Как найти правильную дробь калькулятор

Дроби

Что такое дроби и как их решать

Дробь в математике – это число, являющееся частью единицы или несколькими её частями. То есть если мы
хотим указать на половину части целого, то мы пишем обыкновенную дробь ½.

Дробью необязательно мы можем указать часть целого. С помощью дроби мы можем обозначить вообще любое
число. Например, дробь 4/2 будет равняться двум, то есть целому числу.

Обыкновенная дробь представляет собой два числа, разделенных горизонтальной чертой – знаком деления.
Число, которое располагается над чертой, – числитель, а число под чертой – знаменатель.
Знаменатель обозначает количество равных частей, на которое делится целое, а числитель дроби –
количество взятых частей данного целого для дальнейшего деления на знаменатель.

Дробь может иметь десятичную форму. Например, обыкновенная дробь 1/10 может обозначаться как 0,1 в
десятичной форме. Десятичная форма – это рациональное или иррациональное число, обозначающее дробь.
Десятичная форма, может иметь бесконечный вид, например, дробь 1/3 имеет в десятично виде бесконечную
форму 0,333333333…

Дроби могут быть правильными и неправильными. Правильной называют такую дробь, у которой числитель меньше
знаменателя. В случае если числитель дроби больше знаменателя, она называется неправильной.
Дробь, записанная в виде целого числа и правильной дроби называется смешанной. А дробь, которая не имеет
целую часть, называется простой дробью. Любую смешанную дробь можно преобразовать в неправильную простую
дробь.

Так же читайте нашу статью «Калькулятор факториалов онлайн»

Как пользоваться калькулятором дробей?

Воспользоваться калькулятором дробей вы всегда сможете на сайте pocketteacher.ru.
Бесплатный онлайн
решатель позволит решить дробное выражение онлайн любой сложности за считанные секунды. Все, что вам
необходимо
сделать — это просто ввести свои данные в калькуляторе. Так же вы можете посмотреть
видео
инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то
вы
можете задать их в нашей группе Вконтакте: pocketteacher.
Вступайте
в нашу группу, мы всегда рады помочь вам.

Калькулятор дробей

  1. Главная
  2. /
  3. Математика
  4. /
  5. Арифметика
  6. /
  7. Калькулятор дробей

Если вам необходимо произвести математические операции с дробями воспользуйтесь нашим онлайн калькулятором:

Просто заполните необходимые поля и получите ответ и подробное решение.

Данный калькулятор может работать как с положительными, так и с отрицательными дробями.

При этом нужно помнить, что:

− ac = a− c = − ac

Всегда нужно использовать только последний вариант.

Сложение дробей

С одинаковыми знаменателями

При сложении дробей с одинаковыми знаменателями складываются только числители, а знаменатель остаётся прежним.

Формула


ac + bc = a + bc

Пример

Для примера сложим следующие дроби с равными знаменателями:

27 + 47 = 2 + 47 = 67

С разными знаменателями

При сложении дробей с разными знаменателями для начала необходимо привести дроби к общему знаменателю. А затем сложить числители.

Формула (универсальная)


ac + bd = a⋅d + b⋅cc⋅d

Пример №1

Для примера сложим следующие дроби с разными знаменателями:

12+13=1⋅32⋅3+1⋅23⋅2=36+26=3+26=56

Пример №2

Существуют также частные случаи, когда знаменатель одной дроби можно привести к знаменателю второй. Например:

12+14=1⋅22⋅2+14=24+14=2+14=34

Этот же пример можно решить и применяя вышеуказанную универсальную формулу:

12+14=1⋅42⋅4+1⋅24⋅2=48+28=4+28=68=34

Обратите внимание, что мы сократили дробь:

68=3 ⋅ 24 ⋅ 2=34

Сложение смешанных чисел

Смешанные числа — это такие числа, у которых есть как дробная часть, так и целая.

