Как найти потери в линий

Лекция № 7

Потери мощности и электроэнергии в элементах сети

План.

  1. Потери мощности
    в элементах сети.

  2. Расчет потерь
    мощности в линиях электропередач.

  3. Расчет потерь
    мощности в ЛЕП с равномерно распределенной
    нагрузкой.

  4. Расчет потерь
    мощности в трансформаторах.

  5. Приведенные и
    расчетные нагрузки потребителей.

  6. Расчет потерь
    электроэнергии.

  7. Мероприятия по
    снижению потерь мощности.

Потери мощности в элементах сети

Для
количественной характеристики работы
элементов электрической сети
рассматриваются ее рабочие режимы.
Рабочий
режим

– это установившееся электрическое
состояние, которое характеризуется
значениями токов, напряжений, активной,
реактивной и полной мощностей.

Основной целью
расчета режимов является определение
этих параметров, как для проверки
допустимости режимов, так и для обеспечения
экономичности работы элементов сетей.

Определение
значений токов в элементах сети и
напряжений в ее узлах начинается с
построения картины распределения полной
мощности по элементу, т.е. с определения
мощностей в начале и конце каждого
элемента. Такую картину называют
потокораспределением.

Рассчитывая
мощности в начале и в конце элемента
электрической сети, учитывают потери
мощности в сопротивлениях элемента и
влияние его проводимостей.

Расчет потерь мощности в линиях электропередач

Потери активной
мощности на участке ЛЕП (см. рис. 7.1)
обусловлены активным сопротивлением
проводов и кабелей, а также несовершенством
их изоляции. Мощность, теряемая в активных
сопротивлениях трехфазной ЛЕП и
расходуемая на ее нагрев, определяется
по формуле:

,

где
полный,
активный и реактивный токи в ЛЕП;

P, Q, S
– активная, реактивная и полная
мощности в начале или конце ЛЕП;

U– линейное напряжение в начале или
конце ЛЕП;

R
– активное сопротивление одной
фазы ЛЕП.

Потери активной
мощности в проводимостях ЛЕП обусловлены
несовершенством изоляции. В воздушных
ЛЕП – появлением короны и, в очень
незначительной степени, утечкой тока
по изоляторам. В кабельных ЛЕП –
появлением тока проводимости а его
абсорбции. Рассчитываются потери по
формуле:

,

где U– линейное напряжение в начале или
конце ЛЕП;

G
– активная проводимость ЛЕП.

При проектировании
воздушных ЛЕП потери мощности на корону
стремятся свести к нулю, выбирая такой
диаметр провода, когда возможность
возникновения короны практически
отсутствует.

Потери реактивной
мощности на участке ЛЕП обусловлены
индуктивными сопротивлениями проводов
и кабелей. Реактивная мощность, теряемая
в трехфазной ЛЕП, рассчитывается
аналогично мощности, теряемой в активных
сопротивлениях:

Генерируемая
емкостной проводимостью зарядная
мощность ЛЕП рассчитывается по формуле:

,

где U– линейное напряжение в начале или
конце ЛЕП;

B
– реактивная проводимость ЛЕП.

Зарядная мощность
уменьшает реактивную нагрузку сети и
тем самым снижает потери мощности в
ней.

Расчет потерь мощности в леп с равномерно распределенной нагрузкой

В линиях местных
сетей ()
потребители одинаковой мощности могут
располагаться на одинаковом расстоянии
друг от друга (например, источники
света). Такие ЛЕП называются линиями с
равномерно распределенной нагрузкой
(см. рис. 7.2).

В равномерно
нагруженной линии трехфазного переменного
тока длиной L
с суммарной токовой нагрузкойIплотность тока на единицу длины составитI/L. При погонном
активном сопротивленииr0
потери активной мощности составят:

Если бы нагрузка
была сосредоточена в конце, то потери
мощности определялись бы как:

.

Сравнивая приведенные
выражения, видим, что потери мощности
в линии с равномерно распределенной
нагрузкой в 3 раза меньше.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Определить потери электроэнергии за год в трехфазной воздушной линии напряжением 6 кВ, питающее промышленное предприятие с трехсменной работой.

Исходные данные:

  • Номинальное напряжение линии – Uном. = 6 кВ;
  • Длина линии – l = 8,2 км;
  • Марка провода — АС95;
  • Максимальная мощность, передаваемая по линии – Рмакс. = 830 кВт;
  • Коэффициент мощности – cosϕ = 0,8.

