Как найти потери в силовом трансформаторе

8.2. ОПРЕДЕЛЕНИЕ ПОТЕРЬ ХОЛОСТОГО ХОДА ТРАНСФОРМАТОРА

Режим работы трансформатора при питании одной из его обмоток от источника с переменным напряжением при разомкнутых других обмотках называется режимом холостого хода. Потери, возникающие в трансформаторе в режиме холостого хода при номинальном синусоидальном напряжении на первичной обмотке и номинальной частоте, называются потерями холостого хода.

Потери холостого хода трансформатора Рх слагаются из магнитных потерь, т.е. потерь в активном материале (стали магнитной системы, потерь в стальных элементах конструкции остова трансформатора, вызванных частичным ответвлением главного магнитного потока, основных потерь в первичной обмотке, вызванных током холостого хода, и диэлектрических потерь в изоляции.

Диэлектрические потери в изоляции могут играть заметную роль только в трансформаторах, работающих при повышенной частоте, а в силовых трансформаторах, рассчитанных на частоту 50 Гц, даже при классах напряжения 500 и 750 кВ, обычно малы и могут не учитываться. Также не учитываются в силовых трансформаторах основные потери в первичной обмотке, составляющие обычно менее 1 % потерь холостого хода. Потери в элементах конструкции трансформатора при холостом ходе относительно невелики и учитываются вместе с другими добавочными потерями.

Магнитные потери — потери в активной стали магнитной системы — составляют основную часть потерь холостого хода и могут быть разделены на потери от гистерезиса и вихревых токов. Для современной холоднокатаной электротехнической стали с толщиной 0,35 и 0,30 мм первые из них составляют до 25-35 и вторые до 75-65 % полных потерь.

В практике при частоте 50 Гц обычно определяют магнитные потери, не разделяя их, и пользуются экспериментально установленной зависимостью между индукцией и удельными потерями в стали. Поскольку при заданной частоте и равномерном распределении индукции потери в единице массы стали однозначно определяются индукцией, эту зависимость выражают в форме потерь в единице массы стали р, Вт/кг, при заданной индукции. Данные экспериментального исследования стали сводятся в таблицы или изображаются кривой удельных потерь p=f(B). Удельные, а также общие потери в стали изменяются с изменением индукции В и частоты f. При необходимости проведения приближенных пересчетов потерь с изменением частоты или индукции можно пользоваться приближенной формулой

 (8.27)

где для холоднокатаной стали n=l,25; m = 2 при B=1,0÷1,5 Тл и m=3 при B=1,5÷1,8 Тл. Для горячекатаной стали n = l,3; m=2 при В=1,0÷1,5 Тл.

Следует помнить, что качество электротехнической стали различного происхождения может быть различным. Поэтому при расчете всегда следует пользоваться таблицами или кривыми, относящимися к фактически применяемой стали.

Удельные потери в холоднокатаной стали марок 3404, 3405, М6Х и М4Х приведены в табл 8.10. При использовании стали марки 3406 толщиной 0,27 мм можно пользоваться данными для стали марки М4Х толщиной 0,28 мм в этой таблице, а также табл. 8.11, 8.13 и 8.14.

Магнитная индукция в стержнях и ярмах плоской шихтованной магнитной системы определяется для рассчитанного напряжения витка обмотки и окончательно установленных значений активных сечений стержня Пс и ярма Пя,

 (8.28)

 (8.29)

Потери холостого хода трансформатора, плоская шихтованная магнитная система которого собрана из пластин, определяются ее конструкцией, массой стали отдельных участков системы, индукцией на каждом из этих участков, качеством стали, толщиной пластин и технологией изготовления и обработки пластин.

Потери холостого хода в магнитной системе, собранной из пластин горячекатаной стали,

 (8.30)

где pc и ря — удельные потери в 1 кг стали стержня и ярма, зависящие от индукций Вc и Вя, марки и толщины листов стали, приведенные для стали марок 1512 и 1513 по ГОСТ 21427-83 в табл. 8.9; kд — коэффициент, учитывающий добавочные потери, возникающие вследствие неравномерности распределения индукции механических воздействий на сталь при заготовке пластин и сборке остова, потери в крепежных деталях и др.

Диаметр стержня d, м До 0,2 0,2-0,3 0,3-0,5 Более 0,5
Ярмо прямоугольного

сечения kд

1,0-1,01 1,02-1,05 1,05-1,10 1,10-1,15
Ярмо ступенчатого

сечения кд

1,0 1,0-1,02 1,03-1,05 1,05-1,07

При расчете потерь в плоской шихтованной магнитной системе, собранной из пластин холоднокатаной текстурованной анизотропной стали, необходимо учитывать свойства самой стали и конструктивных и технологических факторов.

 Таблица 8.9. Удельные потери в стали р и в зоне шихтованного стыка рз для горячекатаной стали марок 1512 и 1513 и холоднокатаной стали марок 3411, 3412 и

3413 толщиной 0,35 мм при различных индукциях и f=50 Гц

В, Тл Горячекатаная сталь Холоднокатаная сталь
р, Вт/кг р, Вт/кг рз, Вт/м2
1512 1513 3411 3412 3413 3411,3412,3413
0,60 0,515 0,450
0,70 0,605 0,524
0,80 0,76 0,656
0,90 0,962 0,836 0,662 0,582 0.503
1,00 1,20 1,05 0,80 0,70 0,60 80
1,10 1,46 1,29 0,95 0,825 0,71 120
1,20 1,76 1,56 1,12 0,97 0,83 175
1,30 2,09 1,85 1,31 1,13 0,97 250
1,40 2,45 2,17 1,52 1.29 1,13 350
1,45 2,63 2,34 1,64 1,40 1,22 425
1,50 2,80 2,50 1,75 1,50 1,30 500
1,60 2,07 1,79 1,55 650
1,65 2,29 2,00 1,73 725
1,70 2,50 2,20 1,90 800
1,80 3,00 2,72 2,00 850
1,90 3,95 3,58 3,15 860

 Примечание. Добавочные потери в зоне шихтованного стыка для горячекатаной стали не учитываются.

К конструктивным факторам следует отнести: форму стыков пластин в углах системы, форму поперечного сечения ярма, способ прессовки стержней и ярм. Из технологических факторов наибольшее влияние на потери в магнитной системе оказывают: резка рулонов стали на пластины, удаление заусенцев, образующихся при резке, отжиг пластин, покрытие их лаком, прессовка магнитной системы при сборке и перешихтовка верхнего ярма при установке обмоток.

Удельные потери в 1 кг стали при частоте 50 Гц и индукции от 0,2 до 2,0 Тл для современных марок холоднокатаной анизотропной стали по ГОСТ 21427-83 приведены в табл. 8.10 и частично в табл. 8.9. Следует учитывать, что эти данные справедливы для того случая, когда направление вектора индукции магнитного поля совпадает с направлением прокатки стали. При отклонении магнитного потока от направления прокатки следует считаться с увеличением удельных потерь, зависящим от угла α между этими направлениями. Степень увеличения потерь при индукции 0,5-1,5 Тл при разных углах для одной из марок холоднокатаной стали показана на рис. 2.14, а. С изменением угла изменяются только потери от гистерезиса. Потери от вихревых токов не зависят от этого угла. Поэтому в стали толщиной 0,35 мм, для которой потери от гистерезиса составляют меньшую часть общих потерь, общие потери с изменением угла α изменяются в меньшей степени, чем в стали толщиной 0,30 и 0,28 мм.

Пластины для стержней и ярм вырезаются так, чтобы продольная ось пластины была параллельной боковой кромке полосы рулона, т. е. совпадала с направлением прокатки стали. При этом в стержнях и большей части ярм направление вектора индукции магнитного поля будет совпадать с направлением прокатки (рис. 8.8, б).

Таблица 8.10. Удельные потери в стали р и в зоне шихтованного стыка рз для холоднокатаной стали марок 3404 и 3405 по ГОСТ 21427-83 и для стали иностранного производства марок М6Х и М4Х толщиной 0,35, 0,30 и 0,28 мм при различных индукциях и f=50 Гц

р, Вт/кг рз, Вт/м2
В, Тл 3404, 0,35мм 3404,

0,30мм

3405,

0,30мм

М4Х,

0,28мм

Одна пластина Две пластины
0,20 0,028 0,025 0,023 0,018 25 30
0,40 0,093 0,090 0,085 0,069 50 70
0,60 0,190 0,185 0,130 0,145 100 125
0,80 0,320 0,300 0,280 0,245 170 215
1,00 0,475 0,450 0,425 0,370 265 345
1,20 0,675 0,635 0,610 0,535 375 515
1,22 0,697 0,659 0,631 0,555 387 536
1,24 0,719 0,683 0,652 0,575 399 557
1,26 0,741 0,707 0,673 0,595 411 578
1,28 0,763 0,731 0,694 0,615 423 589
1,30 0,785 0,755 0,715 0,635 435 620
1,32 0,814 0,779 0,739 0,658 448 642
1,34 0,843 0.803 0,763 0,681 461 664
1,36 0,872 0,827 0,787 0,704 474 686
1,38 0,901 0,851 0,811 0,727 497 708
1,40 0,930 0,875 0,835 0,750 500 730
1,42 0,964 0,906 0,860 0,778 514 754
1,44 0,998 0,937 0,869 0,806 526 778
1,46 1,032 0,968 0,916 0,834 542 802
1,48 1,066 0,999 0,943 0,862 556 826
1,50 1,100 1,030 0,970 0,890 570 850
1,52 1,134 1,070 1,004 0,926 585 878
1,54 1,168 1,110 1,038 0,962 600 906
1.56 1,207 1,150 1.074 1,000 615 934
1,58 1,251 1,190 1,112 1,040 630 962
1,60 1,295 1,230 1,150 1,080 645 990
1,62 1,353 1,278 1,194 1,132 661 1017
1,64 1,411 1,326 1,238 1,184 677 1044
1,66 1,472 1,380 1,288 1,244 695 1071
1,68 1,536 1,440 1,344 1,312 709 1098
1,70 1,600 1,500 1,400 1,380 725 1125
1,72 1,672 1,560 1,460 1,472 741 1155
1,74 1,744 1,620 1,520 1,564 757 1185
1,76 1,824 1,692 1,588 1,660 773 1215
1,78 1,912 1,776 1,664 1,760 789 1245
1,80 2,000 1,860 1,740 1,860 805 1275
1,82 2,090 1,950 1,815 1,950 822 1305
1,84 2,180 2,040 1,890 2,040 839 1335
1,86 2,270 2,130 1,970 2,130 856 1365
1,88 2,360 2,220 2,060 2,220 873 1395
1,90 2,450 2,300 2,150 2,400 890 1425
1,95 2,700 2,530 2,390 2,530 930 1500
2,00 3,000 2,820 2,630 2,820 970 1580

Примечание: 1.Удельные потери для стали марки 3405 толщиной 0,35мм принимать по графе для стали 3404 толщиной 0,30мм.

2.Удельные потери для стали М6Х толщиной 0,35мм принимать по графе для стали 3404 той же толщины.

3.В двух последних графах приведены удельные потери рз, Вт/м2, в зоне шихтового стыка при шихтовке слоями в одну и две пластины одинаковые для всех марок.

При сборке магнитной системы из пластин прямоугольной формы с прямыми стыками по рис. 8.8, а, б в углах магнитной системы, т. е. в частях ярм, заштрихованных на этом рисунке, угол α между вектором магнитной индукции и направлением прокатки будет изменяться от 0 до 900. Общее увеличение удельных потерь по всему объему заштрихованных частей в углах магнитной системы можно оценить коэффициентом kп,y, зависящим от формы стыка, марки стали, толщины пластин и индукции. При косых стыках по рис. 8.8, в в углах магнитной системы также возникают добавочные потери, меньшие, чем при прямых стыках. В этом случае зона несовпадения направления индукционных линий с направлением прокатки ограничивается меньшим объемом стали, прилегающей к стыку пластин. Для диапазона индукции 0,9-1,9 Тл коэффициент kп,y для прямых и косых стыков может быть принят по табл. 8.11.

 Таблица 8.11. Коэффициент kп,y, учитывающий увеличение потерь в углах магнитной системы, для стали разных марок при косом и прямом стыках для диапазона индукций В=0,9÷1,7 Тл при f=50Гц.

Стык kп,y 3412,

0,35мм

3413,

0,35мм

3404,

0,35мм

3404,0,30мм;

3405, 0,35мм

3405,

0,30мм

М6Х,

0,35мм

М4Х,

0,28мм

Косой k’п,y 1,15 1,22 1,32 1,35 1,36 1,29 1,40
Прямой k»п,y 1,60 1,78 1,96 2,02 2,08 1,87 2,20

 Примечание: 1.При индукции В=1,8 Тл коэффициент, полученный из таблицы, умножить при косом стыке на 0,96, при прямом на 0,93; при В=1,9 Тл – на 0,85 и 0,67 соответственно.

2.При комбинированном стыке на среднем стержне по рис. 2.17,в принимать kп,y= (k’п,y+ k»п,y)/2

Непосредственно в зоне стыка в шихтованной магнитной системе происходит увеличение индукции и часть индукционных линий из одной пластины в другую переходит перпендикулярно поверхности пластин (рис. 8.9). Вследствие этого непосредственно в зоне стыка возникают добавочные потери, которые определяются по общей поверхности стыка (зазора) и удельным потерям на 1 м2 поверхности.

Рис. 8.8.Части магнитной системы, в которых возникают увеличенные

потери в холоднокатаной стали при прямых и косых стыках.

Эти удельные потери рз для холоднокатаной стали приведены в табл. 8.10 и частично 8.9. Индукция для определения рз при прямых стыках принимается равной индукции в стержне для стыков, перпендикулярных оси стержня, и индукции в ярме для стыков, перпендикулярных оси ярма. Для косых стыков следует принимать Взс/√2, где Вс – индукция в стержне.

Рис. 8.9. Немагнитный зазор: а – в стыковой магнитной

системе; б – в шихтовой магнитной системе.

Площадь зазора (стыка) Пз принимается для прямых стыков равной активному сечению стержня Пс или ярма Пя, для косых стыков Пз = √2Пс.

Форма сечения ярма может влиять на распределение индукции по сечению ярма и стержня (см. § 2.3). Если число ступеней в сечении ярма равно или отличается на одну-две ступени от числа ступеней в сечении стержня, то распределение индукции в ярме и стержне можно считать равномерным и принять коэффициент увеличения потерь, зависящий от формы сечения ярма, kп,я =1,0. Для ярма с соотношением числа ступеней стержня и ярма, равным трем, kп,я=1,04; равным шести, kп,я =1,06 и для ярма прямоугольного сечения kп,я =1,07.

Для прессовки стержней и ярм при сборке остова трансформатора используются его различные конструктивные детали. В зависимости от мощности трансформатора способ прессовки может быть выбран в соответствии с рекомендациями табл. 8,12. В этой же таблице приведены коэффициенты kп,п и kт,п для учета влияния прессовки на потери и ток холостого хода.

Таблица 8.12. Способы прессовки стержня и ярма и коэффициенты kп,п и kт,п для учета влияния прессовки на потери и ток холостого хода.