Преобразуя в неправильную дробь

Для начала смешанное число (дробь) нужно преобразовать в неправильную дробь, а потом можно складывать как в предыдущих примерах.

Формула

a bc + d ef = b + a ⋅ cc + e + d ⋅ ff

Пример

Для примера сложим два смешанных числа:

312+123=1+3⋅22+2+1⋅33=72+53=7⋅32⋅3+5⋅23⋅2=216+106=21+106=316=5⋅6+16=5⋅66 + 16=516

Обратите внимание, что из полученной неправильной дроби мы выделили целую часть:

316=5⋅6+16=5⋅66 + 16=516

Складывая целую и дробную части отдельно

Целую и дробную части смешанных чисел можно складывать по отдельности.

Формула

a bc + d ef = (a + d) + (bc + ef)

Пример

Решим предыдущий пример этим способом:

3 12 + 1 23 = (3+1)+(12+23) = 4+1⋅32⋅3+2⋅23⋅2=4+36+46=4+3+46=4+76=4+116 = 516

Вычитание дробей

Вычитание дробей происходит по тем же принципам, что и сложение.

С одинаковыми знаменателями

Формула


acbc = a − bc

Пример

Для примера вычтем одну дробь из другой с равными знаменателями:

3525=3−25=15

С разными знаменателями

Тут также, как и при сложении, дроби нужно подвести под общий знаменатель, а затем вычитать.

Формула


acbd = a⋅d − b⋅cc⋅d

Пример

Для примера вычтем одну дробь из другой, с разными знаменателями:

3413=3⋅34⋅31⋅43⋅4=912412=9−412=512

Вычитание смешанных чисел

Для начала смешанные числа преобразуем в неправильные дроби, потом приводим полученные дроби к общему знаменателю, а затем вычтем одну из другой. Далее выделяем целую часть если она есть.

Формула

a bcd ef = b + a ⋅ cce + d ⋅ ff

Пример

312123=1+3⋅222+1⋅33=7253=7⋅32⋅35⋅23⋅2=216106=21−106=116=1⋅6+56=1⋅66 + 56=156

Умножение дробей

При умножении дробей неважно одинаковые или разные у них знаменатели. Числитель одной дроби умножается на числитель другой, а знаменатели тоже перемножаются между собой.

Формула


acbe = a ⋅ bc ⋅ e

Давайте рассмотрим несколько примеров:

Пример №1

Умножим дроби с одинаковыми знаменателями:

1323=1⋅23⋅3=29

Пример №2

Умножим дроби с разными знаменателями:

1324=1⋅23⋅4=212=1⋅26⋅2=16

Пример №3

Умножим смешанные числа:

112223=1+1⋅222+2⋅33=3283=3⋅82⋅3=246=4

Деление дробей

При делении одной дроби на другую также неважно одинаковые или разные у них знаменатели. Чтобы разделить одну дробь на другую нужно перемножить числитель первой дроби и знаменатель второй, а знаменатель первой умножить на числитель второй.

Формула


ac : be = a ⋅ ec ⋅ b

Давайте рассмотрим несколько примеров:

Пример №1

Разделим одну дробь на другую с таким же знаменателем:

23:13=2331=2⋅33⋅1=63=2

Пример №2

Делим дроби с разными знаменателями:

12:23=1232=1⋅32⋅2=34

Пример №3

Деление смешанных чисел:

412:223=1+4⋅22:2+2⋅33=92:83=9238=9⋅32⋅8=2716=1⋅16+1116=1⋅1616 + 1116=11116

См. также

Используя этот онлайн калькулятор с дробями, вы сможете сложить, вычесть, умножить, разделить или возвести в степень обыкновенные дроби, смешанные числа (дроби с целой частью), десятичные дроби и целые числа, соответственно найти их сумму, разность, произведение или частное.