Решение

Потери электроэнергии для проектируемого объекта можно рассчитать двумя способами или по величине среднеквадратичного тока Iср с учетом времени включения линии Тв, или по максимальному току Iмакс. при времени потерь τ.

Вариант I

1. Определяем общее активное сопротивление линии:

R = r0*l = 0,33*8,2 = 2,7 Ом

где: r0 = 0,33 Ом/км – активное сопротивление провода АС95, определяется по таблице 1.11 [Л2, с.17].

Таблица 1.11 - Активное и индуктивное сопротивления проводов

2. Определяем годовой расход при максимальной нагрузке по выражению 4.52 [Л1, с. 116]:

W = Tмакс.*Рмакс. = 6000*830 = 4980*103 кВт*ч

3. Определяем среднеквадратичный ток, который представляет собой эквивалентный ток, который, проходя за время Тв (сутки, месяц, год), вызывает те же потери мощности и электроэнергии, что и действительный, изменяющийся за то же время ток, по выражению 4.46-4.47 [Л1, с. 115]:

Определяем среднеквадратичный ток

где:

  • kф = 1,05-1,1 – коэффициент формы определяется с достаточной для практических расчетов точностью по данным проектных организаций при любом числе (более двух) токоприемников с длительным режимом работы и числом токоприемников более двадцати с повторно-кратковременным режимом.
  • Тв = 8760 ч – время включение линии за год.

4. Определяем потери электроэнергии за год по выражению 4.48 и 4.49 [Л1, с. 115]:

Определяем потери электроэнергии за год

5. Определяем потери активной электроэнергии в процентном соотношении:

Определяем потери активной электроэнергии в процентном соотношении

Вариант II

Потерю электроэнергии можно определить иным способ, если известен годовой расход электроэнергии W = 4980*103 кВт*ч.

1. Определяем время использования максимума нагрузки Тмакс. исходя из характера производства и сменности работы потребителя составляет в среднем в год (ч) согласно [Л1, с. 116]:

  • Для осветительных нагрузок – 1500 – 2000;
  • Для односменных предприятий – 1800 – 2500;
  • Для двухсменных предприятий – 3500 – 4500;
  • Для трехсменных предприятий – 5000 – 7000;

Принимаем Тмакс. = 6000 ч – для трехсменных предприятий.

2. По графику, представленному на рис.4.8 [Л1, с. 116] определяем время потерь τ = 4700 ч, исходя из cosϕ = 0,8 и времени использования максимума нагрузки Тмакс. = 6000 ч.

Рис.4.8 - График для определения времени потерь

3. Определяем максимальный ток за рассматриваемый промежуток времени (сутки, год) по выражению 4.53 [Л1, с. 117]:

Определяем максимальный ток за рассматриваемый промежуток времени

4. Определяем потери электроэнергии за год по выражению 4.54 [Л1, с. 115]:

Определяем потери электроэнергии за год

Как мы видим в данном случае результаты расчетов совпали, но может так получится, что у вас результаты расчетов могут не много отличатся друг от друга, связано это с погрешностью при определении времени потерь τ и коэффициента формы kф.

Литература:

  1. Электроснабжение промышленных предприятий и установок. Третье издание. Б.Ю. Липкин. 1981 г.
  2. Справочник по проектированию электроснабжению. Ю.Г. Барыбина. 1990 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Потери электроэнергии в электрических сетях неминуемы, поэтому важно чтобы они не превышали экономически обоснованного уровня. Превышение норм технологического расхода говорит о возникших проблемах. Чтобы исправить ситуацию необходимо установить причины возникновения нецелевых затрат и выбрать способы их снижения. Собранная в статье информация описывает многие аспекты этой непростой задачи.

Виды и структура потерь

Под потерями подразумевается разница между отпущенной потребителям электроэнергией и фактически поступившей к ним. Для нормирования потерь и расчетов их фактической величины, была принята следующая классификация:

  • Технологический фактор. Он напрямую зависит от характерных физических процессов, и может меняться под воздействием нагрузочной составляющей, условно-постоянных затрат, а также климатических условий.
  • Расходы, затрачиваемые на эксплуатацию вспомогательного оборудования и обеспечение необходимых условий для работы техперсонала.
  • Коммерческая составляющая. К данной категории относятся погрешности приборов учета, а также другие факторы, вызывающие недоучет электроэнергии.