S, кВ·А Способ прессовки Сталь отожжена Сталь не отожжена
стержня ярма kп,п kт,п kп,п kт,п
До 630 Расклинивание

С обмоткой

Ярмовые балки без бандажей 1,03 1,045 1,02 1,04
1000-6300 Бандажи из стеклоленты То же 1,03 1,05 1,025 1,04
10000 и более То же Ярмовые балки с бандажами 1,04 1,06 1,03 1,05

Некоторые технологические факторы также оказывают влияние на потери холостого хода. Продольная резка полосы рулона стали на ленты и поперечная резка ленты на пластины приводят к возникновению внутренних механических напряжений в пластинах и увеличению удельных потерь в стали. Это увеличение может быть учтено введением коэффициента kп,р, который для отожженной стали марок 3404 и 3405 может быть принят равным 1,05 и для неотожженной 1,11. Для отожженной стали марок М4Х и МбХ kп,р=1,025 и для неотожженной 1,05.

При нарезке пластин из полосы рулона на линии среза образуются заусенцы. Удаление этих заусенцев при помощи ножей приводит к повышению удельных потерь, которое может быть учтено коэффициентом kп,з: kп,з =1 для отожженных пластин и 1,02 для неотожженных. Если заусенцы не сняты, то kп,з = 1,02 и 1,05 соответственно. Для пластин шириной более 0,3-0,4 м kп,з=1.

Покрытие пластин изоляционной лаковой пленкой увеличивает потери в kп,л= 1 раз при воздушном охлаждении пластин и в kп,л=1,04 раза при водяном охлаждении.

Перешихтовка верхнего яма остова при установке обмоток приводит к увеличению потерь, учитываемому коэффициентом kп,ш. При мощности трансформатора до 250 кВ·А kп,ш=1,01, при 400-630 кВ·А — 1,02, при 1000-6300 кВ·А — 1,04-1,08 и при 10000 кВ·А и более — 1,09. Шихтовка магнитной системы в одну или две пластины в слое влияет на удельные потери и учитывается в табл. 8.10. В связи с необходимостью учета увеличения потерь в холоднокатаной стали в углах ярм, т. е. в частях ярм, заштрихованных на рис. 8.8, б, определение массы стали и потерь в магнитной системе в этом случае удобно производить в следующем порядке.

Масса стержней определяется по (8.11) (для ярма е прямоугольной формой сечения Gc»=0), и потери в них рассчитываются, как обычно, по индукции стержня и табличным данным удельных потерь рс для стали применяемой марки.

Масса ярм разделяется на две части. Масса стали частей, заштрихованных на рис. 8.8, для трехфазного трансформатора равна шестикратной и для однофазного трансформатора — четырехкратной массе угла Gy, определяемой по (8.5), (8.6) или (8.7). Масса стали незаштрихованных частей определяется как разность G’я – 4Gy для трехфазного и G’‘я – 2Gy для однофазного трансформатора. Следовательно, полная масса стали двух ярм может быть представлена для трехфазного трансформатора в виде

 (8.31)

для однофазного – в виде

 (8.31а)

В той части массы стали ярм, которая определяется разностью, в правой части (8.31), возникают потери, определяемые обычным путем по индукции в ярме и удельным потерям ря. В массе стали углов помимо потерь, определяемых таким же путем, возникают добавочные потери, зависящие от прямой или косой формы стыков пластин стержней и ярм.

Для плоской трехфазной шихтованной магнитной системы современной трехстержневой конструкции с взаимным расположением стержней и ярм по рис. 2.5,д, собранной из пластин холоднокатаной анизотропной стали, с прессовкой стержней расклиниванием с внутренней обмоткой или бандажами, а ярм ярмовыми балками или балками с полубандажами, не имеющей сквозных шпилек в стержнях и ярмах, потери холостого хода могут быть рассчитаны по (8.32). Такая магнитная система имеет четыре угла на крайних и два на средних стержнях.

 (8.32)

Коэффициент увеличения потерь в углах может быть найден по формуле

Он зависит от формы стыков в углах крайних kп,у,кр и средних kп,у,ср стержней магнитной системы, коэффициенты для которых определяются по табл. 8.11. Значения kn,y, рассчитанные для различных сочетаний формы стыков приведены в табл. 8,13.

Таблица 8,13. Значения коэффициента kп,у для различного числа углов с косыми и прямыми стыками пластин плоской шихтованной магнитной системы для стали разных марок при В =0,9÷1,7 Тл и f=50 Гц.

Число углов со стыками Марка стали и ее толщина
косыми прямыми 3412,

0,35мм

3413,

0,35мм

3404,

0,35мм

3404, 0,30мм; 3405, 0,35мм 3405,

0,30мм

М6Х,

0,35мм

М4Х,

0,28мм

Трехфазная магнитная система (три стержня)
6 7,48 7,94 8,58 8,75 8,85 8,38 9,10
5* 1* 8,04 8,63 9,38 9,60 9,74 9,16 10,10
4 2 8,60 9,33 10,18 10,45 10,64 9,83 11,10
6 10,40 11,57 12,74 13,13 13,52 12,15 14,30
Однофазная магнитная система (два стержня)
4 4,60 4,88 5,28 5,40 5,44 5,16 5,60
4 6,40 7,18 7,84 8,08 8,32 7,48 8,80

*Комбинированный стык по рис.2.17,в.

Выражение ΣрзnзПз определяет потери в зоне стыков пластин магнитной системы с учетом числа стыков различной формы, площади зазора Пз для прямых и косых стыков, индукции в зазоре Вз и удельных потерь рз при этой индукции по табл. 8.10 и частично 8.9.

Для однофазного трансформатора со стержневой магнитной системой по рис, 2.5, а формула .(8.32) превращается в формулу ,(8.32а)

 (8.32а)

где kп,у=4kп,у,кр и может быть принят по табл. 8.13. При проведении предварительного расчета по обобщенному методу гл. 3 желательно иметь для определения потерь холостого хода более удобную на этом этапе расчета, но достаточно точную формулу. Произведение коэффициентов, стоящих в (8.32), с учетом того, что потери в зоне зазоров, определяемые как ΣрзnзПз, составляют от 2 до 4 % полных потерь холостого хода и могут быть учтены соответствующим коэффициентом, может быть рассчитано в соответствии с предыдущими указаниями данного параграфа и заменено одним коэффициентом kп,д. В этом случае по (8.32) получаем

 (8.33)

где kп,д — коэффициент, учитывающий добавочные потери, вызванные резкой стали, снятием заусенцев, прессовкой магнитной системы и перешихтовкой верхнего ярма, а также потери в зоне зазора, можно принять по табл. 8.14.

Таблица 8.14. Коэффициент добавочных потерь kп,д в (8.33) для стали марок 3404 и 3405.

S, кВ·А До 250 400-630 1000-6300 10000 и более
Пластины отожжены 1,12 1,13 1,15 1,20
Пластины не отожжены 1,22 1,23 1,26 1,31

Примечания: 1.Для стали марок М4Х и М6Х можно принять те же коэффициенты.

2.При прямоугольной форме поперечного сечения ярма коэффициент, полученный из таблицы, умножить на 1,07.

Следует заметить, что толщина электротехнической стали, из которой будет собрана магнитная система, согласно ГОСТ 21427-83 может отличаться от расчетной в пределах ±(6,5÷8,5)% для холоднокатаной и ± (8,5÷10)% для горячекатаной стали. Эти отклонения могут вызвать некоторое изменение коэффициента заполнения и индукции в магнитной системе, что в свою очередь приведет к отклонению действительных потерь холостого хода от расчетных.

Отклонение действительных потерь в готовом трансформаторе от расчетных может быть также следствием нестабильности качества стали, большего или меньшего увеличения потерь вследствие механических воздействий при заготовке пластин и сборке системы и других причин. Влияние этих факторов может складываться или вычитаться, но, как правило, в правильно рассчитанном трансформаторе отклонение действительных потерь от расчетных составляет в среднем не более ±(5÷8)%. Учитывая эти отклонения, в тех случаях, когда предельное значение потерь холостого хода трансформатора задано, расчетные потери следует выдерживать в пределах нормы ГОСТ или технических условий плюс половина допуска.

Рис. 8.10. Распределение индукции в стыковой

пространственной магнитной системе:1 — по

пакетам стержня;2 — по кольцевым пакетам

(слоям) ярма.

Согласно ГОСТ 11677-85 для потерь холостого хода в готовом трансформаторе установлен допуск +15 %. Таким образом, в расчете следует выдерживать потери холостого хода в пределах нормы соответствующего ГОСТ плюс 7,5 %.

Пространственная магнитная система по рис. 2.6,а, имеет свои особенности в распределении магнитного потока в стержнях и ярмах, которые должны учитываться при расчете потерь и тока холостого хода. Вследствие того, что ярмо этой системы имеет прямоугольную форму поперечного сечения при многоступенчатом сечении стержня, а также вследствие необычного стыкования торцовых поверхностей прямоугольных пакетов стержня с разными кольцевыми пакетами (слоями) ярма (рис. 8.5), возникает неравномерное распределение индукции по сечению стержня и ярма (рис. 8.10). Возникающие при этом добавочные потери, как показали исследования, могут быть учтены при расчете потерь путем умножения потерь в стержнях на kп,н,с=1,04 и потерь в ярмах на kп,н,я = 1,26.

При соединении первичной обмотки (обмотки ВН) в звезду без нулевого провода 3-я гармоническая тока холостого хода не может протекать в первичной обмотке, что приводит к появлению 3-й гармонической магнитного потока в магнитной системе.

Рис. 8.11. Форма кривой магнитного потока в ярме

пространственной магнитной системы (1-я и 3-я

 гармонические, результирующая кривая)

Эта составляющая магнитного потока вытесняется из параллельно соединенных стержней в кольцевые ярма, где ее начальная фаза совпадает с начальной фазой 1-й гармонической. В результате максимальное значение магнитного потока и индукции в ярмах уменьшается в 1,14 раза (рис. 8.11), что приводит к уменьшению удельных потерь в стали ярм ря и при расчете учитывается уменьшением индукции в ярмах.

Индукция в стержнях в этом случае рассчитывается по (8.28). Первая гармоническая индукции в прямых участках ярм может быть найдена по

 (8.34)

Максимальная индукция в прямых участках ярм с учетом 3-й гармонической Вяз определяется как

 (8.35)

Расчетная индукция в углах магнитной системы Ву находится с учетом индукции стержней и прямых участков ярм

 (8.36)

Появление 3-й гармонической магнитного потока в ярмах приводит также к искажению формы кривой Ф=f(t), увеличению удельных потерь в стали и общих потерь в ярмах. Это увеличение потерь учитывается путем введения коэффициента kп,и к потерям в ярмах, который для пространственных магнитных систем по рис. 2.6 можно принять kп,и = 1,33.

Изготовление ярм путем навивки из холоднокатаной ленты связано с механическими воздействиями на материал и существенными остаточными деформациями ленты, что приводит к значительному ухудшению ее магнитных свойств. Поэтому восстановительный отжиг навитых ярм в печах длительного действия является совершенно необходимым. При отсутствии отжига навитых ярм следует считаться с возможным увеличением потерь до двукратных и с существенно большим увеличением тока холостого хода. Пластины стержней должны подвергаться отжигу в проходных рольганговых печах.

При расчете потерь холостого хода следует учитывать также технологический фактор, т. е. увеличение потерь вследствие механических воздействий на пластины стали после отжига при сборке остова и всего трансформатора, несовершенство восстановительного отжига и т. д. Этот фактор может быть учтен путем введения коэффициента kп,т, зависящего от разных причин, и в том числе от уровня культуры производства того или иного завода. Этот коэффициент может быть принят kп,т = 1,0б.

С учетом сделанных замечаний формула для расчета потерь холостого хода в пространственной магнитной системе может быть представлена в виде

 (8.37)

Удельные потери в стали стержней, прямых участков ярм и углов магнитной системы рс, ря и ру определяются по табл. 8.10 для стали соответствующей марки по индукциям Вс, Вя и Ву. Коэффициент k»n,y выбирается по табл. 8.1 1 для той же стали при прямом стыке.

При проведении предварительного расчета по обобщенному методу гл. 3 можно использовать формулу (8.37) в преобразованном виде

 (8.38)

где коэффициенты k’c, k’я, k’у, рассчитанные по (8.37) для стали 3404, индукции в стержне Вс от 1,5 до 1,65 Тл и для 1-й гармонической индукции в прямых участках ярм Вя= (1,0÷0,9)Вс, могут быть взяты из табл. 8.15. Для других сталей эти коэффициенты могут быть подсчитаны на основании (8.37). В коэффициенты k’c, k’я, k’у, в табл. 8.15 включены соответственно удельные потери рс, ря, ру.

Таблица 8.15. Значения коэффициента k’c, k’я и k’у в (8.38) для пространственной магнитной системы. Сталь марки 3404.

Коэффициенты Индукция в стержне Вс, Тл
k’c 1,5 1,55 1,6 1,65
1,21 1,32 1,45 1,61
k’я Вя1=Вс 1,43 1,55 1,68 1,81
Вя1=0,95Вс 1,27 1,37 1,48 1,59
Вя1=0,9Вс 1,04 1,16 1,29 1,41
k’у Вя1=Вс 5,65 6,08 6,60 7,05
Вя1=0,95Вс 5,70 6,12 6,82 7,27
Вя1=0,9Вс 5,78 6,35 7,05 7,60

При расчете потерь холостого хода в пространственной магнитной системе по рис. 2.6, б, состоящей из трех навитых колец, следует учитывать, что при расчетной индукции в стержне Вс 1-я гармоническая индукция в отдельных кольцах Вк1 в 2√3= 1,15 раза больше (см. § 2.1), т. е. Bк1=1,15 Вс. При этом в каждом из навитых колец возникает гармоническая магнитного потока по рис 8.12 и максимальное значение индукции уменьшается в 1,14 раза. Таким образом, максимальную индукцию, определяющую удельные потери в стали, в такой магнитной системе можно принять равной расчетной индукции Вкс.

Искажение формы кривой магнитного потока и индукции в этом случае можно учесть введением коэффициента kп,и=1,33.

Для учета технологического фактора можно ввести коэффициент kп,т = 1,06.

Поскольку в рассматриваемой магнитной системе понятие угла не имеет места и однородность каждого кольца при расчете потерь позволяет не разделять его на стержни и ярма, формула для расчета потерь в окончательном и предварительном расчете получает вид

 (8.39)

где масса стали магнитной системы Gст определяется по (8.26).

8.3. ОПРЕДЕЛЕНИЕ ТОКА ХОЛОСТОГО ХОДА ТРАНСФОРМАТОРА

Ток первичной обмотки трансформатора, возникающий при холостом ходе при номинальном синусоидальном напряжении и номинальной частоте, называется током холостого хода.

При расчете тока холостого хода трансформатора отдельно определяют его активную и реактивную составляющие.

Активная составляющая тока холостого хода вызывается наличием потерь холостого хода. Активная составляющая тока, А,

 (8.40)

где Рх — потери холостого хода, Вт; Uф — фазное напряжение первичной обмотки, В.

Обычно определяют не абсолютное значение тока холостого хода и его составляющих, а их относительное значение по отношению к номинальному току трансформатора i0, i0a,i0p, выражая их в процентах номинального тока.

Тогда активная составляющая, %,

 (8.41)

или

где S — мощность трансформатора, кВ·А; Рx — потери холостого хода, Вт.