Воспользовавшись онлайн калькулятором дробей, вы получите детальное пошаговое решение вашего примера, которое позволит понять алгоритм решения задач с дробями и закрепить пройденный на уроках материал.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Онлайн-калькулятор дробей поможет решать сложные примеры с обыкновенными и смешанными, правильными и неправильными дробями, в том числе и с многоэтажными.
Если в примере есть многоэтажная дробь, то её можно (используя скобки) преобразовать в такой вид:

Многоэтажная дробь

Вы можете решать примеры, в которых содержится от 2 до 19 дробей.

Работать с калькулятором очень просто:

  1. Укажите количество дробей в Вашем примере и нажмите кнопку «Создать пример»
  2. Если в примере есть скобки, объединяющие дроби, расставьте эти скобки
  3. Если Вы поставили лишние скобки, то их всегда можно удалить
  4. Расставьте числа и знаки (сложение, вычитание, умножение, деление)
  5. Когда расстановка чисел и скобок закончена, нажимайте кнопку «Рассчитать». Калькулятор выдаст Вам пошаговое решение примера и ответ.

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

Что такое дроби?

Дробь – это число, которое состоит из нескольких одинаковых частей — долей единицы, а также из одной ее части.

Обыкновенная дробь выглядит так:

Обыкновенная дробь

В математической записи дроби число, которое находится выше черты — называется числителем, а число, которое расположено ниже — называется знаменателем. Оно показывает то, на сколько долей разделили единицу.

Первое число является делимым, а второе число служит делителем. Обыкновенные дроби могут образовывать поле рациональных чисел, если они будут с целыми числителями и ненулевыми знаменателями. Они показывают количество долей, на которые делится единица.

Математические дроби начинают изучать в школе. В основном в 5 или в 6 классах. Но также дроби очень часто используются в дальнейшей школьной и затем в вузовской программах.

История дробей

Русское слово «дробь», как и его аналоги в других языках, происходит от латинского слова «fractura» с арабским происхождением и означает в переводе: ломать или дробить. Основы теории обыкновенных дробей заложили греческие и индийские математики. Слова числитель и знаменатель ввёл в оборот греческий математик Максим Плануд.

Позже дроби появляются в Европейской математике, например, у Фибоначчи в 1202 году. Поначалу европейские математики оперировали только с обыкновенными дробями, а в астрономии — с шестидесятеричными. В Европе первые десятичные дроби ввёл Иммануил Бонфис около 1350 года, но широкое распространение они получили только после появления сочинения Симона Стевина «Десятая» (1585).

В России, начиная с древней Руси, дроби именовали долями. А в первых отечественных учебниках по математике дроби назывались ломаными числами. Термин «дробь», как аналог латинского «fractura», впервые используется в «Арифметике» Магницкого в 1703 году как для обыкновенных, так и для десятичных дробей.

Виды дробей

Дроби бывают нескольких видов:

  • обыкновенные;
  • смешанные и простые;
  • правильные и неправильные;
  • десятичные;
  • в виде процентов.

Обыкновенная дробь

Обыкновенная дробь имеет вид a/b. Число a — здесь будет являться числителем дроби, а число b — будет знаменателем.

Примеры:

  1. 1/2
  2. 6/5
  3. 3/1
  4. 7/15

Правильные и неправильные

Правильной называется дробь, у которой числитель (модуль числителя) меньше модуля знаменателя.

Пример, правильной дроби: 3/4, так как 3<4.

Неправильная дробь, наоборот, имеет числитель, который по модулю больше чем знаменатель.

Пример, неправильной дроби: 4/3, так как 4>3.

Простые и смешанные

Простая дробь содержит только числитель и знаменатель. Например, 4/3.

Смешанная дробь содержит целое число и дробь, и понимается как сумма этого числа и дроби. Например, 1 и 1/3.

Неправильную дробь всегда можно сделать смешанной, то есть выделить в ней целые части.

Десятичная дробь

Десятичная дробь — это запись дроби, в которой знаменатель не дан в явном виде, но понимается как целое число, степень десяти (напр. 10, 100, 1000 и др).