Ниже представлен среднестатистический график потерь типовой электрокомпании.

Примерная структура потерь

Примерная структура потерь

Как видно из графика наибольшие расходы связаны с передачей по воздушным линиям (ЛЭП), это составляет около 64% от общего числа потерь. На втором месте эффект коронированния (ионизация воздуха рядом с проводами ВЛ и, как следствие, возникновение разрядных токов между ними) – 17%.

Коронный разряд на изоляторе ЛЭП

Коронный разряд на изоляторе ЛЭП

Исходя из представленного графика, можно констатировать, что наибольший процент нецелевых расходов приходится на технологический фактор.

Основные причины потерь электроэнергии

Разобравшись со структурой, перейдем к причинам, вызывающим нецелевой расход в каждой из перечисленных выше категорий. Начнем с составляющих технологического фактора:

  1. Нагрузочные потери, они возникают в ЛЭП, оборудовании и различных элементах электросетей. Такие расходы напрямую зависят от суммарной нагрузки. В данную составляющую входят:
  • Потери в ЛЭП, они напрямую связаны с силой тока. Именно поэтому при передаче электроэнергии на большие расстояния используется принцип повышения в несколько раз, что способствует пропорциональному уменьшению тока, соответственно, и затрат.
  • Расход в трансформаторах, имеющий магнитную и электрическую природу ( 1 ). В качестве примера ниже представлена таблица, в которой приводятся данные затрат на трансформаторах напряжения подстанций в сетях 10 кВ.

Потери в силовых трансформаторах подстанций

Потери в силовых трансформаторах подстанций

Нецелевой расход в других элементах не входит в данную категорию, ввиду сложностей таких расчетов и незначительного объема затрат. Для этого предусмотрена следующая составляющая.

  1. Категория условно-постоянных расходов. В нее входят затраты, связанные со штатной эксплуатацией электрооборудования, к таковым относятся:
  • Холостая работа силовых установок.
  • Затраты в оборудовании, обеспечивающем компенсацию реактивной нагрузки.
  • Другие виды затрат в различных устройствах, характеристики которых не зависят от нагрузки. В качестве примера можно привестисиловую изоляцию, приборы учета в сетях 0,38 кВ, змерительные трансформаторы тока, ограничители перенапряжения и т.д.
  1. Климатическая составляющая. Нецелевой расход электроэнергии может быть связан с климатическими условиями характерными для той местности, где проходят ЛЭП. В сетях 6 кВ и выше от этого зависит величина тока утечки в изоляторах. В магистралях от 110 кВ большая доля затрат приходится на коронные разряды, возникновению которых способствует влажность воздуха. Помимо этого в холодное время года для нашего климата характерно такое явление, как обледенение на проводах высоковольтных линий, а также обычных ЛЭП.
    Гололед на ЛЭП
    Гололед на ЛЭП

Учитывая последний фактор, следует учитывать затраты электроэнергии на расплавление льда.

Расходы на поддержку работы подстанций

К данной категории отнесены затраты электрической энергии на функционирование вспомогательных устройств. Такое оборудование необходимо для нормальной эксплуатации основных узлов, отвечающих за преобразование электроэнергии и ее распределение. Фиксация затрат осуществляется приборами учета. Приведем список основных потребителей, относящихся к данной категории:

  • системы вентиляции и охлаждения трансформаторного оборудования;
  • отопление и вентиляция технологического помещения, а также внутренние осветительные приборы;
  • освещение прилегающих к подстанциям территорий;
  • зарядное оборудование АКБ;
  • оперативные цепи и системы контроля и управления;
  • системы обогрева наружного оборудования, например, модули управления воздушными выключателями;
  • различные виды компрессорного оборудования;
  • вспомогательные механизмы;
  • оборудование для ремонтных работ, аппаратура связи, а также другие приспособления.

Коммерческая составляющая

Под данными затратами подразумевается сальдо между абсолютными (фактическими) и техническими потерями. В идеале такая разница должна стремиться к нулю, но на практике это не реально. В первую очередь это связано с особенностями приборов учета отпущенной электроэнергии и электросчетчиков, установленных у конечных потребителей. Речь идет о погрешности. Существует ряд конкретных мероприятий для уменьшения потерь такого вида.