Расчет реактивной составляющей тока холостого хода усложняется наличием магнитной цепи трансформатора немагнитных зазоров. При этом расчете магнитная система трансформатора разбивается на четыре участка — стержни, ярма, за исключением углов магнитной системы, углы и зазоры. Для каждого из этих участков подсчитывается требуемая намагничивающая мощность, суммируемая затем по всей магнитной системе. Так же как и потери, реактивная составляющая тока холостого хода зависит от основных магнитных свойств стали магнитной системы и ряда конструктивных и технологических факторов, оказывающих на эту составляющую существенно большее влияние, чем на потери.

Немагнитные зазоры в шихтованной магнитной системе имеют особую форму — в месте зазора стыки пластин чередуются со сквозными пластинами (см. рис. 8.9, б). Магнитный поток в месте стыка проходит частично через зазор между пластинами и частично — через соседнюю сквозную пластину. Индукция в сквозных пластинах в зоне, лежащей против стыков, увеличивается. Вместе с этим происходит местное увеличение потерь и реактивной составляющей тока холостого хода, однако общая намагничивающая мощность для зазора оказывается существенно меньшей, чем при стыке частей стыковой магнитной системы по рис. 8.9, а.

Таблица 8.16. Полная удельная намагничивающая мощность в стали q и в зоне шихтованного стыка qз для горячекатаной стали марок 1512 и 1513 и холоднокатаной стали марок 3411, 3412 и 3413 толщиной 0,35 мм при различных индукциях и f = 50 Гц

В, Тл Горячекатаная сталь Холоднокатаная сталь
q, В·А/кг qз, В·А/м2 q, В·А/кг qз, В·А/м2
1512-1513 1512-1513 3411 3412 3413 3411,3412,

3413

0,70 2,25 1250
0,80 2,75 1880
0,90 3,50 3030
1,00 4,60 4910 1,45 1,22 1,00 1660
1,10 6,50 7760 1,91 1,53 1,25 2220
1,20 10,0 11760 2,44 2,02 1,57 2770
1,30 15,7 17220 3,17 2,51 2,00 5550
1,40 25,8 24570 4,47 3,55 2,70 11100
1,45 33,4 29650 5,43 4,30 3,22 13900
1,50 43,5 34200 6,75 5,30 3,85 16700
1,55 9,65 7,10 4,85 21700
1,60 14,25 10,00 6,20 26600
1,65 23,20 15,70 9,00 34600
1,70 38,30 27,00 14,00 44400
1,75 75,30 52,00 25,60 59400
1,80 150,00 110,0 50,00 76000
1,90 830,0 350,0 140000

Примечание. Значения qз даны для шихтовки слоями в две пластины.

Таблица 8.17. Полная удельная намагничивающая мощность в стали q и в зоне шихтованного стыка qз для холоднокатаной стали марок 3404 и 3405 толщиной 0,35 и 0,30 мм при различных индукциях и f=50 Гц

  В, Тл Марка стали и ее толщина qз, В·А/м2
  3404, 0,35мм 3404,

0,30мм

3405,

0,35мм

3405,

0,30мм

3404 3405
0,20 0,040 0,040 0,039 0,038 40 40
0,40 0,120 0,117 0,117 0,115 80 80
0,60 0,234 0,230 0,227 0,223 140 140
0,80 0,375 0,371 0,366 0,362 280 280
1,00 0,548 0,540 0,533 0,525 1000 900
1,20 0,752 0,742 0,732 0,722 4000 3700
1,22 0,782 0,768 0,758 0,748 4680 4160
1,24 0,811 0,793 0,783 0,773 5360 4620
1,26 0,841 0,819 0,809 0,799 6040 5080
1,28 0,870 0,844 0,834 0,824 6720 5540
1,30 0,900 0,870 0,860 0,850 7400 6000
1,32 0,932 0,904 0,892 0,880 8200 6640
1,34 0,964 0,938 0,924 0,910 9000 7280
1,36 0,996 0,972 0,956 0,940 9800 7920
1,38 1,028 1,006 0,988 0,970 10600 8560
1,40 1,060 1,040 1,020 1,000 11400 9200
1,42 1,114 1,089 1,065 1,041 12440 10120
1,44 1,168 1,139 1,110 1,082 13480 11040
1,46 1,222 1,188 1,156 1,123 14520 11960
1,48 1,276 1,238 1,210 1,161 15560 12880
1,50 1,330 1,289 1,246 1,205 16600 13800
1,52 1,408 1,360 1,311 1,263 17960 14760
1,54 1,486 1,431 1,376 1,321 19320 15720
1,56 1,575 1,511 1,447 1,383 20700 16800
1,58 1,675 1,600 1,524 1,449 22100 18000
1,60 1,775 1,688 1,602 1,526 23500 19200
1,62 1,958 1,850 1,748 1,645 25100 20480
1,64 2,131 2,012 1,894 1,775 26700 21760
1,66 2,556 2,289 2,123 1,956 28600 23160
1,68 3,028 2,681 2,435 2,188 30800 24680
1,70 3,400 3,073 2,747 2,420 33000 27000
1,72 4,480 4,013 3,547 3,080 35400 28520
1,74 5,560 4,953 4,347 3,740 37800 30840
1,76 7,180 6,364 5,551 4,736 40800 33000
1,78 9,340 8,247 7,161 6,068 44400 35000
1,80 11,500 10,130 8,770 7,400 48000 37000
1,82 20,240 17,670 15,110 12,540 52000 39800
1,84 28,980 25,210 21,450 17,680 56000 43600
1,86 37,720 32,750 27,790 22,820 60000 47400
1,88 46,660 40,290 34,130 27,960 64000 51200
1,90 55,200 47,830 40,740 33,100 68000 55000
1,95 89,600 82,900 76,900 70,800 80000 65000
2,00 250,000 215,000 180,000 145,000 110000 75000
               

Примечание. В двух последних графах приведена удельная намагничивающая мощность qз, В·А/м2, в зоне шихтованного стыка при шихтовке слоями в две пластины. При шихтовке в одну пластину данные qз, полученные из таблицы, умножить на 0,82 для стали марки 3404 и на 0,78 для стали марки 3405.

В практике расчета намагничивающая мощность для зазоров шихтованных магнитных систем, собираемых из пластин горячекатаной или холоднокатаной стали, определяется для условного немагнитного зазора, подобного зазору по рис. 8.9, а, по площади сечения стали в данном стыке, т. е, по активному сечению стержня или ярма, и по удельной намагничивающей мощности, отнесенной к единице площади активного сечения, qз, В·А/м2, и определяемой экспериментально для каждой марки стали.

Удельные намагничивающие мощности для стали марок 3404 и 3405 приведены в табл. 8.17 и для марок М6Х и М4Х — в табл. 8.18. При использовании стали марки 3406 толщиной 0,27 мм можно пользоваться данными для стали М4Х толщиной 0,28 мм в табл. 8.18.

При экспериментальных исследованиях стали удельная намагничивающая мощность, отнесенная к 1 кг стали или к 1 м2 площади зазора, q может определяться как полная мощность или как ее реактивная составляющая.

В табл. 8.16-8.18 приведены значения полной удельной намагничивающей мощности.

При расчете тока холостого хода для плоской шихтованной магнитной системы, собранной из пластин горячекатаной стали, не имеющей заметной анизотропии магнитных свойств, намагничивающая мощность для стержней и ярм, включая углы магнитной системы, определяется как произведение соответствующей удельной мощности qс или qя находимой для выбранной марки стали и индукции, на массу стали стержней или ярм данной магнитной системы.

Таблица 8.18. Полная удельная намагничивающая мощность в стали q и в зоне шихтованного стыка qз для стали иностранного производства марок М6Х и М4Х толщиной 0,35 и 0,28 мм при различных индукциях и f=50 Гц

В, Тл q, В·А/кг qз, В·А/м2
М6Х, 0,35мм М4Х, 0,28мм Одна пластина Две пластины
М6Х, М4Х М6Х М4Х
0,40 0,126 0,091 80 80 80
0,80 0,390 0,297 280 280 280
1,00 0,585 0,432 900 1000 1100
1,10 0,670 0,507 1900 2200 2500
1,20 0,790 0,597 3700 4000 4400
1,30 0,935 0,716 6000 7400 8400
1,40 1,120 0,872 9200 11400 13400
1,50 1,380 1,075 13800 16600 20000
1,55 1,575 1,250 16200 20000 24000
1,60 1,850 1,560 19200 23500 30000
1,65 2,340 2,080 22400 27500 36000
1,70 3,530 3,073 26200 33000 44000
1,75 6,350 5,423 32000 39000 54000
1,80 11,500 10,130 37000 48000 64000
1,90 55,200 47,850 55000 68000 86000
1,95 89,000 82,900 65000 80000 100000
2,00 250,000 215,000 75000 94000 115000

Полная намагничивающая мощность трансформатора, В·А, для магнитной системы из горячекатаной стали может быть выражена следующей формулой:

 (8.42)

где qс и qя — удельные намагничивающие мощности для стержня и ярма, определяемые по табл. 8.16 для горячекатаной стали в зависимости от соответствующих индукций, В·А/кг; Gc и Gя — массы стали в стержнях и ярмах, кг; nз — число немагнитных зазоров (стыков) в магнитной системе; qз — удельная намагничивающая мощность, В·А/м2, для немагнитных зазоров, определяемая для индукции в стержне или ярме по табл. 8.16; Пз — площадь зазора, т. е. активное сечение стержня или ярма, м2.

При расчете тока холостого хода для плоской стержневой шихтованной магнитной системы, собранной из пластин холоднокатаной анизотропной стали, так же как и при расчете потерь холостого хода, приходится считаться с факторами конструктивными — форма стыков стержней и ярм, форма сечения ярма, способ прессовки стержней и ярм — и технологическими — резка рулонов стали на пластины, удаление заусенцев, отжиг пластин, покрытие их лаком, прессовка магнитной системы при сборке и перешихтовка верхнего ярма при установке обмоток.

От воздействия этих факторов реактивная составляющая тока холостого хода увеличивается при несовпадении направлений линий магнитной индукции и прокатки стали, а также в результате механических воздействий при заготовке пластин и сборке остова. Отжиг пластин ведет к уменьшению реактивной составляющей тока холостого хода. На токе холостого хода влияние этих факторов сказывается более резко, чем на потерях.

Для плоской трехфазной шихтованной магнитной системы современной трехстержневой конструкции с взаимным расположением стержней и ярм по рис. 2.5, д, собранной из пластин холоднокатаной анизотропной стали, с прессовкой стержней расклиниванием с внутренней обмоткой или бандажами, а ярм ярмовыми балками с полубандажами, не имеющей сквозных шпилек в стержнях и ярмах, полная намагничивающая мощность может быть рассчитана по формуле

 (8.43)

где Gc, С’я и Gy — массы стали стержней и отдельных частей ярм, определяемые так же, как и при расчете потерь холостого хода, кг; qc и qя — удельные намагничивающие мощности для стали стержней и ярм по табл. 8.17 и 8.18, В·А/кг; qз — удельная намагничивающая мощность для зазоров, определяемая по табл. 8.17 и 8.18 по индукциям для прямых и косых стыков аналогично рз при расчете потерь холостого хода, В·А/м2; Пз — площадь зазора, определяемая так же, как и при расчете потерь холостого хода, м2; kт,р — коэффициент, учитывающий влияние резки полосы рулона на пластины; для отожженной стали марок 3404 и 3405 kт,р=1,18, для неотожженной 1,49; для стали марок М4Х и М6Х — соответственно 1,11 и 1,225; kт,з — коэффициент, учитывающий влияние срезания заусенцев; для отожженных пластин kт,з=1,0 и для неотожженных 1,01. Если заусенцы не сняты, то соответственно 1,02 и 1,05; kт,пл — коэффициент, учитывающий ширину пластин в углах магнитной системы по табл. 8.21; kт,я — коэффициент, учитывающий форму сечения ярма, kт,я = 1,0 для ярма многоступенчатого сечения. При соотношении числа ступеней стержня и ярма, равном трем, kт,я = 1,04; при соотношении, равном шести, kт,я=1,06; для ярма прямоугольного сечения kт,я=1,07; kт,п — коэффициент, учитывающий прессовку магнитной системы по табл. 8.12; kт,ш — коэффициент, учитывающий перешихтовку верхнего ярма, равный 1,01 при мощности трансформатора до 250 кВ·А; 1,02 при мощностях 400-630 кВ·А; 1,04-1,08 при мощностях 1000-6300 кВ·А и 1,09 при мощностях 10000 кВ·А и более.

Шихтовка магнитной системы в одну или в две пластины в слое учитывается в удельном значении qз по табл. 8.17 и 8.18. Покрытие пластин изоляционной лаковой пленкой при воздушном охлаждении пластин увеличивает значение q в отношении 1,04 и при водяном охлаждении — в отношении 1,18.

Выражение kт,у=4kт,у,кр+2·1,25kт,y,ср зависит от формы стыков в крайних kт,у,кр и средних kт,у,ср стержнях магнитной системы. Соответствующие коэффициенты для косых k’т,y и прямых k»т,у стыков пластин для различных марок стали и различных значений индукции от 0,2 до 1,9 Тл приведены в табл. 8.19.

Таблица 8.19. Значения коэффициента kт,у, учитывающие увеличение намагничивающей мощности в углах магнитной системы для стали различных марок при косом и прямом стыках для диапазона индукции 0,20-1,90 Тл при f=50 Гц.

В, Тл Косой стык, k’т,y Прямой стык, k»т,у
3404 и 3405,

0,35 и 0,30 мм

М6Х,

0,35 мм

М4Х,

0,28 мм

3404 и 3405,

0,35 и 0,30 мм

М6Х,

0,35 мм

М4Х,

0,28 мм

0,20 1,3 1,3 1,3 1,8 1,8 1,8
0,60 1,4 1,4 1,4 2,2 2,2 2,2
0,80 1,7 1,7 1,7 2,9 3,0 2,9
1,00 2,2 2,3 2,2 4,5 4,7 4,0
1,20 2,9 3,2 2,8 6,8 7,2 6,0
1,40 4,0 4,4 3,4 9,0 10,4 7,4
1,50 4,3 4,7 3,6 9,8 11,6 8,0
1,60 4,3 5,0 3,5 10,1 12,5 8,1
1,70 4,0 4,7 3,4 9,8 11,6 7,4
1,80 3,4 4,0 2,7 8,0 9,8 6,2
1,90 1,3 1,3 1,3 2,2 2,4 2,0

Примечание. Для стали марок 3412 или 3413 толщиной 0,35 мм при всех значениях индукции значения k’т,y (косой стык), полученные из таблицы для стали 3404, умножить на 0,65 или 0,80 и значения k»т,у (прямой стык) – на 0,56 или 0,78 соответственно.

В табл. 8.20 для стали марок 3404 и 3405 приведены значения kт,у, рассчитанные для зоны индукции от 1,4 до 1,9 Тл.

Таблица 8.20. Значения коэффициента kт,у для различного числа углов с косыми и прямыми стыками пластин плоской шихтовой магнитной системы для стали марок 3404 и 3405 толщиной 0,35 и 0,30 мм при f=50 Гц.

Число углов со стыками Индукция В, Тл
косыми прямыми 1,4 1,5 1,6 1,7 1,8
Трехфазная магнитная система (три стержня)
6 26,0 27,95 27,95 26,0 22,10
5* 1* 32,25 34,83 35,20 33,25 27,85
4 2 38,5 41,7 42,45 40,5 33,66
6 58,5 64,7 65,6 64,7 52,0
Однофазная магнитная система (два стержня)
4 16,0 17,2 17,2 16,0 13,6
4 36,0 39,2 40,4 39,2 32,0

*План шихтовки по рис. 2.17,в.