Десятичная дробь записывается через запятую в строку таким образом, чтобы отделить дробную часть от целой части. Вот так:

  • 0,7 – ноль целых и 7 десятых (7/10).
  • 5,42 – пять целых и 42 сотых (42/100).
  • 9,245 – девять целых и 245 тысячных (245/1000).

В виде процентов

Дробь в виде процентов — это когда при переводе десятичной дроби в проценты, ее необходимо умножить на 100. Запись производится с запятыми.

Например, 0,023 = 0,023 * 100% = 2,3%

Для того чтобы перевести проценты в десятичные дроби, следует разделить число процентов на 100.

Что нужно знать, чтобы работать с дробями?

Что переводить дроби из одного вида в другой и выполнять различные операции над дробями, надо знать несколько терминов.

Наименьшее общее кратное (НОК) для нескольких чисел — это наименьшее натуральное число, которое делится на каждое из этих чисел.

Наименьший общий знаменатель – это НОК, которое рассчитывается для знаменателей двух и более дробей.

Как найти наименьший общий знаменатель?

Чтобы это понять, необходимо рассмотреть следующий пример двух дробей:

1/20 и 3/14

Если нужно привести дроби с разными знаменателями к общему наименьшему знаменателю, следует найти наименьшее общее кратное (НОК) знаменателей этих дробей.

Знаменатель первой дроби равен 20.

Его нужно разложить его на простые множители: 20=2⋅5⋅2.

Далее также разложить 2 знаменатель дроби 14 на простые множители: 14 = 7*2.

Убираем повторяющиеся множители у знаменателя второй дроби и получаем:

НОК (14,20) = 2*5*2*7 = 140.

В итоге общий наименьший знаменатель равняется 140.

Как привести дробь к общему знаменателю?

Берем первую дробь 1/20 и умножаем ее на 7, чтобы прийти к 140. Для этого умножаем числитель и знаменательно на 7 и получаем:

Наименьший общий знаменатель

А вторую дробь теперь следует умножить на 10 таким же образом:

НОК

Общим наибольшим делителем (НОД) нескольких чисел является самое большее целое натуральное число, на которое эти самые числа делятся без остатка.

Общий наибольший делитель обозначается в виде такой записи: НОД (18; 48) = 6.

Как следует переводить дробь?

Из смешанной дроби в обыкновенную:

  1. Необходимо умножить знаменатель дробной части на единицу целой части;
  2. К произведению, которое получилось, следует прибавить числитель дробной части;
  3. Сам знаменатель при этом оставить без изменений.

Из обыкновенной дроби в смешанную:

  1. Разделить числитель дроби на знаменатель;
  2. Полученный результат будет являться целой частью;
  3. То, что останется в результате деления (остаток) будет числителем.

Из десятичной дроби в обыкновенную или смешанную^

  • Для этого действия необходимо целую часть умножать на знаменатель дробной части.
  • После этого полученный результат сложить с числителем дробной части. То, что получилось в итоге, и будет числителем новой дроби, а сам знаменатель при этом останется без изменений.

Операции над дробями

С дробями можно совершать различные арифметические операции.

➕ Сложение

Для сложения дробей с разными знаменателями сначала нужно найти знаменатель, который является общим. После этого нужно к общему знаменателю привести дроби. Хорошо, если это будет наименьший знаменатель.

Далее — выполнить сложение дробей, где под суммой числителей подписать общий знаменатель.

В конце, если возможно, сократить полученную дробь.

Например:

Сложение - сумма дробей

➖ Вычитание

Здесь потребуется из числителя уменьшаемого отнять числитель вычитаемого, а сам знаменатель при этом оставить без изменений.

Так, чтобы сделать вычитание из дроби, следует сначала вычесть числители, а все одинаковые знаменатели оставлять прежними.

Например:

Вычитание - разность дробей

✖ Умножение

Для этого умножаются числители и записывается результат, как числитель дроби.

