых напряжениях можно найти напряжения на всех элементах цепи, а потому и все токи. Действительно, напряжение на любой ветви определяется по второму закону Кирхгофа (ЗНК) как разность соответствующих узловых напряжений, а токи в элементах найдутся по закону Ома. Для контура, включающего элементы Метод узловых напряжений  (рис. 5.1), по ЗНК имеем:

Метод узловых напряжений

откуда

Метод узловых напряжений

Аналогично можно записать

Метод узловых напряжений

что и требовалось показать.

Составление узловых уравнений

При составлении уравнений для, схемы рис. 5.1 будем полагать, что задающие токи Метод узловых напряженийи Метод узловых напряжений источников тока (их на схеме два) известны.

Тогда согласно первому закону Кирхгофа для узлов 1 и 2 в предположении, что в общем случае они связаны со всеми другими узлами, получим:

Метод узловых напряжений

Выразим токи в уравнениях через узловые напряжения, как показано в разд. 5.1:

Метод узловых напряжений

Раскрыв скобки и приведя подобные члены, получаем узловые уравнения:

Метод узловых напряжений

Полученный результат позволяет сделать следующие выводы:

Метод узловых напряжений— ый и Метод узловых напряжений-ый узлы; все эти слагаемые входят в уравнение с отрицательным знаком.

Аналогично записываются узловые уравнения для всех других узлов цепи, в результате чего образуется система узловых уравнений вида:

Метод узловых напряжений

где:

Метод узловых напряженийсобственная проводимость Метод узловых напряжений-го узла цепи, являющаяся арифметической суммой проводимостей всех элементов, подключённых одним из зажимов к Метод узловых напряжений-му узлу;

 Метод узловых напряженийвзаимная проводимость Метод узловых напряжений-го и Метод узловых напряжений-го узлов цепи, являющаяся проводимостью элемента, включённого между Метод узловых напряжений-ым и Метод узловых напряжений-ым            узлами;

Метод узловых напряженийзадающий ток Метод узловых напряжений-го узла цепи, являющийся алгебраической суммой задающих токов источников тока, подключённых одним         из зажимов к Метод узловых напряжений-му узлу цепи; слагаемые этой суммы входят в правые части уравнений со знаком «+», если направление отсчёта           задающего тока источника ориентировано в сторону к-го узла, и со знаком Метод узловых напряжений в противном случае.

Систему узловых уравнений принято записывать в канонической форме, а именно:

  • токи, как свободные члены, записываются в правых частях уравнений;
  • неизвестные напряжения записываются в левых частях уравнений с последовательно возрастающими индексами;
  • уравнения располагаются в соответствии с порядковыми номерами узлов. Такая запись применена в (5.2).

Система (5.2) является линейной неоднороднойМетод узловых напряжений системой независимых уравнений, поэтому позволяет найти искомые узловые напряжения. Методы решения таких систем широко известны (Крамера, Гаусса, Гаусса—Жордана).

Метод узловых напряжений даёт существенное сокращение необходимого числа уравнений по сравнению с методом токов элементов. Выигрыш оказывается тем значительнее, чем больше независимых контуров имеет цепь.

Метод узловых напряжений Система называется неоднородной, если хотя бы один из свободных членов (в данном случае это Метод узловых напряжений) не равен нулю.

Особенности составления узловых уравнений

Метод узловых напряжений можно применять и в тех случаях, когда в анализируемой цепи имеются источники напряжения. При этом:

  • напряжение между любой парой узлов, к которым подключён источник напряжения, известно;
  • в качестве базисного желательно выбирать узел, к которому одним из своих зажимов подключён источник напряжения — тогда   узловое напряжение, отсчитываемое между базисным узлом и вторым зажимом источника, равно ЭДС источника или    отличается от него знаком; кроме того, базисным может быть выбран узел, к которому подключено наибольшее число элементов,        если этот выбор не противоречит первой рекомендаций;
  • уменьшается число независимых узловых напряжений, а потому понижается и порядок системы, т. е. число входящих в систему          независимых уравнений;
  • если цепь содержит Метод узловых напряжений источников напряжения, имеющих один общий зажим, то число узловых уравнений, которое можно                  составить для такой цепи, равно

Метод узловых напряжений

Пример 5.1.