Для однофазного трансформатора со стержневой магнитной системой по рис. 2.5, а формула превращается в формулу ,(8.43а)

 (8.43а)

где kт,у=4kт,у,кр для стали марок 3404 и 3405 может быть принят по табл. 8.20.

Для использования в предварительном расчете по методу гл. 3 формула (8.43) может быть преобразована к виду

 (8.44)

Для плоской трехфазной шихтованной магнитной системы с многоступенчатой формой сечения ярма с отжигом пластин, нарезанных из стали марок 3404 и 3405, коэффициент k’т,д=1,20, без отжига пластин 1,55; для стали марок М4Х и М6Х — соответственно 1,13 и 1,36.

Коэффициент k»т,д при отжиге пластин и без отжига для трансформаторов мощностью до 250 кВ·А равен 1,06, от 400 до 630 кВ·А — 1,06; от 1000 до 6300 кВ·А — 1,07; 10000 и более — 1,15. Для тех же мощностей kт,пл принимается по табл. 8.21. При прямоугольной форме сечения ярма коэффициент k»т,д умножить на 1,07.

Таблица 8.21. Значения коэффициента kт,пл, учитывающего увеличение намагничивающей мощности в углах магнитной системы в зависимости от ширины пластины второго пакета а2 для холоднокатаной стали.

В, Тл Ширина пластины второго пакета а2, м
0,05 0,10 0,20 0,30 0,40 0,50 0,60 0,70
0,8-1,00 1,30 1,25 1,20 1,17 1,15 1,14 1,13 1,12
 1,10 и 1,90 1,40 1,27 1,21 1,18 1,16 1,15 1,14 1,13
1,20 и 1,80 1,50 1,30 1,22 1,19 1,17 1,16 1,15 1,14
1,30 и 1,70 1,70 1,38 1,25 1,21 1,18 1,17 1,16 1.15
1,40 и 1,60 2,00 1,50 1,35 1,25 1,20 1,19 1,18 1,16
1,50 3,00 2,00 1,50 1,35 1,30 1,25 1,20 1,18

Удельная намагничивающая мощность qз определяется по индукции стержня Вс для прямых стыков и по индукции Вс/√2для косых стыков. Сечение зазора Пзс для прямых стыков и Пзс√2для косых стыков; nз — число немагнитных зазоров с данной формой стыка.

В плоских стыковых магнитных системах из холоднокатаной стали расчет намагничивающей мощности можно вести по (8.43) с заменой последнего слагаемого в квадратных скобках на

 (8.45)

где δз — немагнитный зазор, δзn+0,0005 м; δn — толщина прокладки в стыке, м; uв — напряжение одного витка обмотки, В.

В стыковой пространственной магнитной системе по рис. 2.6, а и 8.10 большую часть — от 80 до 88 % намагничивающей мощности для всей системы определяют немагнитные зазоры в стыках между стержнями и ярмами.

Рис. 8.12. Схема стыков в пространственной

магнитной системе:1 — верхнее ярмо; 2 – верхний

 немагнитный зазор; 3 — немагнитная прокладка;

4 — стержень; 5 — нижний зазор, заполненный

 магнитным клеем; 6 — крестообразная немагнитная

прокладка; 7 — нижнее ярмо.

Намагничивающая мощность для зазора существенно зависит от действительного размера зазора, определяемого конструкцией стержней и ярм и технологией их сборки. На рис. 8.12 показана возможная схема организации стыков стержня с нижним и верхним ярмами. Одна из торцовых поверхностей стержня, в данном случае верхняя, при сборке на магнитной плите не имеет гребенчатой формы и может считаться плоской. Вторая торцовая поверхность стержня имеет вид гребенки с высотой выступов, определяемой допуском по длине пластин стержня при резке. Навитые ярма имеют гребенчатые стыковые поверхности. В верхнем и нижнем стыках проложены немагнитные прокладки толщиной 0,1-0,2 мм. Нижний стык стержня и ярма скреплен магнитным клеем с μ=2.

При такой схеме и размерах намагничивающая мощность для всей магнитной системы может быть рассчитана по формуле

 (8.46)

где Gc, Gя и Gy — массы стали стержней, ярм и угла, определяемые так же, как при расчете потерь холостого хода, кг; qс, qя — удельные намагничивающие мощности, В·А/кг, определяемые по индукциям в стержне Bc(qc) и ярме Bя(qя) по табл. 8.16-8.18; qу — то же для углов при Ву по (8.36) по табл. 8.16-8.18; δ — расчетный немагнитный зазор, который для стыков по рис. 8.12 можно принять δ=0,000175 м для трансформаторов 25-100 кВ·А и δ=0,000225 для трансформаторов 160-630 кВ·А, k»т,у — коэффициент по табл. 8.19; Пс — сечение стержня, м2.

Формула (8.46) без дальнейших преобразований может быть использована при предварительном расчете по методу гл.3.

Для навитой трехфазной пространственной магнитной системы по рис. 2.6, б, так же, как и при расчете потерь холостого хода, для определения полной намагничивающей мощности можно принять

 (8.47)

где коэффициент kт,т=1,15 учитывает ухудшение магнитных свойств стали в результате технологических воздействий на стальную ленту в процессе изготовления магнитной системы и несовершенство отжига; коэффициент kт,и=1,50 учитывает искажение формы кривой магнитной индукции в магнитной системе; qc — по табл. 8.16–8.18, В·А/кг; Gст — полная масса стали магнитной системы.

Полный фазный ток холостого хода для трех рассмотренных конструкций магнитной системы, А,

 (8.48)

Относительное значение тока холостого хода в процентах номинального тока

 (8.48а)

Активная составляющая тока холостого хода, фазное значение, А,

 (8.49)

и в процентах номинального тока

 (8.49а)

Реактивная составляющая – соответственно

 (8.50)

 (8.50а)

Полученное значение тока холостого хода должно быть сверено с предельно допустимым значением по ГОСТ, техническим условиям или заданию на расчет трансформатора. Отклонение расчетного значения тока холостого хода от заданного гарантийного не следует допускать более чем на половину допуска, разрешенного ГОСТ (по ГОСТ 11677-85 разрешенный допуск +30 %).

При расчете тока холостого хода по намагничивающей мощности определяется среднее значение тока холостого хода для всех стержней трансформатора. В симметричных магнитных системах, например однофазных, или пространственных по рис. 2.6, а и б это среднее значение будет совпадать с действительным значением тока холостого хода для каждого стержня.

В несимметричной магнитной системе по рис. 2.5, д ток холостого хода в обмотке среднего стержня меньше, чем в обмотках крайних стержней. Током холостого хода трансформатора в этом случае считается среднее значение токов трех фаз.

8.4. ПРИМЕРЫ РАСЧЕТА. РАСЧЕТ МАГНИТНОЙ СИСТЕМЫ ТРАНСФОРМАТОРА

Трансформатор типа TM-1600/35 Вариант 1м – медные обмотки

Определение размеров магнитной системы и массы стали по § 8.1.

Принята конструкция трехфазной плоской шихтованной магнитной системы, собираемой из пластин холоднокатаной текстурованной стали марки 3404, 0,35 мм по рис. 8.13.

Рис. 8.13. Трансформатор типа ТМ-1600/35, вариант 1М –

медные обмотки: а — сечение стержня и ярма; б -основные

размеры магнитной системы

Стержни магнитной системы скрепляются бандажами из стеклоленты, ярма прессуются ярмовыми балками. Размеры пакетов выбраны по табл. 8.3 для стержня диаметром 0,260 м без прессующей пластины. Число ступеней в сечении стержня 8, в сечении ярма 6.

Размеры пакетов в сечении стержня и ярма по табл. 8.3

№ пакета Стержень, мм Ярмо ( в половине поперечного сечения), мм
1 250×35 250×35
2 230×25 230×25
3 215×13 215×13
4 195×13 195×13
5 175×10 175×10
6 155×8 155×23
7 120×9
8 105×6

Общая толщина пакетов стержня (ширина ярма) 0,238 м. Площадь ступенчатой фигуры сечения стержня по табл. 8.7 Пф,с=490,6 см2 =0,04906 м2; ярма — Пф,я=507,1 см2 =0,05071 м2. Объем угла магнитной системы

Активное сечение стержня

активное сечение ярма

Объем стали угла магнитной системы

Длина стержня

Расстояние между осями стержней

Массы стали в стержнях и ярмах магнитной системы рассчитываем по (8.6), (8.8) — (8.13).Масса стали угла магнитной системы

Масса стали ярм

Масса стали стержней

где

 g»c по (8.13) .

Общая масса стали

Расчет потерь холостого хода по § 8.2.

 Индукция в стержне

Индукция в ярме

Индукция на косом стыке

Площади сечения немагнитных зазоров на прямом стыке среднего стержня равны соответственно активным сечениям стержня и ярма.

Площадь сечения стержня на косом стыке

Удельные потери для стали стержней, ярм и стыков по табл. 8.10 для стали марки 3404 толщиной 0,35 мм при шихтовке в две пластины:

при Вс= 1,588 Тл рс = 1,269 Вт/кг; рз=974 Вт/м2;

при Вя= 1,537 Тл ря=1,163 Вт/кг; рз = 900 Вт/м2;

при Вкос = 1,123 Тл ркос = 445 Вт/м2.

Для плоской магнитной системы с косыми стыками на крайних стержнях и прямыми стыками на среднем стержне, с многоступенчатым ярмом, без отверстий для шпилек, с отжигом пластин после резки стали, и удаления заусенцев для определения потерь применим выражение (8.32).

На основании § 8.2 и табл. 8.12 принимаем kп,p=1,05; kп,з=1,00; kп,я=1,00; kп,п=1,03; kп,ш=1,05.

По табл. 8.13 находим коэффициент kп,у=10,18. Тогда потери холостого хода

или 3402/3100·100=109,7% заданного значения

Расчет тока холостого хода по § 8.3.

По табл. 8.17 находим удельные намагничивающие мощности:

при Вс =1,588 Тл qc=1,715 В·А/кг; qс,з=18480 В·А/м2;

при Вя=1,537 Тл qя=1,474 В·А/кг; qя,з=15580 В·А/м2;

при Вкос =1,123 Тл qкос=2620 В·А/м2.

Для принятой конструкции магнитной системы и технологии ее изготовления используем (8.43), в котором по § 8.3 и табл. 8.12 и 8.21 принимаем коэффициенты: kт,р = 1,18; kт,з=1,00; kт,я=1,00; kт,пл=1,32; kт,ш=1,05.

По табл. 8.20 находим коэффициент kт,у=42,40, тогда намагничивающая мощность холостого хода

Ток холостого хода

,

 или 0,971·100/1,3=74,7 % заданного значения.

Активная составляющая тока холостого хода

Реактивная составляющая тока холостого хода

Трансформатор типа ТМ-1600/35. Вариант ІІА — алюминиевые обмотки

Определение размеров магнитной системы и массы стали по § 8.1.

Принята конструкция трехфазной плоской шихтованной магнитной системы, собираемой из пластин холоднокатаной текстурованной стали марки 3404, 0,35 мм по рис. 8.14. Стержни магнитной системы скрепляются бандажами из стеклоленты, ярма прессуются ярмовыми балками. Размеры пакетов выбраны по табл. 8.3 для стержня диаметром 0,250 м без прессующей пластины. Число ступеней в сечении стержня 8, в сечении ярма 6.

Размеры пакетов в сечении стержня и ярма по табл. 8.3

№ пакета Стержень, мм Ярмо ( в половине поперечного сечения), мм

1 240×35 240×35
2 220×24 220×24
3 200×16 200×16
4 180×12 180×12
5 155×11 155×11
6 140×6 140×17
7 120×6
8 100×5

Общая толщина пакетов стержня (ширина ярма) — 0,230 м.

Площадь ступенчатой фигуры сечения стержня по табл. 8.7.

Рис. 8.15. Трансформатор типа ТМ-1600/35, вариант IIА

алюминиевые обмотки:а — сечения стержня и ярма;

 б — основные размеры магнитной системы.

ярма

Объем угла магнитной системы

Активное сечение стержня

активное сечение ярма

Объем стали угла магнитной системы

Длина стержня магнитной системы

Расстояние между осями стержней

Массы стали в стержнях и ярм ах магнитной системы рассчитываем по (8.6), (8.8) — (8.13).

Масса стали угла магнитной системы

Масса стали ярм

Масса стержней

где

;

С»c по (8.13)

.

Общая масса стали трансформатора

Расчет потерь холостого хода по § 8.2.

 Индукция в стержне

Индукция в ярме

индукция а косом стыке

Площади немагнитных зазоров на прямом стыке на среднем стержне равны соответственно активным сечениям стержня и ярма. Площадь зазора на косом стыке на крайних стержнях

Удельные потери для стали стержней, ярм и для стыков находим по табл. 8.10 для стали марки 3404 толщиной 0,35 мм при шихтовке в две пластины:

при Вс =1,563 Тл qc=1,213 В·А/кг; qз=940 В·А/м2;

при Вя=1,541 Тл qя=1,169 В·А/кг; qя,з=908 В·А/м2;

при Вкос =1,105 Тл qкос=435 В·А/м2.

Для плоской магнитной системы с косыми стыками на крайних стержнях и прямыми стыками на среднем стержне, с многоступенчатым ярмом, без отверстий для шпилек, с отжигом пластин после резки стали и удаления заусенцев для определения потерь холостого хода применим выражение (8.32).

На основании § 8.2 и табл. 8.12 принимаем коэффициенты: kп,p=1,05; kп,з=1,00; kп,я=1,00; kп,п=1,03; kп,ш=1,05

По табл. 8.13 находим коэффициент kп,у=10,18. Потери холостого хода

что составляет 3273·100/3100=105,6 % заданного значения.

Расчет тока холостого хода по § 8.3

По табл. 8.17 находим намагничивающие мощности:

при Вс =1,563 Тл qc=1,590 В·А/кг; qс,з=20900 В·А/м2;

при Вя=1,541 Тл qя=1,500 В·А/кг; qя,з=19390 В·А/м2;

при Вкос =1,105 Тл qкос=2500 В·А/м2.

Для принятой конструкции магнитной системы и технологии ее изготовления используем (8.43), в котором по § 8.3 и табл. 8.12 и 8.21 принимаем коэффициенты:

kт,р = 1,18; kт,з=1,00; kт,я=1,00; kт,пл=1,32; kт,ш=1,05.

По табл. 8.20 находим коэффициент kт,у=42,40, тогда намагничивающая мощность холостого хода

Ток холостого хода

или 0,920·100/1,3 = 70,8% заданного значения.

Активная составляющая тока холостого хода

Реактивная составляющая тока холостого хода

Глава девятая

ТЕПЛОВОЙ РАСЧЕТ ТРАНСФОРМАТОРА

9.1. ПРОЦЕСС ТЕПЛОПЕРЕДАЧИ В ТРАНСФОРМАТОРЕ

Во время работы трансформатора в его активных материалах — металле обмоток и стали магнитной системы — возникают потери энергии, выделяющиеся в виде тепла. Вследствие выделения тепла обмотки и магнитная система трансформатора начинают нагреваться, постепенно повышая свою температуру. Вместе с ростом температуры возникает температурный перепад между обмоткой или магнитной системой и окружающей средой — трансформаторным маслом или воздухом и вследствие этого теплоотдача от активных материалов к окружающей среде. Таким образом, часть тепла, выделяющегося в активных материалах, идет на их нагревание и вторая часть отводится в окружающую среду. В масляных трансформаторах вслед за активными материалами нагреваются масло и металлический бак, и устанавливается температурный перепад между внешней поверхностью бака и воздухом, окружающим трансформатор. По мере роста температуры накопление тепла постепенно уменьшается, а теплоотдача увеличивается, в конечном итоге при длительном сохранении режима нагрузки повышение температуры прекращается, и все выделяющееся тепло отдается в окружающую среду.