К данной составляющей также относятся ошибки в счетах, выставленных потребителю и хищения электроэнергии. В первом случае подобная ситуация может возникнуть по следующим причинам:

  • в договоре на поставку электроэнергии указана неполная или некорректная информация о потребителе;
  • неправильно указанный тариф;
  • отсутствие контроля за данными приборов учета;
  • ошибки, связанные с ранее откорректированными счетами и т.д.

Что касается хищений, то эта проблема имеет место во всех странах. Как правило, такими противозаконными действиями занимаются недобросовестные бытовые потребители. Заметим, что иногда возникают инциденты и с предприятиями, но такие случаи довольно редки, поэтому не являются определяющими. Характерно, что пик хищений приходится на холодное время года, причем в тех регионах, где имеются проблемы с теплоснабжением.

Различают три способа хищения (занижения показаний прибора учета):

  1. Механический. Под ним подразумевается соответствующее вмешательство в работу прибора. Это может быть притормаживание вращения диска путем прямого механического воздействия, изменение положения электросчетчика, путем его наклона на 45° (для той же цели). Иногда применяется более варварский способ, а именно, срываются пломбы, и производится разбалансирование механизма. Опытный специалист моментально обнаружит механическое вмешательство.
  2. Электрический. Это может быть как незаконное подключение к воздушной линии путем «наброса», метод инвестирования фазы тока нагрузки, а также использование специальных приборов для его полной или частичной компенсации. Помимо этого есть варианты с шунтированием токовой цепи прибора учета или переключение фазы и нуля.
  3. Магнитный. При данном способе к корпусу индукционного прибора учета подносится неодимовый магнит.

Магнит может воздействовать только некоторые старые модели электросчетчиков

Магнит может воздействовать только некоторые старые модели электросчетчиков

Практически все современные приборы учета «обмануть» вышеописанными способами не удастся. Мало того, подобные попытки вмешательства могут быть зафиксированы устройством и занесены в память, что приведет к печальным последствиям.

Понятие норматива потерь

Под данным термином подразумевается установка экономически обоснованных критериев нецелевого расхода за определенный период. При нормировании учитываются все составляющие. Каждая из них тщательно анализируется отдельно. По итогу производятся вычисления с учетом фактического (абсолютного) уровня затрат за прошедший период и анализа различных возможностей, позволяющих реализовать выявленные резервы для снижения потерь. То есть, нормативы не статичны, а регулярно пересматриваются.

Под абсолютным уровнем затрат в данном случае подразумевается сальдо между переданной электроэнергией и техническими (относительными) потерями. Нормативы технологических потерь определяются путем соответствующих вычислений.

Кто платит за потери электричества?

Все зависит от определяющих критериев. Если речь идет о технологических факторах и расходах на поддержку работы сопутствующего оборудования, то оплата потерь закладывается в тарифы для потребителей.

Совсем по иному обстоит дело с коммерческой составляющей, при превышении заложенной нормы потерь, вся экономическая нагрузка считается расходами компании, осуществляющей отпуск электроэнергии потребителям.

Способы уменьшения потерь в электрических сетях

Снизить затраты можно путем оптимизации технической и коммерческой составляющей. В первом случае следует принять следующие меры:

  • Оптимизация схемы и режима работы электросети.
  • Исследование статической устойчивости и выделение мощных узлов нагрузки.
  • Снижение суммарной мощности за счет реактивной составляющей. В результате доля активной мощности увеличится, что позитивно отразится на борьбе с потерями.
  • Оптимизация нагрузки трансформаторов.
  • Модернизация оборудования.
  • Различные методы выравнивания нагрузки. Например, это можно сделать, введя многотарифную систему оплаты, в которой в часы максимальной нагрузки повышенная стоимость кВт/ч. Это позволит существенно потребление электроэнергии в определенные периоды суток, в результате фактическое напряжение не будет «проседать» ниже допустимых норм.

Уменьшить коммерческие затраты можно следующим образом:

  • регулярный поиск несанкционированных подключений;
  • создание или расширение подразделений, осуществляющих контроль;
  • проверка показаний;
  • автоматизация сбора и обработки данных.