Записать систему узловых уравнений для удлинителяМетод узловых напряжений(рис. 5.2), рассмотренного в лекции 4.

Решение. Удлинитель содержит четыре узла и один источник тока, поэтому согласно (5.3) достаточно составить всего два узловых уравнения

Метод узловых напряжений

Положим узел 0 базисным, поскольку к нему одним из своих зажимов подключён источник напряжения. Узловое напряжение узла 1 известно и равно. ЭДС источника напряжения Метод узловых напряжений поэтому остаётся записать уравнения для узлов 2 и 3 по правилам, рассмотренным в разд. 5.1. Предварительно запишем собственные и взаимные проводимости узлов.

Метод узловых напряженийТакое обращение справедливо,-поскольку удлинители применяются для построения магазина затуханий, или аттенюатора.

Метод узловых напряжений

Собственная проводимость второго узла

Метод узловых напряжений

взаимные проводимости второго узла

Метод узловых напряжений

собственная проводимость третьего узла

Метод узловых напряжений

взаимные проводимости третьего узла

Метод узловых напряжений

Теперь получим систему узловых уравнений, записав узловые уравнения для второго и третьего узлов:

Метод узловых напряжений

Поскольку Метод узловых напряжений запишем эту систему уравнений в каноническом виде

Метод узловых напряжений

Эта система уравнений и является окончательным результатом решения задачи, поставленной в примере.

Если содержащиеся в цепи источники напряжения не имеют общего зажима, то задачу анализа следует решать или методом узловых напряжений в сочетании с принципом наложения или путём эквивалентных преобразований перейти к другой модели цепи.

При составлении узловых уравнений для цепей, содержащих многополюсники (например, транзисторы, операционные усилители
и т. д), следует прежде всего заменить эти многополюсники их схемами замещения.

Метод узлового напряжения

Расчет сложных разветвленных электрических цепей с несколькими источниками и двумя узлам, можно осуществить методом узлового напряжения. Напряжение межи узлами и называется узловым. UAB R3 узловое напряжение цепи (рис. 4.9) Для различных ветвей (рис. 4.9) узловое напряжение UAB можно опредо лить следующим образом.

1. Поскольку для первой ветви источник работает в режиме генератор:

Метод узловых напряжений

Величина тока определяется как

Метод узловых напряжений

где Метод узловых напряжений — проводимость

2.Для второй ветви источник работает в режиме потребителя следовательно

Метод узловых напряжений

Тогда ток

Метод узловых напряжений

3.Для третьей ветви

Метод узловых напряжений

(Потенциал точки В для третьей ветви больше, чем потенций точки А, так как ток направлен из точки с большим потенциалом в точку с меньшим потенциалом)

Величину тока Метод узловых напряжений можно определить по закону Ома

Метод узловых напряжений

По первому закону Кирхгофа для узловой точки А (или В):

Метод узловых напряжений

Подставив в уравнение (4.6) значения токов из уравнений (4.3), .4) и (4.5) для рассматриваемой цепи, можно записать

Метод узловых напряжений

Решив это уравнение относительно узлового напряжения UAB,  можно определить его значение

Метод узловых напряжений

Следовательно, величина узлового напряжения определяется отношением алгебраической суммы произведений ЭДС и проводимости ветвей с источниками к сумме проводимостей всех ветвей:

Метод узловых напряжений

Для определения знака алгебраической суммы направление токов во всех ветвях выбирают одинаковым, т.е. от одного узла другому (рис. 4.9). Тогда ЭДС источника, работающего в режиме генератора, берется со знаком «плюс», а источника, работающего в режиме потребителя, со знаком «минус». Таким образом, для определения токов в сложной цепи с двумя узлами вычисляется сначала узловое напряжение по выражению 4.9), а затем значения токов по формулам (4.3), (4.4), (4.5). Узловое напряжение UAB может получиться положительным или отрицательным, как и ток в любой ветви.

Знак «минус» в вычисленном значении тока указывает, что реальное направление тока в данной ветви противоположно словно выбранному.