При проектировании трансформаторов, предназначенных для длительной непрерывной нагрузки, а такими является подавляющее большинство силовых трансформаторов, тепловой расчет производится для установившегося теплового режима при номинальной нагрузке. Полученные при этом расчете значения превышения температуры над окружающей средой не должны быть больше предельных значений, регламентированных ГОСТ. Естественно, что для всех переходных режимов при нагрузках, не больших номинальной, превышения температуры будут лежать ниже, чем при номинальной нагрузке.

Тепловой поток проходит сложный путь, который для масляного трансформатора может быть разбит на следующие участки: 1) от внутренних точек обмотки или магнитной системы до их наружных поверхностей, омываемых маслом; на этом участке теплопередача происходит путем теплопроводности; 2) переход тепла с наружной поверхности обмотки или магнитной системы в омывающее их масло; 3) перенос тепла маслом от обмоток и магнитной системы к внутренней поверхности стенок бака; на этом участке тепло передается путем конвекционного тока масла; излучением тепла в масле практически можно пренебречь; 4) переход тепла от масла к внутренней поверхности стенок бака; 5) переход тепла от наружной поверхности стенок бака в окружающий воздух; на этом участке теплоотдача происходит путем излучения и конвекции. Если для охлаждения трансформатора применяются водяные или воздушные теплообменники, то передача тепла в них к окружающей среде происходит только путем конвекции; излучением даже в воздушных теплообменниках можно пренебречь.

На каждом из участков, проходимых тепловым потоком, возникает температурный перепад или разность температур тем больше, чем больше тепловой поток. На участках, имеющих протяженность, например, внутри обмотки, это разность температур начальной и конечной точек участка — наиболее нагретой внутренней точки обмотки и наружной поверхности обмотки. На участках, не имеющих протяженности, например, на наружной поверхности обмотки, температурный перепад определяется разностью температур поверхности обмотки и омывающего ее масла. Изменение перепадов на различных участках с изменением, потерь трансформатора определяется различными физическими законами.

Задача теплового расчета трансформатора заключается: 1) в определении перепадов температуры между обмотками и магнитной системой, с одной стороны, и маслом — с другой; 2) в подборе конструкции и размеров бака и системы охлаждения, обеспечивающих нормальную теплоотдачу всех потерь при температурах обмоток, магнитной системы и масла, не превышающих допустимые температуры; 3) в поверочном расчете превышений температуры обмоток, магнитной системы и масла над окружающим воздухом.

Для обоснования теплового расчета трансформатора с естественным масляным охлаждением необходимо более подробно рассмотреть путь теплового потока от обмотки до среды, охлаждающей трансформатор, т. е. до окружающего воздуха. На рис. 9.1, а показана часть осевого сечения обмотки, расположенной в масле. Для определения внутреннего перепада температуры в обмотке примем следующие условия: 1) в направлении вертикальной оси обмотка имеет значительный размер, обеспечивающий отсутствие теплоотдачи в этом направлении; 2) обмотка представляет собой однородное тело плоской формы с одинаковой теплопроводностью во всех точках поперечного сечения; 3) с двух сторон обмотка омывается трансформаторным маслом равной температуры; 4) потери в единице объема обмотки неизменны и равны р, Вт/м3.

Рис. 9.1. Перепады температуры в обмотке: а — определение

 внутреннего перепада температуры;б – распределение

 перепада температуры по сечению обмотки

При соблюдении этих условий наиболее нагретые точки будут располагаться по оси поперечного сечения обмотки (ось У) и тепловой поток будет направлен от этой оси к правой и левой наружным поверхностям обмотки (в направлении оси X).

Рассмотрим трубку теплового потока сечением 1 мм2(рис. 9.1, а). Количество тепла, проходящего через элемент длины этой трубки,

 (9.1)

Перепад температуры на элементе длины dx можно записать так:

 (9.2)

где λ — средняя теплопроводность обмотки.

Интегрируя это уравнение для участка пути теплового потока от х=0 до х=а/2, получаем

и далее

Обозначая внутренний перепад температуры в обмотке через Θо=Θ12, получаем для этого перепада выражение

 (9.3)

В практике расчета обычно приходится определять не температуру наиболее нагретых точек, а среднюю температуру всей обмотки. Для квадратичной параболы среднее значение ординаты равно 2/3 максимального значения и, следовательно, среднее значение внутреннего перепада (рис. 9.1, б)

. (9.4)

В реальной обмотке трансформатора условия, для которых были выведены формулы (9.3) и (9.4), как правило, не соблюдаются полностью. Так, например, для обмоток, соприкасающихся с одной стороны с узким масляным каналом, а с другой — со свободно притекающим маслом (наружная обмотка стержня), наиболее нагретая зона сдвигается от середины сечения обмотки в сторону узкого канала. Температура масла, омывающего все обмотки, не постоянна и повышается при движении вверх в каналах обмотки, что приводит к неравному распределению температуры в осевом направлении обмотки. Экспериментальное исследование этого вопроса показывает, что формулы для практического расчета среднего перепада температуры в обмотках могут базироваться на выведенных соотношениях (9.3) и (9.4).

Зависимость между перепадом температуры на поверхности, т. е. разностью температур поверхности обмотки и омывающего ее масла, и потерями энергии, возникающими в обмотке, определяется экспериментально и приближенно имеет вид

 , (9.5)

Рис. 9.2. Распределение превышений температуры над воздухом

и направление конвекционных токов масла в трансформаторе

с трубчатым баком:1 — обмотка; 2 — масло в баке; 3 — стенка трубы

где Θо,м — разность температур поверхности обмотки и масла; k — постоянный коэффициент; q — плотность теплового потока на поверхности обмотки; n=0,5÷0,7 — определяемый экспериментально показатель степени.

Значения k и n в (9.5) зависят от расположения охлаждаемых маслом поверхностей обмотки, размеров масляных каналов и вязкости масла. В практике теплового расчета применяют формулы, выведенные и проверенные экспериментально, для некоторых типичных случаев расположения и размеров масляных каналов при средней эксплуатационной температуре масла 60-70 °С и стандартной его вязкости.

Масло, нагретое у поверхности обмоток трансформатора, поднимается в верхнюю часть его бака, соприкасаясь со стенками бака и, отдавая им, часть своего тепла, вновь опускается вниз. При наличии на стенках бака волн, труб или специально пристроенных радиаторов (охладителей) часть масла опускается вниз, омывая их внутреннюю поверхность. Охлажденное масло вновь подходит к обмоткам, и конвекционный ток масла внутри бака оказывается замкнутым. Направление конвекционного тока внутри трубчатого бака трансформатора показано на рис. 9.2.

Переход тепла от масла, омывающего изнутри стенку бака (трубы, радиатора), к самой стенке происходит при наличии определенной разности температур между маслом и стенкой. Этот перепад определяется принципиально теми же законами, что и перепад на поверхности обмотки, и может быть в зависимости от плотности теплового потока на поверхности стенки выражен в общем виде (9.5). Температурный перепад на толщине стенки бака или трубы составляет не более 1 °С, и в расчете им обычно пренебрегают.

Теплоотдача путем излучения с поверхности стенки бака достаточно точно может быть выражена зависимостью

 (9.6)

где qи — теплоотдача в воздухе путем излучения с единицы поверхности, Вт/(м2·°С); Θб,в — разность температур стенки бака и воздуха, °С.

Для обычного диапазона разности температур поверхности стенки бака и воздуха Θб,в =20÷70 °С

 (9.7)

Вследствие прямолинейного распространения энергии излучения только с гладкой поверхности можно получить полное излучение, определяемое по (9.6). Излучение с поверхности другой формы, например выгнутой в виде волн, снабженной трубами и т. д., определяется не всей поверхностью, а ее внешним периметром (рис. 9.3). Теплоотдача путем излучения играет существенную роль для гладких баков или баков со слабо разветвленной поверхностью, где она достигает 50 % общей теплоотдачи бака. Для баков с широко разветвленной поверхностью, например с тремя-четырьмя рядами охлаждающих труб, или с радиаторами теплоотдача излучением снижается до 10 — 20 % общей теплоотдачи бака.

Рис. 9.3. Определение эквивалентной излучающей поверхности

для гладкого и трубчатого баков и бака с радиаторами.

Теплоотдача в воздухе путем конвекции зависит от разности температур стенки бака и воздуха, высоты стенки, формы поверхности, барометрического давления и в общем виде может быть выражена формулой

 (9.8)

где qк — теплоотдача путем конвекции в воздухе с единицы, поверхности, отнесенная к 1 °С, Вт/(м2·°С), при разности, температур Θб,в, °С.

Для баков трансформаторов высотой от 2 до 5 м при барометрическом давлении воздуха 0,1 МПа (760 мм рт. ст.) можно принять k=2,5. Коэффициент kф учитывает форму поверхности и связанное с этим затруднение или облегчение движения воздуха. Определение значений kф для поверхностей разной формы приведено в § 9.6.

В отличие от излучения теплоотдача конвекцией происходит со всей поверхности бака, и в расчет следует принимать полную поверхность гладкой части бака, труб, волн, радиаторов и т. д.

Из приведенного рассмотрения пути теплового потока в масляном трансформаторе следует, что температурное поле в обмотках, магнитной системе и масле трансформатора должно быть достаточно сложным. На рис. 9.2 показано примерное распределение температуры по высоте трансформатора для обмотки, масла и охлаждающих труб. В практике принято вести расчет по средним превышениям температуры обмотки над маслом, масла и стенки бака над воздухом с определением максимального превышения температуры масла над воздухом. Этот способ расчета дает вполне удовлетворительную для практики точность определения температур в трансформаторе и помимо простоты представляет и то практическое удобство, что его результаты всегда могут быть проверены экспериментально (§ 9.3).

При проведении теплового расчета по средней температуре обмоток необходимо гарантировать, чтобы их максимальная температура не достигла значения, грозящего быстрым разрушением изоляции трансформатора. Это достигается правильным выбором плотности тока в обмотках, рациональной разбивкой их на катушки, правильным размещением в них осевых и радиальных каналов и правильным выбором размеров охлаждающих каналов. Рекомендации по этим вопросам, данные в гл. 5, такую обмотку, в которой максимальная температура превышает среднюю не более чем на 5-15 °С.

Трансформаторное масло в масляном силовом трансформаторе, являясь изолирующей средой, одновременно играет роль теплоносителя, т. е. вещества, отводящего путем конвекции тепло потерь от магнитной системы, обмоток и других частей, в которых возникают потери энергии, и передающего это тепло системе охлаждения. Эффективность отведения тепла существенно зависит от скорости движения масла в узких каналах внутри обмоток и магнитной системы, а также в более широких промежутках вне обмоток и магнитной системы.

В свою очередь скорость движения масла зависит, с одной стороны, от плотности теплового потока на охлаждаемых маслом поверхностях и размеров (ширины, длины) охлаждающих каналов, а с другой — от кинематической вязкости самого масла. Вследствие того, что вязкость масла существенно изменяется с его температурой, эффективность теплоотдачи от охлаждаемых поверхностей к маслу и от масла к элементам системы охлаждения также существенно зависит от температуры масла в трансформаторе.

На рис. 9.4 приведен график изменения кинематической вязкости современного трансформаторного масла с изменением его температуры от –5 до +90 °С [16]. ГОСТ 982-80 допускает для трансформаторного масла марки ТК значения вязкости на 15 % более высокие, чем указанные на рис. 9.4.

Обычно масляные силовые трансформаторы рассчитываются так, чтобы превышения температуры обмоток, магнитной системы и масла над охлаждающей средой (воздухом, водой) не превосходили предельных значений, определенных нормативным документом (ГОСТ, ТУ). При этом температура охлаждающего воздуха может в зависимости от места установки и сезона изменяться от –45 до +40 °С и вместе с ней будет изменяться температура масла, а следовательно, и его вязкость и эффективность теплоотдачи, что приведет к изменению превышения температуры масла над температурой воздуха.

В [9] приведены результаты исследований влияния температуры охлаждающего воздуха на превышение температуры и температуру верхних слоев масла трансформаторов мощностью 180-320 кВ·А при температуре воздуха от –50 до 0 и от 0 до +40 °С, проведенных при постоянстве потерь трансформаторов. Результаты этих исследований приведены на рис. 9.5, где за 100 % приняты температура верхних слоев масла Θм,в,с и превышение этой температуры ∆ Θм,в,с при температуре охлаждающего воздуха 20 0С.

Графики рис. 9.5 подтверждают существенную зависимость превышения температуры верхних слоев масла над температурой воздуха от температуры масла и, следовательно, от его вязкости. Изменение температуры воздуха, как это известно, из практики, непосредственно на условия теплоотдачи влияет мало.

Рис. 9.4. Изменение кинематической вязкости

трансформаторного масла с изменением его температуры

Рис. 9.5. Изменение температуры верхних слоев

масла трансформатора и ее превышения над

температурой воздуха при изменении температуры

 охлаждающего воздуха.

Средняя температура масла на всем диапазоне исследований изменялась от -5 до +76 °С, чему соответствует диапазон изменения кинематической вязкости масла по рис. 9.4 от 58·10-6 до 5·10-6 м2/с.

Для установления единого подхода к оценке нагрева масляного силового трансформатора его тепловой расчет производится для полных потерь холостого хода и короткого замыкания применительно к условиям охлаждения при температуре охлаждающего воздуха 20 °С. Тепловые испытания трансформаторов обычно производятся в закрытом помещении при температуре воздуха от 10 до 30 °С. При этом, как это следует из графика рис. 9.5, отклонение в измеренном превышении температуры верхних слоев масла ограничивается значением ±3 % и может быть учтено при оценке результатов испытания.

Большая часть масляных трансформаторов предназначается для наружной установки при сезонном изменении температуры охлаждающего воздуха от -45 до +40 °С.

Действительная температура верхних слоев масла и ее превышение над температурой охлаждающего воздуха при этом будут следовать принципиальным графикам рис. 9.5.

В сухих трансформаторах теплоотдача от внутренних частей (стержни, внутренние обмотки НН, обращенные внутрь поверхности обмоток ВН) происходит только конвекцией воздуха. С наружных поверхностей обмоток ВН и с открытых поверхностей ярм происходит теплоотдача конвекцией и излучением. Поскольку в сухих трансформаторах большая часть охлаждающей поверхности образуется во внутренних каналах обмоток, основная масса тепла отводится в них конвекцией. При этом приходится также считаться с возможностью перехода тепла с более нагретых внутренних поверхностей на менее нагретые излучением.

Для преобразования электроэнергии, поступающей от источника питания к приемнику (потребителю), используют силовые электромагнитные установки, работа которых сопровождается потерями трансформатора. Затраты активной мощности вызваны явлением гистерезиса (цикличного перемагничивания), вихревыми и циркулирующими токами, рассеиванием магнитного поля в толще магнитопровода и сопротивлением самого проводника.