Методика и пример расчета потерь электроэнергии

На практике применяют следующие методики для определения потерь:

  • проведение оперативных вычислений;
  • суточный критерий;
  • вычисление средних нагрузок;
  • анализ наибольших потерь передаваемой мощности в разрезе суток-часов;
  • обращение к обобщенным данным.

Полную информацию по каждой из представленных выше методик, можно найти в нормативных документах.

В завершении приведем пример вычисления затрат в силовом трансформаторе TM 630-6-0,4. Формула для расчета и ее описание приведены ниже, она подходит для большинства видов подобных устройств.

Как рассчитать потери в силовом трансформаторе

Расчет потерь в силовом трансформаторе

Для понимания процесса следует ознакомиться с основными характеристиками TM 630-6-0,4.

Параметры TM 630/6/0,4

Параметры TM 630/6/0,4

Теперь переходим к расчету.

Итоги расчета

Итоги расчета

Список использованной литературы

  • Ю. Железко «Потери электроэнергии. Реактивная мощность. Качество электроэнергии: Руководство для практических расчетов» 2009
  • Поспелов Г.Е. «Потери мощности и энергии в электрических сетях» 1981
  • Шведов Г.В., Сипачева О.В., Савченко О.В. «Потери электроэнергии при ее транспорте по электрическим сетям: расчет, анализ, нормирование и снижение» 2013
  • Фурсанов М.И. «Определение и анализ потерь электроэнергии в электрических сетях энергосистем» 2005

Определение потерь мощности и электроэнергии в линии и в трансформаторе

При передаче электрической энергии от генераторов электростанций до потребителя около 12-18% всей вырабатываемой электроэнергии теряется в проводниках воздушных и кабельных линий, а также в обмотках и стальных сердечниках силовых трансформаторов.

При проектировании нужно стремиться к уменьшению потерь электроэнергии на всех участках энергосистемы, поскольку потери электроэнергии ведут к увеличению мощности электростанций, что в свою очередь влияет на стоимость электроэнергии.

В сетях до 10кВ потери мощности в основном обусловлены нагревом проводов от действия тока.

Потери мощности в линии.

Потери активной мощности (кВт) и потери реактивной мощности  (кВАр) можно найти по следующим формулам:

Формулы для расчета потери мощности в линии

Формулы для расчета потери мощности в линии

где Iрасч – расчетный ток данного участка линии, А;

Rл – активное сопротивление линии, Ом.

Потери мощности в трансформаторах.

Потери мощности в силовых трансформаторах состоят из потерь, не зависящих и зависящих от нагрузки. Потери активной мощности (кВт) в трансформаторе можно определить по следующей формуле:

Определение потерь мощности и электроэнергии в линии и в трансформаторе

Потери активной мощности в трансформаторе

где ?Рст – потери активной мощности в стали трансформатора при номинальном напряжении. Зависят только от мощности трансформатора и приложенного к первичной обмотке трансформатора напряжения. ?Рст приравнивают  ?Рх;

?Рх— потери холостого хода трансформатора;

?Роб – потери в обмотках при номинальной нагрузке трансформатора, кВт; ?Роб приравнивают  ?Рк.

?Рк– потери короткого замыкания;

?=S/Sном – коэффициент загрузки трансформатора равен отношению фактической нагрузки трансформатора к его номинальной мощности;

Потери реактивной мощности трансформатора (кВАр) можно определить по следующей формуле:

Потери реактивной мощности в трансформаторе

Потери реактивной мощности в трансформаторе

где ?Qст – потери реактивной мощности на намагничивание, кВАр. ?Qст приравнивают ?.

? – намагничивающая мощность холостого хода трансформатора;

?Qрас – потери реактивной мощности рассеяния в трансформаторе при номинальной нагрузке.

Значения ?Рст(?Рх) и ?Роб(?Рк) приведения в каталогах производителей силовых трансформаторов. Значения ?Qст(?Qх) и ?Qрас  определяют по данным каталогов из следующих выражений:

Формулы для расчета потери реактивной мощности

Формулы для расчета потери реактивной мощности

где  – ток холостого хода трансформатора, %;

– напряжение короткого замыкания, %;

Iном – номинальный ток трансформатора, А;

Xтр – реактивное сопротивление трансформатора;

Sном – номинальная мощность трансформатора, кВА.

Потери электроэнергии.