Пример 4.7

В ветвях схемы (рис. 4.10) требуется определить токи, если: Метод узловых напряжений Метод узловых напряженийМетод узловых напряжений

Метод узловых напряжений

Решение

Узловое напряжение Метод узловых напряжений

Метод узловых напряжений

где Метод узловых напряжений

Метод узловых напряжений

тогда Метод узловых напряжений

Токи в ветвях будут соответственно равны

Метод узловых напряжений

Как видно из полученных результатов, направление токов Метод узловых напряжений противоположно выбранному. Следовательно, источник £ работает в режиме потребителя.

Пример 4.8

Два генератора (рис. 4.11), ЭДС и внутреннее сопротивление которых одинаковы: Метод узловых напряжений, питают потребитель (нагрузку) с сопротивлением R= 5,85 Ом.

Как изменится ток второго генератора: 1) при увеличении его ЭДС (£2) на 1 %; » 2) при увеличении узлового напряжения (UAB) на 1 %.

Решение

Определяется узловое напряжение UAB цепи (рис. 4.11)

Метод узловых напряжений

где

Метод узловых напряжений=Метод узловых напряжений

Тогда ток второго генератора

Метод узловых напряжений

При увеличении Е2 на 1 %, его величина станет равной

Метод узловых напряжений

тогда

Метод узловых напряжений

При этом Метод узловых напряжений

Следовательно, увеличение ЭДС генератора Е2 на 1 % приводит увеличению тока этого генератора на 24 %.

Метод узловых напряжений

2. При увеличении узлового напряжения на 1% его величины станет равной

Метод узловых напряжений

При этом Метод узловых напряжений Таким образом, ток второго генератора при увеличении узлового напряжения на 1 % уменьшится на 23,4 %.

Метод узловых напряжений

Знак «минус» означает уменьшение, а не увеличение тока Метод узловых напряжений.

Определение метода узловых напряжений

Метод узловых напряжений заключается в том, что на основании первого закона Кирхгофа определяются потенциалы в узлах электрической цепи относительно некоторого базисного узла. Эти разности потенциалов называются узловыми напряжениями, причем положительное направление их указывается стрелкой от рассматриваемого узла к базисному.

Напряжение на какой-либо ветви равно, очевидно, разности узловых напряжений концов данной ветви; произведение же этого напряжения на комплексную проводимость данной ветви равно току в этой ветви. Таким образом, зная узловые напряжения в электрической цепи, можно найти токи в ветвях.

Если принять потенциал базисного узла равным нулю, то напряжения между остальными узлами и базисным узлом будут равны также потенциалам этих узлов. Поэтому данный метод называется также методом узловых потенциалов.

На рис. 7-7 в виде примера изображена электрическая схема с двумя источниками тока, имеющая три узла: 1, 2 и 3. Выберем в данной схеме в качестве базиса узел 3 и

обозначим узловые напряжения точек 1 и 2 через Метод узловых напряжений Согласно принятым на рис. 7-7 обозначениям комплексные проводимости ветвей равны соответственно:
Метод узловых напряжений
Для заданной электрической цепи с тремя узлами могут быть записаны два уравнения по первому закону Кирхгофа, а именно: для узла 1

Метод узловых напряжений

для узла 2

Метод узловых напряжений

Величина Метод узловых напряжений представляющая собой сумму комплексных проводимостей ветвей, сходящихся в узле 1, называется собственной проводимостью узла 1 величина Метод узловых напряженийравная комплексной проводимости ветви между узлами 1 и 2, входящая в уравнения со знаком минус, называется об-, щей проводимостью между узлами 1 и 2.

Если заданы токи источников тока и комплексные проводимости ветвей, то узловые напряжения находятся совместным решением уравнений.

В общем случае если электрическая схема содержит q узлов, то на основании первого закона Кирхгофа получается система из q — 1 уравнений (узел q принят за базисный):

Метод узловых напряжений

Здесь ток источника тока, подходящий к узлу, берется со знаком плюс, а отходящий от узла — со знаком минус;Метод узловых напряжений — собственная проводимость всех ветвей, сходящихся в данном узле Метод узловых напряжений — общая проводимость между узламп Метод узловых напряжений входящая со знаком минус при выбранном направлении всех узловых напряжений к базису, независимо от того, является ли данная электрическая цепь планарной или непланарной.