Содержание

  1. Устройство и принцип действия
  2. Особенности
  3. Что такое потери
  4. Магнитные
  5. Описание
  6. Электрические
  7. Дополнительные
  8. Мощности
  9. КПД
  10. Нагрузочные
  11. Как рассчитать
  12. Для двухобмоточных
  13. Формулы
  14. Для трехобмоточных
  15. Примеры расчета
  16. Измерение полезного действия
  17. Способ вычисления
  18. Калькулятор

Устройство и принцип действия

В статическом оборудовании, которое предназначено для преобразования частоты и напряжения тока, а также количества фаз, отсутствуют движущиеся элементы конструкции, что исключает возникновение потерь механического характера. Но в процессе передачи нагрузки с первичного контура на вторичный не вся мощность доходит до приемника энергии, выступающего конечным потребителем.

Электромагнитное статическое оборудование без вращающихся деталей преобразует энергию и работает от электросети. Силовой агрегат представляет собой прибор, основными элементами которого служат стальной магнитопровод стержневого или броневого исполнения и катушки – несвязанные электрически изолированные провода.

Трансформаторное оборудование бывает однофазного и многофазного типа, соответственно, состоящего из двух или более контуров. По типу исполнения различают приборы с броневым, стержневым или бронестержневым магнитопроводом. Принцип действия оборудования на примере простого однофазного прибора:

  • К источнику переменного тока подключена первая катушка, а вторичный контур соединен с приемником электроэнергии (конечным потребителем).
  • Переменный ток проходит по виткам первичной обмотки, и его величина соответствует значению нагрузки I1.
  • Магнитный поток Ф пронизывает оба контура и индуцирует в проводниках электродвижущую силу.
  • При подключении второго контура к источнику электроэнергии в цепи под действием ЭДС возникает ток нагрузки I2.
  • Трансформаторный узел работает на холостом ходе, если на вторичную обмотку прибора не подается нагрузка.

Устройство трансформатора

Особенности

Величина показателя электродвижущей силы тесно связана с числом витков провода на катушках. Соотношение ЭДС в обмотках, называемое коэффициентом трансформации, соответствует числу витков медных катушек. Изменяя количество витков в контурах, можно регулировать напряжение в приемнике электроэнергии.

Обмотки связаны между собой магнитными линиями, а на степень их взаимосвязи влияет близость/дальность расположения катушек. Из-за изменения силы тока в первой обмотке, обе цепи пронизывает магнитный поток, постоянно меняющий свою величину и направленность. Соединение концов вторичной обмотки с приемником передает ему ток, а средством передачи энергии выступает переменный магнитный поток – катушки не связаны друг с другом гальваническим способом.

Стоит также учесть, что нельзя размыкать вторичную обмотку трансформатора.

На заметку! По описанному принципу функционируют многофазные трансформаторные узлы, составленные из нескольких повышающих и понижающих обмоток и стального сердечника. Фазы катушек преимущественно соединяют по схеме «звезда» или «треугольник».

Трансформатор

Что такое потери

Когда трансформатор функционирует на холостом ходу или под нагрузкой, в магнитопроводе прибора, электроизолированных обмотках и прочих элементах конструкции устройства часть активной мощности агрегата убывает. Потери представляют собой переменную величину, поэтому КПД приборов неодинаковый и никогда не достигает 100%-ного значения. На витках медной обмотки катушек энергия рассеивается из-за сопротивления проводника. У тока, проходящего по контуру, падает напряжение, вызывая, уменьшение мощности.

Непродуктивные потери при эксплуатации силовых установок возникают на холостом ходе, когда одна обмотка трансформатора находится на выделенном питании, а остальные контуры разомкнуты. Неизбежно возникают утечки и утрата мощностных характеристик работы агрегатов. Диэлектрические потери (в изоляционном слое) для трансформаторов, работающих на средней частоте в 50 Гц, являются несущественными. Незначительно влияют на показатель КПД утечки в первичной обмотке. Наиболее значительные энергозатраты вызывают магнитные явления в трансформаторах.

Магнитные

При работе трансформаторного узла без нагрузки ток, который подается на первичную обмотку, расходуется на намагничивание стального сердечника. Потери магнитопровода провоцируют такие магнитные явления, как гистерезис (циклическое перемагничивание) и вихревые токи.

Снижение активной мощности происходит из-за ее рассеивания в системе после поступления на первичный контур обмотки. Несмотря на увеличение энергии реактивного типа, номинальная нагрузка уменьшается. Разница между мощностями, поступающими на первый и второй контуры устройства, определяет суммарное снижение мощности. При работе не нагруженного трансформаторного оборудования потребляемая прибором активная мощность затрачивается на уравновешивание затрат тока холостого хода в магнитном сердечнике и катушке первичного контура.

Для записи процесса используют выражение I20r1. Возникают магнитные потери магнитопровода РМ. При номинальном первичном напряжении и частоте тока суммарные некомпенсируемые затраты мощности относят к холостым потерям Р0. Для вычислений используют формулу:

Р0 = РМ + I20 * r1,

в которой активным сопротивлением первой катушки выступает величина r1.

Значение Р0 никаким образом не меняется при регулировании нагрузки электромагнитного силового узла и является постоянным. Величина магнитного потока Ф0 остается неизменной при любых параметрах нагрузочных токов I1 и I2, поэтому значение IНАМ также не изменяется.

Магнитные потери трансформатора

Описание

Магнитные потери прямо пропорциональны массе стального сердечника и значению магнитной индукции. В ферромагнетиках есть зоны самопроизвольного намагничивания, называемые доменами. Для магнитных моментов диполей характерна беспорядочная направленность, поэтому вне воздействия внешнего поля намагничивания итоговый магнитный момент ферромагнетика приближается к нулю.

Посредством помещения металлической детали в магнитное поле переменного действия, сгенерированное переменным током, происходит циклическое перемагничивание ферромагнитного сердечника с частотой этого тока. Одновременно из-за внутреннего трения изменяют свое направление магнитные моменты доменов. В зависимости от величины индукции магнитного поля, действующего извне, ферромагнетик приобретает большую степень намагничивания. Когда значение индукции достигает определенной величины, происходит переориентирование доменов вдоль вектора направления поля.

Петля гистерезиса выражает взаимосвязь между магнитным потоком и переменным током. Она оказывает определенное влияние на возникновение потерь трансформаторных установок, функционирующих на холостом режиме. При каждом цикле перемагничивания затрачивается некоторая работа, величина которой пропорциональна площади петли гистерезиса. Работа способствует тепловому нагреванию сердечника и вызывает дополнительные энергозатраты. Чтобы снизить потери прибора на гистерезис, магнитопроводы выполняют из специальной трансформаторной стали категории электротехническая.

Потери магнитные трансформатора

В проводниках, помещенных в область воздействия переменных магнитных полей, в стальном сердечнике преобразователя электроэнергии создаются вихревые токи (Фуко), которые замыкаются в металлическом магнитопроводе (стержне или броне), нагревают деталь и способствуют убыли энергии. Чтобы компенсировать силу действия вихревых токов, возникающих в плоскостях, перпендикулярных магнитному потоку, для изготовления трансформаторных сердечников используют изолированные пластины стали, набранные определенным способом.

Процессы, связанные с рассеиванием энергии в сердечнике агрегата, образуются областью магнитного потока, которая замыкается через воздух вблизи витков обмотки. Побочные потери силового устройства вызывает активное сопротивление катушек, возникающее в результате нагрева проводника под действием токов. Поэтому для сокращения энергопотерь трансформаторные обмотки выполняют из меди.

Важно! Чтобы снизить затраты мощности в сердечнике, используют магнитомягкий материал с высокой магнитопроницаемостью и низкой коэрцитивной силой. Потери в меди сокращают увеличением сечения проводников катушек. Для компенсации действия вихревых токов магнитопровод набирают из электроизолированных пластин, а сталь специально легируют кремнием.

Сердечники трансформатора

Электрические

Нагрев катушек трансформатора током вызывает снижение мощности. Такие затраты в среднем на электросеть составляют 5% от общего количества потребляемой энергии. Величина электрических потерь зависит от следующих факторов:

  • нагрузки энергосистемы;
  • конфигурации, длины, размера сечения внутренних сетей;
  • текущего режима работы узла;
  • коэффициента мощности системы в средневзвешенном значении;
  • схемы расположения компенсирующих устройств.

На переменную величину потерь мощности электроэнергии влияет показатель квадрата тока в контурах обмотки. При подаче нагрузки на трансформатор электромагнитная мощность из первичной обмотки поступает на вторичную катушку. По второму контуру проходит ток I2, вместе с ним в первом контуре образуется ток I1, значение которого находится в прямой зависимости от силы нагрузки I2. Происходит убыль электрической мощности, величина которой определяется пропорционально квадратам токов обоих катушек и рассчитывается по формуле:

РНАГР = I21 * r1 + I22 * r2, где

I1 и I2 – нагрузочные токи цепи;

r1 и r2 – сопротивления проводников обмоток.

Электрический трансформатор

Закономерной представляется зависимость потерь РНАГР от требуемой конечному потребителю величины мощности энергии. Имеют место колебания нагрузочных затрат в конкретном временном интервале, поэтому электрические потери в обмотках различны в пределах суток, являются величинами непостоянными и «привязаны» к режимам нагрузки.

Дополнительные

Добавочные затраты мощности электроэнергии возникают не только в катушках и магнитопроводе, но и в других элементах конструкции трансформатора – в стенках охлаждающего бака для отведения теплопотерь, ярмовых балках, не содержащих витков обмотки, прессующих кольцах.

Охлаждающие баки в трансформаторе

Мощности

Токи, замыкающиеся внутри отдельных проводов, не выходящие за пределы обмотки, называют вихревыми. Если токи из-за рассеивания образуются между параллельно расположенными витками или электроизолированными стальными пластинами в сердечнике, их называют циркулирующими. Они сцепляются не со всей областью обмотки, а только с некоторыми витками. Преимущественно возникают в среде, не обладающей свойствами намагничивания, – масло, воздух. Направление побочных потоков проходит перпендикулярно основному току в катушках и магнитопроводе, приводит к добавочному снижению эффективности работы трансформатора.

Для реальных токов характерно неравномерное распределение в системе, поэтому их величины определяются как суммарное значение трех токов:

  • нагрузочного – ток равномерно распределяется по сечению проводника и между его витками;
  • циркулирующего – ток замыкается внутри контура параллельных витков;
  • вихревого – ток замыкается в пределах каждого из проводов.

лектроизолированные стальные пластины в сердечнике трансформатора

Суммирование значений этих токов позволяет рассчитать реальные затраты энергии в обмотках трансформатора:

ƩР = Р0 + РНАГР + РДОБ

На основании потерь холостого хода, нагрузочных и дополнительных затрат, определяют общие энергопотери трансформаторного узла.

КПД

Убыль энергии в силовом агрегате складывается из магнитных потерь, возникающих в магнитопроводе, и электрических, образующихся в обмотках трансформатора. КПД вычисляют как соотношение затрат энергии и полезной мощности. Для расчетов используют значения:

  • активной мощности Р1, получаемой от источника питания;
  • активной мощности Р2, передаваемой конечному потребителю;
  • электрических потерь ΔPЭЛ, возникающих в обмотках трансформатора;
  • магнитных потерь ΔРМ, которые образуются в сердечнике;
  • побочных затрат энергии ΔРДОП, возникающих в других элементах конструкции и составляющих в среднем до 10% всех потерь.

Для расчета ΔPЭЛ применяют формулу:

ΔPЭЛ = ΔPЭЛ.НОМ * β2,

а значение ΔРМ вычисляют по выражению:

ΔРМ = ΔРГ + ΔРВТ,

где ΔРГ – затраты на гистерезис;

ΔРВТ – потери в результате действия вихревых токов.

КПД вычисляют по формуле:

ƞ = Р2 / Р1 = Р2 / (Р2 + ΔРМ + ΔPЭЛ),

где ƞ принимается равным 0 при холостом режиме работы трансформатора, а его мощность тратится на компенсацию магнитных потерь.

При расчете КПД учитываются побочные энергозатраты, возникающие не в магнитопроводе и обмотке, а в остальных элементах силового агрегата.

Внимание! Косвенный метод вычисления КПД путем раздельной оценки потерь подходит для промышленного применения.

Способ непосредственных измерений экономически нецелесообразный, поэтому используется для маломощных трансформаторов.

КПД трансформатора

Нагрузочные

Дополнительные потери активной мощности статического электромагнитного оборудования также возникают в результате несимметрии токов, что вызвано включением в системы электроснабжения потребителей, искажающих качество электроэнергии. Даже при изменении ее качества в допустимых нормативных диапазонах, наблюдается снижение эффективности работы электрооборудования. Поэтому требуется количественная оценка ущерба, причиненного отклонением показателей качества энергии.

В многофазных трансформаторах на характер протекающих процессов не влияет порядок чередования фаз, но несимметричные нагрузки приводят к убыли активной мощности. Несимметрия входных напряжений вызывает несимметрию выходных напряжений, что обусловлено протеканием токов обратной последовательности. Побочные потери определяются по формуле:

ΔРДОП = К22U (ΔРХХ  + ΔРКЗ / U2КЗ), где

ΔРХХ и ΔРКЗ – соответственно потери на холостом ходе и при замыкании накоротко;

UКЗ – напряжение короткого замыкания.

Выражение используют при известных номинальных значениях, указанных в паспортных данных оборудования. В противном случае пользуются формулой расчета:

ΔРДОП = kТР * К22U * SНОМ, где

kТР – коэффициент, рассчитываемый из значения мощности и назначения силового агрегата, принимается равным 2,67 для устройств 6-10 кВ и 0,5 для оборудования на 35-220 кВ;

SНОМ – соответствует полной номинальной мощности прибора.

Нагрузочный трансформатор

Согласно ГОСТу, максимальные значение коэффициента несимметрии нагрузки K2U по обратной последовательности не должны превышать 2% на протяжении 95% недельного временного интервала или быть выше 4% в течение 100% времени, ограниченного сроком в одну неделю.

При проведении вычислений по обеим формулам разница полученных значений ΔРДОП может достигать 50%. Поэтому в каждом конкретном случае расчет дополнительных потерь проводят на основании данных о трансформаторах и величине искажения режима работы – несимметричности нагрузки.

Как рассчитать

На практике используют два основных способа вычисления потерь электромагнитного оборудования, для которых применяют технические характеристики трансформаторов. Министерством энергетики РФ рекомендовано в отчетном периоде рассчитывать потери нагрузки на основе схемы энергосети:

ΔWHj= KК *ΔРСР * ТJ * K2Ф, где

ΔРСР – средние потери мощности, кВт;

K2Ф – коэффициент формы графика;

KК – уточняющий параметр (0,99);

ТJ – длительность расчетного периода.

Если графика нагрузки нет, K2Ф = (1+2КЗ) / 3КЗ), а при отсутствии информации о коэффициенте заполнения графика, КЗ = 0,5.

Схема энергосети

Для двухобмоточных

Чтобы выполнить вычисления, нужно пользоваться техническими (каталожными) параметрами трансформатора, к которым относится:

  • номинальная мощность;
  • потери холостого хода;
  • затраты при замыкании накоротко.

Также для вычислений нужны расчетные данные:

  • фактически потребленная энергия в период времени;
  • число отработанных часов (в месяц/квартал);
  • время эксплуатации трансформатора при номинальной нагрузке сети.