Далее, умножаются знаменатели и записывается результат, как знаменатель дроби.

Например:

Умножение дробей

➗ Деление

Здесь следует числитель первой дроби умножить на знаменатель второй дроби. После чего записать полученное произведение в числитель новой дроби.

Знаменатель первой дроби умножается на числитель второй дроби. Далее записывается произведение, как знаменатель новой дроби.

Например:

Деление дробей

📏 Сокращение

Это действие получается тогда, когда необходимо разделить числитель и знаменатель на одинаковое число, но которое не может быть равно 0.

В итоге получается равную дробь, имеющая меньший знаменатель и числитель.

Чтобы сократить дробь, необходимо в определенной последовательности проверять, на что делятся знаменатель и числитель. В случае, когда находится общий делитель, то сокращать именно на него.

Значительно упростит сокращение раскладывание знаменателя и числителя на множители.

Например:

Сокращение дробей

❓ Вопросы и ответы

А также советуем обратить внимание на некоторые часто задаваемые вопросы про дроби и ответы на них.

Какие дроби называются простыми?

Простые дроби — это те, которые записываются в виде 2-ух целых чисел, определенных скошенной или горизонтальной прямой. Например: 1/4,1/2.

Какие дроби называются десятичными?

Когда в знаменателях стоят 10, 100, 1000 и т.д. и степень числа 10, то дроби имеют название — десятичные.

Какие дроби называются правильными?

Правильные дроби те, у которых модуль знаменателя больше модуля числителя.

Какие дроби называются неправильными?

Неправильные дроби те, у которых модуль числителя меньше, чем модуль знаменателя.

Как разделить дробь на дробь?

Нельзя делить на 0.

Если делить на 1 — будет такое же число.

Если делить 0 на любое число, получится 0.

Какая дробь называется положительной?

Когда она больше 0.

Какая дробь называется отрицательной?

Когда перед положительной дробью ставится знак «–».

Что такое степени с дробями?

Степени с дробями приводятся к знаменателю так же, как и рациональные дроби. Нужно найти дополнительный множитель и умножить на него знаменатель и числитель дроби.

При этом дополнительный множитель подбирать так, чтобы он не обращался в 0 для исходящего выражения.

Как пользоваться калькулятором дробей?

Калькулятор, решающий дроби, позволяет переводить дроби и производить самые простые операции типа сложения, вычитания, умножения, деления.

Для этого нужно заполнить соответствующие поля для дробей и нажать кнопку «Вычислить».

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор числа «e». Посмотрите онлайн нужное число знаков после запятой в числе «e» (Эйлера или Непера).
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор логарифмов. Вычислите онлайн натуральные, десятичные логарифмы (или с другим основанием) с решением.
  • Возведение дроби в степень. Возведите онлайн любую дробь (десятичную и обыкноенную) в любую степень.
  • Калькулятор процентов от числа. Рассчитайте онлайн значение процента от любого числа с помощью данного калькулятора.
  • Калькулятор процентов. Рассчитайте онлайн процент от числа, на сколько процентов одно число больше или меньше другого, или сколько процентов составляет одно число от другого числа, а также прибавьте или вычтете процент к числу.
  • Добавить процент к числу. Прибавьте онлайн любой процент к любому числу с помощью специального калькулятора.
  • Вычесть процент из числа. Вычтете онлайн любой процент от любого числа с помощью специального калькулятора.
  • На сколько процентов больше. Рассчитайте онлайн, на сколько процентов одно число больше другого.
  • На сколько процентов меньше. Рассчитайте онлайн, на сколько процентов одно число меньше другого.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

Понравилась статья? Поделить с друзьями:
  • Как найти электрика в интернете
  • Как исправить обои если они наклеены внахлест
  • Как найти человека по номеру пластиковой карты
  • Как найти частный интеграл дифференциального уравнения
  • Как составить план своей комнаты по математике