На основании потерь мощности можно посчитать потери электроэнергии. Здесь следует быть внимательными. Нельзя посчитать потери электроэнергии умножив потери мощности при какой либо определенной нагрузке на число часов работы линии. Этого делать не стоит, т.к в течение суток или сезона потребляемая нагрузка изменяется и таким образом мы получим необоснованно завышенное значение.

Чтобы правильно посчитать потери электроэнергии используют метод, основанный на понятиях времени использования потерь и времени использовании максимума нагрузки.

Время максимальных потерь – условное число часов, в течение которых максимальный ток, протекающий в линии, создает потери энергии, равные действительным потерям энергии в год.

Временем использования максимальной нагрузки или временем использования максимума Тмах называют условное число часов, в течение которых линия, работая с  максимальной нагрузкой, могла бы передать потребителю за год столько энергии, сколько при работе по действительному переменному графику. Пусть W(кВт*ч) – энергия  переданная по линии за некоторый промежуток времени,  Рмах(кВт) -максимальная нагрузка, тогда время использования  максимальной нагрузки:

Тмах=W/Рмах

На основании статистических данных для отдельных групп электроприемников были получены следующие значения Тмах:

  • Для внутреннего освещения – 1500—2000 ч;
  • Наружного освещения – 2000—3000 ч;
  • Промышленного предприятия односменного – 2000—2500 ч;
  • Двухсменного – 3000—4500 ч;
  • Трехсменного   – 3000—7000 ч;

Время потерь можно найти по графику, зная Тмах и коэффициент мощности.

Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки

Зависимость времени максимальных потерь от продолжительности использования максимума нагрузки

Теперь зная ? можно посчитать потери электроэнергии в линии и в трансформаторе.

Потери энергии в линии:

Потери энергии в линии

Потери энергии в линии

Потери энергии в трансформаторе:

Потеря энергии в трансформаторе

Потери энергии в трансформаторе

где ?Wатр –общая потеря активной энергии (кВт*ч) в трансформаторе;

?Wртр –общая потеря реактивной энергии (кВАр*ч) в трансформаторе.

Советую почитать:

Расчёт потерь напряжения в кабеле

  • Online расчёт заземления
  • Online расчёт сечения кабеля по мощности и току

Потеря напряжения в кабеле — величина, равная разности между установившимися значениями действующего напряжения, измеренными в двух точках системы электроснабжения (по ГОСТ 23875-88). Этот параметр необходимо знать при производстве любых электромонтажных работ — начиная от видеонаблюдения и ОПС и заканчивая системами электроснабжения промышленных объектов.

При равенстве сопротивлений Zп1=Zп2=Zп3 и Zн1=Zн2=Zн3 ток в нулевом проводе отсутствует (Рис.1), поэтому для трёхфазных линий потери напряжения рассчитываются для одного проводника.

В двух- и однофазных линиях, а также в цепи постоянного тока, ток идёт по двум проводникам (Рис.2), поэтому вводится коэффициент 2 (при условии равенства Zп1=Zп2).

Доступна Windows-версия программы расчёта потерь напряжения

Пояснения к расчёту

Расчёт потерь линейного (между фазами) напряжения в кабеле при трёхфазном переменном токе производится по формулам:

Расчёт потерь фазного (между фазой и нулевым проводом) напряжения в кабеле производится по формулам:

Для расчёта потерь линейного напряжения U=380 В; 3 фазы.

Для расчёта потерь фазного напряжения U=220 В; 1 фаза.

P — активная мощность передаваемая по линии, Вт;
Q — реактивная мощность передаваемая по линии, ВАр;
R — удельное активное сопротивление кабельной линии, Ом/м;
X — удельное индуктивное сопротивление кабельной линии, Ом/м;
L — длина кабельной линии, м;
— линейное напряжение сети, В;
— фазное напряжение сети, В.

Пожелания, замечания, рекомендации по улучшению раздела расчётов на нашем сайте просьба присылать по электронной почте support@ivtechno.ru

Разрешается копирование java-скриптов при условии ссылки на источник.

ВСЕ РАСЧЁТЫВСЕ РАСЧЁТЫ

Понравилась статья? Поделить с друзьями:
  • Как найти образующую усеченного конуса формулы
  • Как в контакте найти айди пользователя
  • Как найти семью фоллаут
  • Как составить приказ считать рабочим днем
  • Как найти свою подругу минус