Схема двухобмоточного трансформатора

После получения перечисленных данных проводят измерение угла cos φ, выступающего средневзвешенным коэффициентом мощности, отталкиваясь от значения tg φ – коэффициента компенсации узла диэлектрических потерь:

Если в энергосистему не включен счетчик реактивных мощностей, используют выражение:

Формулы

Для расчетов используют формулу:

К = ЭА / РНОМ * ТОЧ * cos φ, где

ЭА – активная электроэнергия;

cos φ = r / Z – угол сдвига фаз (r – активное и Z – полное сопротивление цепи).

Или такая запись:

Соответственно потери трансформатора в рабочем режиме (при нагрузке, а не во время холостого хода) вычисляют так:

Р = РХХ * ТОЧ * РКЗ * К2 * ТНЧ

или такая запись:

формула для трансформаторов

Описанную методику используют при проведении вычислений потерь в двухконтурных трансформаторах.

двухобмоточный трансформатор

Для трехобмоточных

Чтобы посчитать убыль электроэнергии в трехобмоточных силовых узлах в формулу расчета дополнительно включают технические характеристики оборудования, указанные производителем в паспорте. Расчетная формула:

Э = ЭСН + ЭНН,

где Э – фактически потребленная энергия;

ЭСН и ЭНН соответственно электроэнергия в контурах среднего и низкого напряжения или по формуле, где коэффициенты находят так:

Формулы нахождения коэффициента

В формуле используют номинальную мощность каждого контура обмотки и потери, которые возникают при замыкании накоротко.

Примеры расчета

Для более четкого понимания методики вычислений удобно рассматривать порядок расчета на конкретном примере. В работе задействован силовой агрегат номинальной мощностью 400 кВа и номинального напряжения 10 кВ. Задача усложнена необходимостью вычислить постоянные и переменные потери трансформатора по активной и реактивной энергии.

Таблица 1. Исходные данные

Показатель Выражение Значение
Мощность номинальная, kVA Snom 400
Напряжение номинальное, исходя из параметров сети 10/0.4, kV Unom 10
Переданная активная электроэнергия, kWh Wa 53954
Реактивная электроэнергия, kWh Wr 39062
Потери при замыкании накоротко, kW РКЗ 5,9
Затраты в режиме холостого хода, kW РХХ 0,95
Отработанные под нагрузкой часы, h ТОЧ 696
Время максимальной нагрузки, h ТМ 333
Время наибольших потерь, h t 200
Коэффициент мощности cos φ 0,81

Прибор отработал 696 часов в рабочем режиме, причем часть времени трансформатор функционировал по максимальной нагрузке, а часть времени преобразовывал электроэнергию с наибольшими потерями. Для расчета этих значений нужно учесть нижеприведенное правило.

Таблица

Соответственно, время использования максимальной нагрузки ТМ составляет 333 ч, а время наибольших потерь t составит 200 ч.

Коэффициент мощности находят по формуле:

Формула коэффициента мощности

Постоянные потери энергии зависят от затрат холостого хода и составляют

∆W0,а = ∆P0 * TОЧ = 0,95 * 696 = 661,2 kWh

∆W0,r = ∆Q0 x TОЧ = 8,346 x 696 = 5808,816 kvarh, где

Формула

Для расчета переменных потерь активной энергии в расчетном периоде применяется формула:

∆Ws = РКЗ * t * ((W2а + W2r) / (Т2М * S2nom)) = 5,9 * 200 * ((539542 + 390622) / (3332 * 4002)) = 295,057 kWh;

реактивной энергии:

∆Ws,r = ΔQsc * t * ((W2а + W2r) / (Т2М * S2nom)) = 17,005 * 200 * ((539542 + 390622) / (3332 * 4002)) = 850,502 kWh, где

Формула

Общие потери энергии в расчетном периоде составляют:

∆Wa = ∆W0 + ∆Ws = 661,2 + 295,087 = 956 kWh,

∆Wr = ∆W0,r + ∆Ws,r = 5808,816 + 850,502 = 6659 kvarh.

Результат примера: 956 и 6659.

Измерение полезного действия

Эксплуатация оборудования при разомкнутом контуре вторичной цепи называется холостым ходом, а с подключением нагрузочного тока – рабочим режимом. В первом контуре цепи поток Ф0 создает ЭДС самоиндукции, и при разомкнутом вторичном контуре она уравновешивает часть напряжения. Передавая вторичной обмотке нагрузку, можно вызвать образование тока I2, который возбуждает собственный поток Ф2. Суммарный магнитный поток уменьшается, снижая величину ЭДС Е1, а некоторая часть U1 остается несбалансированной.

Одновременно I1 увеличивается и возрастает до прекращения размагничивающего действия тока нагрузки. Это способствует восстановлению Ф0 приблизительно до исходного значения.

Проводник вторичной обмотки закономерно обладает активным сопротивлением. Если оно растет, I2 и Ф2 уменьшаются, обуславливая увеличение Ф0 и возрастание ЭДС Е1. В результате баланс U1 и ЭДС Е2 нарушается – разница между ними уменьшается, снижая I2 до такого значения, при котором суммарный магнитный поток вернется к первоначальной величине.

Способ вычисления

Данный процесс способствует практически полному постоянству величин магнитных потоков при эксплуатации трансформатора на холостом ходе и в рабочем режиме. Такое свойство преобразователя энергии называют саморегулирующей способностью, благодаря которой значение нагрузочного тока I1 автоматически корректируется при колебаниях тока нагрузки I2.

Процесс преобразования электроэнергии в трансформаторных узлах сопровождается потерями и отражается на величине КПД, который является отношением отдаваемой активной мощности к потребляемой. Показатель полезного действия отражает соотношение активной мощности на входе и выходе для замкнутой цепи. Его вычисляют по простой формуле:

КПД = (М1 / М2) * 100% или

ƞ = (Р2 / Р1) * 100%, где активную мощность в обмотках входного и исходящего контуров определяют путем измерения.

Упростить процесс замеров можно при включении во вторичную обмотку активного тока нагрузки. Для определяя значение М2 используют амперметр, соединенный с вторичной цепью. Поток рассеивания будет незначительным, что позволяет приблизительно приравнять cos φ в квадрате к единице.

Данный способ вычисление КПД – это метод непосредственных измерений. Такая теория вычислений приводит к погрешностям в расчетах, поскольку КПД высокомощных трансформаторов очень большой и составляет 0,98-0,99%. Несмотря на то, что величины М1 и М2 различаются несущественно, в промышленном оборудовании незначительная разница показаний вызывает существенное искажение значения КПД.

Чтобы избежать ошибок, на практике при измерении КПД трансформаторов используют два способа: опыт холостого хода и опыт короткого замыкания.

Смысл первого метода заключается в подаче номинального напряжения на первичный контур при разомкнутой вторичной цепи. Энергия тратится на потери в стали, мощность которых можно замерять ваттметром, соединенным с контуром первичной обмотки.

Другой способ состоит в замыкании вторичного контура накоротко и одновременной подаче напряжения на первичную цепь. Включение ваттметра в первую цепь позволяет измерить мощность, отражающую потери медного проводника обмотки.

Калькулятор

Для упрощения вычислений удобно пользоваться онлайн-калькулятором. Алгоритм программы позволяет вычислить энергопотери трансформатора без сложных формул. Но полученные результаты следует рассматривать как ориентировочные. Для ввода используют следующие данные:

  • из техпаспорта прибора берут величину Sном (кВА);
  • вводят значение Ркз – справочный (паспортный) параметр (кВт);
  • выбирают Pхх в технической документации прибора (кВт);
  • указывают нагрузочный ток Iхх в процентном выражении (%);
  • обозначают напряжение Uкз – справочная информация (%);
  • вводят коэффициент загрузки K в относительных единицах;
  • указывают время эксплуатации прибора с максимальной загрузкой Тм (час);
  • из фактического режима эксплуатации оборудования берут годовое число часов работы агрегата Тг (час);
  • средний тариф Со на активную электроэнергию в расчетном периоде (руб/кВт*час).

После введения данных программа рассчитывает необходимые значения.

Поскольку энергопотери приводят к увеличению расхода материалов и средств, они вызывают удорожание электроэнергии. Сведение убыли непродуктивных энергозатрат силовых агрегатов к минимуму позволяет конструировать устройства с максимальным коэффициентом полезного действия. Применяя на практике методы расчета потерь активной мощности трансформаторных узлов, можно определить экономичность функционирования оборудования и необходимость установки в замкнутых цепях компенсирующей аппаратуры.

Расчет потерь мощности в трансформаторах

Потери активной
и реактивной мощности в трансформаторах
и автотрансформаторах разделяются на
потери в стали и потери в меди (нагрузочные
потери). Потери в стали – это потери в
проводимостях трансформаторов. Они
зависят от приложенного напряжения.
Нагрузочные потери – это потери в
сопротивлениях трансформаторов. Они
зависят от тока нагрузки.

Потери активной
мощности в стали трансформаторов – это
потери на перемагничивание и вихревые
токи. Определяются потерями холостого
хода трансформатора
,
которые приводятся в его паспортных
данных.

Потери реактивной
мощности в стали определяются по току
холостого хода трансформатора, значение
которого в процентах приводится в его
паспортных данных:

Потери мощности
в обмотках трансформатора можно
определить двумя путями:

  • по параметрам
    схемы замещения;

  • по паспортным
    данным трансформатора.

Потери мощности
по параметрам схемы замещения определяются
по тем же формулам, что и для ЛЕП:

,

где S
– мощность нагрузки;

U– линейное напряжение на вторичной
стороне трансформатора.

Для трехобмоточного
трансформатора или автотрансформатора
потери в меди определяются как сумма
потерь мощности каждой из обмоток.

Получим выражения
для определения потерь мощности по
паспортным данным двухобмоточного
трансформатора.

Потери короткого
замыкания, приведенные в паспортных
данных, определены при номинальном токе
трансформатора

(7.1)

При любой другой
нагрузке потери в меди трансформатора
равны

(7.2)

Разделив выражение
(7.1) на (7.2), получим

Откуда найдем
:

Если в выражение
для расчета
,
подставить выражение для определения
реактивного сопротивления трансформатора,
то получим:

Таким образом,
полные потери мощности в двухобмоточном
трансформаторе равны:

Если на подстанции
с суммарной нагрузкой S
работает параллельноnодинаковых трансформаторов, то их
эквивалентные сопротивления вn
раз меньше, а проводимости вn
раз больше. Тогда,

Для n
параллельно работающих одинаковых
трехобмоточных трансформаторов
(автотрансформаторов) потери мощности
рассчитываются по формулам:

где Sв,Sс,Sн– соответственно мощности, проходящие
через обмотки высшего, среднего и низшего
напряжений трансформатора.

Приведенные и расчетные нагрузки потребителей

Расчетная схема
замещения участка сети представляет
собой довольно сложную конфигурацию,
если учитывать полную схему замещения
ЛЕП и трансформаторов. Для упрощения
расчетных схем сетей с номинальным
напряжением до 220 кВ включительно вводят
понятие “приведенных”,
“расчетных” нагрузок.

Приведенная к
стороне высшего напряжения нагрузка
потребительской ПС представляет собой
сумму заданных мощностей нагрузок на
шинах низшего и среднего напряжений и
потерь мощности в сопротивлениях и
проводимостях трансформаторов.
Приведенная к стороне высшего напряжения
нагрузка ЭС представляет собой сумму
мощностей генераторов за вычетом
нагрузки местного района и потерь
мощности в сопротивлениях и проводимостях
трансформаторов.

Расчетная нагрузкка
ПС или ЭС определяется как алгебраическая
сумма приведенной нагрузки и половин
зарядных мощностей ЛЕП, присоединенных
к шинам высшего напряжения ПС или ЭС.

Зарядные мощности
определяются до расчета режима по
номинальному, а не реальному напряжению,
что вносит вполне допустимую погрешность
в расчет.

Возможность
упрощения расчетной схемы при использовании
понятий “при-веденных”
и “расчетных” нагрузок показано на
рис. 7.3:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Расчет потери мощности в трансформаторе

Определить потери активной и реактивной мощности в трансформаторе типа ТДН 40000/110 мощностью Sн = 40 МВА, напряжением 110/10 кВ при его расчетной нагрузке в Sр = 32 МВА.

Решение.

1. Исходные данные по трансформатору принимаем по таблице 6 ГОСТ 12965-85, либо принимаются по паспорту на трансформатор:

  • ∆Рк = 170 кВт – потери короткого замыкания;
  • ∆Рх.х = 34 кВт – потери холостого хода;
  • I0 = 0,55% – ток холостого хода;
  • Uк = 10,5% – напряжение короткого замыкания для обмоток ВН-НН;
Таблица 6 - Потери, напряжения короткого замыкания и ток холостого хода двухобмоточных трансформаторов

2. Определяем коэффициент загрузки трансформатора:

β = Sp/Sн = 32/40 = 0,8

3. Определяем суммарные потери активной мощности в трансформаторе по формуле 5.26 [Л1. с. 106]:

Определяем суммарные потери активной мощности в трансформаторе по формуле 5.26

4. Определяем суммарные потери реактивной мощности в трансформаторе по формуле 5.27 [Л1. с. 106]:

Определяем суммарные потери реактивной мощности в трансформаторе по формуле 5.27

Литература:

1. Электроснабжение промышленных и гражданских зданий. Ю.Д.Сибикин. 2006 г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

потери активной мощности в трансформаторе, потери реактивной мощности в трансформаторе

Благодарность:

Если вы нашли ответ на свой вопрос и у вас есть желание отблагодарить автора статьи за его труд, можете воспользоваться платформой для перевода средств «WebMoney Funding» и «PayPal».

Данный проект поддерживается и развивается исключительно на средства от добровольных пожертвований.

Проявив лояльность к сайту, Вы можете перечислить любую сумму денег, тем самым вы поможете улучшить данный сайт, повысить регулярность появления новых интересных статей и оплатить регулярные расходы, такие как: оплата хостинга, доменного имени, SSL-сертификата, зарплата нашим авторам.

Трансформатор является прибором, который призван преобразовывать электроэнергию сети. Эта установка имеет две или больше обмоток. В процессе своей работы трансформаторы могут преобразовать частоту и напряжение тока, а также количество фаз сети.

В ходе выполнения заданных функций наблюдаются потери мощности в трансформаторе. Они влияют на исходную величину электричества, которую выдает на выходе прибор. Что собой представляют потери и КПД трансформатора, будет рассмотрено далее.

Устройство

Трансформатор представляет собой статический прибор. Он работает от электричества. В конструкции при этом отсутствуют подвижные детали. Поэтому рост затрат электроэнергии вследствие механических причин исключены.

При функционировании силовой аппаратуры затраты электроэнергии увеличиваются в нерабочее время. Это связано с ростом активных потерь холостого хода в стали. При этом наблюдается снижение нагрузки номинальной при увеличении энергии реактивного типа. Потери энергии, которые определяются в трансформаторе, относятся к активной мощности. Они появляются в магнитоприводе, на обмотках и прочих составляющих агрегата.

Потери мощности в трансформаторе

КПД трансформатора никогда не достигает 100 %, поскольку в нём всегда присутствуют потери электроэнергии. Потери в трансформаторах принято разделять на два вида: потери в меди (медные витки обмоток) и потери в стали (материал сердечника).
Потери в меди возникают из-за собственного сопротивления медного проводника. Ток, протекая по обмотке, обуславливает некоторое падение напряжения, которое и является потерей мощности. При этом электрическая энергия преобразуется в тепловую, которая разогревает обмотку.