Решив систему уравнений (7-5) при помощи определителейМетод узловых напряжений получим формулу для Метод узловых напряжений узлового напряжения относительно базиса:

Метод узловых напряжений
гдеМетод узловых напряжений — определитель системыМетод узловых напряжений

Метод узловых напряжений

Метод узловых напряжений — алгебраическое дополнение элемента Метод узловых напряжений данного определителя.

Первый индекс i алгебраического дополнения, обозначающий номер строки, вычеркиваемой в определителе системы, соответствует номеру узла, заданный ток источника тока которого умножается на данное алгебраическое дополнение. Второй индекс Метод узловых напряжений обозначающий номер столбца, вычеркиваемого в определителе системы, соответствует номеру узла, для которого вычисляется узловое напряжение.

Уравнения (7-5), выражающие первый закон Кирхгофа, записаны в предположении, что в качестве источников электрической энергии служат источники тока. При наличии в электрической схеме источников э. д. с. последние должны быть заменены эквивалентными источниками тока.

Если в схеме имеются ветви, содержащие только э. д, с. (проводимости таких ветвей бесконечно велики), то эти ветви следует рассматривать как источники неизвестных токов, которые затем исключаются при сложении соответствующих уравнений. Дополнительными связями между неизвестными узловыми напряжениями будут являться известные напряжения между узлами, равные заданным э. д. с. 

Метод узловых напряженийОпределитель снабжен индексом у, так как его элементами являются комплексные проводимости.

При наличии только одной ветви с э. д. с. и бесконечной проводимостью целесообразно принять за базисный узел один из узлов, к которому примыкает данная ветвь; тогда напряжение другого узла становится известным и число неизвестных сокращается на одно.

Метод узловых напряжений имеет преимущество перед методом контурных токов в том случае, когда число уравнений, записанных по первому закону Кирхгофа, меньше числа уравнений, записанных по второму закону Кирхгофа. Если заданная электрическая схема имеет q узлов и р ветвей, то в соответствии со сказанным выше, метод узловых напряжений представляет преимущество при q — 1 < р — q + 1. или, что то же, при 2 (q — 1) < р.

Здесь имеется в виду общий случай, когда число уравнений не сокращается за счет известных контурных токов
или узловых напряжении.

Метод узловых напряжений

Пример 7-3. 

Пользуясь методом узловых напряжений определить ток в диагонали мостовой схемы (см. рис. 7-6).

В результате замены заданного источника э. д. с. .эквивалентным источником тока получается схема (рис. 7-8), содержащая четыре узла. Для этой схемы по первому закону Кирхгофа записывают 4—1 = 3 уравнения (по числу независимых узлов). Если выбрать в данной схеме в качестве базиса узел 4 и направить узловые напряжения к базису, то уравнения примут вид:

для узла 1
Метод узловых напряжений
для узла 2

Метод узловых напряжений
для узла 3

Метод узловых напряжений

Решение полученной системы уравнений относительно Метод узловых напряжений даст

Метод узловых напряжений

где

Метод узловых напряжений

Умножив найденное узловое напряжение Метод узловых напряжений на проводимость Метод узловых напряжений диагональной ветви мостовой схемы и изменив знак в соответствии с выбранным ранее направлением тока Метод узловых напряжений(см. рис. 7,-3), найдем искомый ток:

Метод узловых напряжений

  • Метод узловых потенциалов 
  • Принцип и метод наложения
  • Входные и взаимные проводимости
  • Преобразование треугольника сопротивлений в эквивалентную звезду
  • Электрическая цепь
  • Электрический ток
  • Электрические цепи постоянного тока
  • Методы анализа сложных электрических цепей

Понравилась статья? Поделить с друзьями:
  • Как найти могилу деда хасана
  • Как составить развернутый план конспекта
  • Яндекс защитник как его найти
  • Как найти 20 от 350 рублей
  • Платформа microsoft net framework необрабатываемое исключение как исправить