Потери в стали в свою очередь состоят из потерь, вызванных вихревыми токами, и обусловленых циклическим перемагничиванием (гистерезис).

сердечник трансформатора

Величина потерь, вызванных необходимостью циклического перемагничивания определяется в первую очередь качеством стали, из которой сделан сердечник. В сердечнике как бы находится большое количество диполей, которые под действием переменного магнитного поля периодически изменяют своё направление (поворачиваются с периодичностью изменения магнитного поля). В ходе пространственного изменения положения диполей возникают механические силы трения между ними, что вызывает дополнительный нагрев сердечника. Таким образом происходит преобразование магнитной энергии в тепловую (потери мощности на гистерезис).

Чтобы снизить эти потери, применяется ряд мер. Потери, вызванные циклическим перемагничиванием, могут быть уменьшены, если использовать специальный структурированный особым образом магнитомягкий материал для изготовления сердечника (электротехническая сталь). Такой материал обладает большой магнитной проницаемостью, но при этом малой коэрцитивной силой.

Для снижения потерь в меди применяется увеличение сечения проводников обоих обмоток, при этом электросопротивление их уменьшается. С другой стороны, это вызывает увеличение стоимости и веса трансформатора, поэтому достаточным считается такое сечение, при котором не возникает заметного нагрева обмоток.

Чтобы уменьшить вихревые токи, сердечник выполняется не в виде единого монолитного блока, а собирается из множества электроизолированных пластин. Толщина каждой из них может равняться всего нескольким десятым долям миллиметра. Также электрическую проводимость сильно снижает специально вводимый в сталь легирующий элемент — кремний.

Комплексное использование мер по снижению потерь мощности позволяет довести КПД трансформаторов до 85-90%.

Понятие потерь

При работе установки часть мощности поступает на первичный контур. Она рассеивается в системе. Поэтому поступающая мощность в нагрузку определяется на меньшем уровне. Разница составляет суммарное снижение мощности в трансформаторе.

потери электроэнергии в трансформаторах

Существует два вида причин, из-за которых происходит рост потребление энергии оборудованием. На них влияют различные факторы. Их делят на такие виды:

  1. Магнитные.
  2. Электрические.

Их следует понимать, дабы иметь возможность снизить электрические потери в силовом трансформаторе.

Магнитные потери

В первом случае потери в стали магнитопривода состоят из вихревых токов и гистериза. Они прямо пропорциональны массе сердечника и его магнитной индукции. Само железо, из которого выполнен магнитопривод, влияет на эту характеристику. Поэтому сердечник изготавливают из электротехнической стали. Пластины делают тонкими. Между ними пролегает слой изоляции.

Также на снижение мощности трансформаторного устройства влияет частота тока. С ее повышением растут и магнитные потери. На этот показатель не влияет изменение нагрузки устройства.

Электрические потери

Снижение мощности может определяться в обмотках при их нагреве током. В сетях на такие затраты приходится 4-7% от общего количества потребляемой энергии. Они зависят от нескольких факторов. К ним относятся:

  • Электрическая нагрузка системы.
  • Конфигурация внутренних сетей, их длина и размер сечения.
  • Режим работы.
  • Средневзвешенный коэффициент мощности системы.
  • Расположение компенсационных устройств.

Потери мощности в трансформаторах являются величиной переменной. На нее влияет показатель квадрата тока в контурах.

Пример_расчета_потерь_в_трансформаторе

7. Расчёт потерь мощности в трансформаторе

Потери мощности в трансформаторах состоят из потерь активной и реактивной мощности.

Потери активной мощности состоят из двух составляющих: потерь, идущих на нагрев обмоток трансформатора, зависящих от тока нагрузки и потерь, идущих на нагревание стали, зависящих от тока нагрузки.

Потери реактивной мощности состоят из двух составляющих: потерь, вызванных рассеянием магнитного потока в трансформаторе, зависящих от квадрата тока нагрузки и потерь, идущих на намагничивание трансформатора, независящих от тока нагрузки, которые определяются током холостого хода.

Расчёт потерь мощности в трансформаторе необходим для более точного выбора сетей высокого напряжения, а также для определения стоимости электроэнергии.

Определяем потери активной мощности в трансформаторе ΔP, кВт, по формуле

где Pкз – потери активной мощности в трансформаторе при проведении опыта короткого замыкания

Рхх – потери активной мощности в трансформаторе при проведении опыта холостого хода, кВт.

ΔP = 7,3 · 0,6 2 +2 = 4,6 кВт.

Рассчитываем потери реактивной мощности в трансформаторе ΔQ, кВар

где Uк.з. – напряжение при опыте короткого замыкания в процентах от номинального

Iх.х. – ток при опыте холостого хода в процентах от номинального

ΔQ = 0,01 · (5,5 · 0,6 2 +3) · 630 = 31,4 кВар.

Определяем потери полной мощности в трансформаторе ΔS, кВА

ΔS = ,

ΔS = = 31,7 кВА.

Все полученные данные сводим в таблицу 4.

Таблица 4 – Потери мощности в трансформаторе

Итак, потери мощности в трансформаторе будут зависеть от коэффициента загрузки трансформатора, от его конструктивного исполнения и полной номинальной мощности. Для уменьшения потерь необходимо правильно выбрать трансформатор и оптимально загрузить его.

8. Расчёт и выбор сетей напряжением выше 1 кВ

Критерием для выбора сечения кабельных линий является минимум приведённых затрат. В практике проектирования линий массового строительства выбор сечения производится не по сопоставительным технико-экономическим расчётам в каждом конкретном случае, а по нормируемым обобщённым показателям.

Т.к. сети напряжением выше 1 кВ не входят в перечень [4, пункта 1.3.28], то выбор сетей до цеховой трансформаторной подстанции осуществляем по экономической плотности тока jэк, .Рассчитываем максимальную активную мощность, проходящую по высоковольтному кабелю, Рm(10), кВт с учётом потерь мощности в трансформаторе

Определяем максимальную реактивную мощность, проходящую по кабелю U=10 кВ с учётом потерь мощности в трансформаторе Qm(10), кВар, по формуле

Определяем полную мощность в сетях высокого напряжения Sm(10), кВА

Sm(10)= =783,6 кВА.

Рассчитываем коэффициенты активной (cosφ(6)) и реактивной (tgφ(6)) мощности высоковольтной линии

cosφ(10)= = 0,94,

tgφ(10)= = 0,37.

Рассчитываем силу тока, проходящую по линии напряжением U=10 кВ Im(10), A

Im(10)= =22,6 А.

По справочнику [4, таблица 1.3.36] определяем экономическую плотность тока, учитывая, что число часов использования максимума нагрузки в год Тm=3000-5000 тысяч час/год и прокладываемый кабель марки ААШв

Определяем экономически целесообразное сечение кабеля Fэк, мм 2

Fэк=,

Fэк= =16,14 мм 2 .

Принимаем к прокладке кабель ближайшего стандартного сечения 16 мм 2 , т.е. ААШв 3х16 с допустимым током Iд, А, определяемым по каталогу [4, таблица 1.3.16]

Определяем допустимую величину тока с учётом поправочных коэффициентов

где Kп – поправочный коэффициент на параллельную прокладку двух кабелей

в траншее, принимаемый по каталогу по [4, таблица 1.3.26], Kп=0,9;

Kт – поправочный коэффициент на температуру земли, принимаемый по каталогу [4, таблица 1.3.3], Kт=1, т.к. принята температура t=15 ºC.

Методика расчета

Потери в трансформаторах можно рассчитать по определенной методике. Для этого потребуется получить ряд исходных характеристик работы трансформатора. Представленная далее методика применяется для двухобмоточных разновидностей. Для измерений потребуется получить следующие данные:

  • Номинальный показатель мощности системы (НМ).
  • Потери, определяемые при холостом ходе (ХХ) и номинальной нагрузке.
  • Потери короткого замыкания (ПКЗ).
  • Количество потребленной энергии за определенное количество времени (ПЭ).
  • Полное количество отработанных часов за месяц (квартал) (ОЧ).
  • Число отработанных часов при номинальном уровне нагрузки (НЧ).

Получив эти данные, измеряют коэффициент мощности (угол cos φ). Если же в системе отсутствует счетчик реактивной мощности, в расчет берется ее компенсация tg φ. Для этого происходит измерение тангенса угла диэлектрических потерь. Это значение переводят в коэффициент мощности.

потери в трансформаторе

Формула расчета

Коэффициент нагрузки в представленной методике будет определяться по следующей формуле:

К = Эа/НМ*ОЧ*cos φ, где Эа – количество активной электроэнергии.

Какие потери происходят в трансформаторе в период загрузки, можно просчитать по установленной методике. Для этого применяется формула:

П = ХХ * ОЧ * ПКЗ * К² * НЧ.

Таблица потерь в трансформаторе

Расчет для трехобмоточных трансформаторов

Представленная выше методика применяется для оценки работы двухобмоточных трансформаторов. Для аппаратуры с тремя контурами необходимо учесть еще ряд данных. Они указываются производителем в паспорте.

В расчет включают номинальную мощность каждого контура, а также их потери короткого замыкания. При этом расчет будет производиться по следующей формуле:

Э = ЭСН + ЭНН, где Э – фактическое количество электричества, которое прошло через все контуры; ЭСН – электроэнергия контура среднего напряжения; ЭНН – электроэнергия низкого напряжения.

потери мощности в трансформаторе

Пример расчета

Чтобы было проще понять представленную методику, следует рассмотреть расчет на конкретном примере. Например, необходимо определить увеличение потребления энергии в силовом трансформаторе 630 кВА. Исходные данные проще представить в виде таблицы.

Обозначение Расшифровка Значение
НН Номинальное напряжение, кВ 6
Эа Активная электроэнергия, потребляемая за месяц, кВи*ч 37106
НМ Номинальная мощность, кВА 630
ПКЗ Потери короткого замыкания трансформатора, кВт 7,6
ХХ Потери холостого хода, кВт 1,31
ОЧ Число отработанных часов под нагрузкой, ч 720
cos φ Коэффициент мощности 0,9

На основе полученных данных можно произвести расчет. Результат измерения будет следующий:

К² = 4,3338

П = 0,38 кВТ*ч

% потерь составляет 0,001. Их общее число равняется 0,492%.

Диаграмма потерь в трансформаторе

Одноэлементный расчет потерь электроэнергии

Пример Расчета технологических потерь электроэнергии при ее передаче из сетей Сетевой организации в сети Потребителя:

Наименование организации Потребителя: ОАО «***» Адрес объекта:________ ТП №453 (счетчик №797198)

Расчет потерь в силовом трансформаторе и кабельной линии

1. Потери электроэнергии в трансформаторе рассчитываются по формуле:

∆Wт = ∆Wхх + (∆Wн1 х Wт/100) , кВт*час, где∆Wxx = ∆Рxx х То х (Ui /Uном)2 — потери холостого хода силового трансформатора, кВт*час; ∆Wн1 = (∆Wн / Wт) х 100% — относительные нагрузочные потери силового трансформатора, %;∆Wн = Кк х ∆Рср х Тр х Кф2 — нагрузочные потери силового тр-ра, кВт*час; Кф2 = (1+2Кз)/3Кз ― квадрат коэффициента формы графика за расчетный период, у.е.; Кз = [Wт / (Sн х Тр х cosφ)] х 10-3 — коэффициент загрузки тр-ра ( заполнения графика), у.е.; ∆Рср = 3 х I2ср х R х 10-3 — потери мощности в силовом тр-ре, кВт; Iср=Wт /(√3 х Uср х Тр х cos φ) – средняя нагрузка за расчетный период, А; R = (∆Ркз х U2ном /S2ном) х 10-3 — активное сопротивление силового тр-ра, Ом; Кк ― коэффициент, учитывающий различие конфигураций графиков активной и реактивной нагрузки (справочная величина, принимается равным 0,99), у.е.

ТМ 630/6/0,4 Тип трансформатора
Sнт номинальная мощность трансформатора, МВА; 0,63
Uном номинальное напряжение, кВ; 6
потребленная активная электроэнергия за месяц, кВт*час; 37108
∆Рхх потери мощности холостого хода трансформатора, кВт; 1,31
∆Ркз потери мощности короткого замыкания, кВт; 7,6
Тр число часов работы трансформатора под нагрузкой за расчетный период, час; 720
То время присоединения трансформатора за расчетный период к сети, час; 720
Кк коэффициент различия конфигураций; 0,99
cosφ среднезвешенный коэффициент мощности для трансформатора. 0,9

Расчет потерь в трансформаторе: ∆Wхх =1001 кВт*ч; Кф2 =4,3338; Кз = 0,0909; R =0,6893 Ом; ∆Wн = 182,2 кВт*час; Iср=5,3407; ∆Рср = 0,0590; %потерь ∆Wн1 =0,49 Итого: ∆Wт = 1001 кВт*час +0,491%

2. Потери электроэнергии в линии электропередачи (Тип силового кабеля — 6кВ АСБ 3*240мм2) рассчитываются по формуле:

Wкл =1,1*n*p*I2*L/g*0,001*T , гдеn — число фаз линии = 3p — удельное сопротивление материала, Ом*мм2/м = 0,0271I — среднеквадратичный ток линии, А =5,3407L — длина линии, м =50g — сечение провода, мм2 = 240T — время работы за расчетный период, час-=7201,1 — коэфф. учитывающий сопрот конт.,скрутку жил и способ прокладки линийСправочно удельные сопративления меди, алюминия и стали:

р Cu 0,0189 Ом*мм2/м
р Al 0,0271 Ом*мм2/м
р Сталь 0,14 Ом*мм2/м

Потери ∆Wкл =0,38 кВт*ч; %потерь ∆Wкл =0,001

ИТОГО: общий % потерь=0,492; ВСЕГО ∆W = 1001 кВт*час +0,492%

Произвести расчет можно с помощью удобного калькулятора, выполненного в формате Exel-таблицы

Произвести более сложный расчет с большим количеством объектов электросетевого хозяйства, можно осуществить с помощью специализированного программного комплекса (РТП-3, либо Програсс++), оставив заявку в форме обратной связи с приложением необходимых первичных документов.

Измерение полезного действия

При расчете потерь определяется также показатель полезного действия. Он показывает соотношение мощности активного типа на входе и выходе. Этот показатель рассчитывают для замкнутой системы по следующей формуле:

КПД = М1/М2, где М1 и М2 – активная мощность трансформатора, определяемая измерением на входном и исходящем контуре.

Выходной показатель рассчитывается путем умножения номинальной мощности установки на коэффициент мощности (косинус угла j в квадрате). Его учитывают в приведенной выше формуле.

В трансформаторах 630 кВА, 1000 кВА и прочих мощных устройствах показатель КПД может составлять 0,98 или даже 0,99. Он показывает, насколько эффективно работает агрегат. Чем выше КПД, тем экономичнее расходуется электроэнергия. В этом случае затраты электроэнергии при работе оборудования будут минимальными.

Рассмотрев методику расчета потерь мощности трансформатора, короткого замыкания и холостого хода, можно определить экономичность работы аппаратуры, а также ее КПД. Методика расчета предполагает применять особый калькулятор или производить расчет в специальной компьютерной программе.

Понравилась статья? Поделить с друзьями:
  • Даны катеты прямоугольного треугольника как найти высоту
  • Как найти высоту дома физика
  • Как найти вход в подземный путепровод
  • Как найти телефон по номеру модели
  • Cs script is busy vs code как исправить