Как найти правило моментов

Определение

Статика — раздел механики, изучающий условия равновесия тел.

Виды равновесия

Устойчивое равновесие

Если тело вывести из устойчивого равновесия, то появляется сила, возвращающая его в положение равновесия. Устойчивому равновесию соответствует минимальное значение потенциальной энергии (Ep min).

Неустойчивое равновесие

Если тело вывести из неустойчивого равновесия, то возникает сила, удаляющая тело от положения равновесия. Неустойчивому равновесию соответствует максимальное значение потенциальной энергии (Ep max).

Безразличное равновесие

При выведении тела из положения безразличного равновесия дополнительных сил не возникает.

Момент силы

Определение

Момент силы — векторная физическая величина, модуль которой равен произведению модуля силы на плечо силы:

M = Fd

M — момент силы. Единица измерения — Ньютон на метр (Н∙м). Направление вектора момента силы всегда совпадает с направлением вектора силы. d — плечо силы. Единица измерения — метр (м).

Плечо силы — кратчайшее расстояние между осью вращения и линией действия силы.

Пример №1. Стальной шар массой 2 кг колеблется на нити длиной 1 м. Чему равен момент силы тяжести относительно оси, проходящей через точку О перпендикулярно плоскости чертежа, в состоянии, представленном на рисунке?

Плечом силы тяжести, или кратчайшим путем от прямой, проходящей через точку О перпендикулярно плоскости чертежа, до линии действия силы тяжести, будет отрезок, равный максимальному отклонению шара от положения равновесия. Следовательно:

M = Fd = mgd = 2∙10∙0,5 = 10 (Н∙м)

Момент силы может быть положительным и отрицательным.

Если сила вызывает вращение тела по часовой стрелке, то такой момент считают положительным:

M1 = F1d1

Если сила вызывает вращение тела против часовой стрелки, то такой момент считают отрицательным:

M2 = F2d2

Правило моментов

Тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

Mi=0

Иначе правило моментов можно сформулировать так:

Сумма моментов сил, вызывающих вращение тела по часовой стрелке, равна сумме моментов сил, вызывающих вращение тела против часовой стрелки.

Mпо час. стр.=Mпр. час. стр.

Условия равновесия тел

Тело не участвует в поступательном движении:

Fi=0; vo=0

Тело не участвует во вращательном движении:

Mi=0; ω0=0

Тело находится в состоянии равновесия (не участвует ни в поступательном, ни во вращательном движении)

Fi=0; vo=0 и Fi=0; vo=0

Простые механизмы

Определение

Простые механизмы — приспособления, служащие для преобразования силы. К ним относится рычаг, наклонная плоскость, блоки, клин и ворот.

Наклонная плоскость

Дает выигрыш в силе. Чтобы поднять груз на высоту h, нужно приложить силу, равную силе тяжести этого груза. Но, используя наклонную плоскость, можно приложить силу, равную произведению силы тяжести на синус угла уклона плоскости:

mgsinθ<mg

Рычаг

Дает выигрыш в силе, равный отношению плеча второй силы к плечу первой:

F1F2=d2d1

Неподвижный блок

Изменяет направление действия силы. Модули и плечи сил при этом равны:

F1 = F2

M1 = M2

Подвижный блок

Дает выигрыш в силе в 2 раза:

d1 = R

d2 = 2R

F1 = 2F2

Клин

Делит силу на две равные части, направление которых зависит от формы клина:

F=F1+F2

Золотое правило механики

При использовании простых механизмов мы выигрываем в силе, но проигрываем в расстоянии. Поэтому выигрыша в работе простые механизмы не дают.

Задание EF22660

Мальчик взвесил рыбу на самодельных весах с коромыслом из лёгкой рейки (см. рисунок). В качестве гири он использовал батон хлеба массой 0,8 кг. Определите массу рыбы.


Алгоритм решения

1.Записать исходные данные.

2.Записать правило моментов и выполнить решение в общем виде.

3.Подставить известные данные и вычислить искомую величину.

Решение

Известна лишь масса батона: m1 = 0,8 кг. Но мы также можем выразить плечи для силы тяжести батона и хлеба. Для этого длину линейки примем за один. Так как линейка поделена на 10 секций, можем считать, что длина каждой равна 0,1. Тогда плечи сил тяжести батона и рыба соответственно равны:

d1 = 0,3

d2 = 0,4

Запишем правило моментов:

F1 d1 = F2 d2

Сила тяжести равна произведению массы на ускорение свободного падения. Поэтому:

m1gd1 = m2gd2

m1d1 = m2d2

Отсюда масса рыбы равна:

m2=m1d1d2=0,8·0,30,4=0,6 (кг)

Ответ: 0,6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18706

Однородный куб опирается одним ребром на пол, другим на вертикальную стену (см. рисунок). Плечо силы трения Fтр относительно оси, проходящей через точку О3 перпендикулярно плоскости чертежа, равно…

Ответ:

а) 0

б) О2О3

в) О2В

г) О3В


Алгоритм решения

  1. Сформулировать определение плеча силы.
  2. Найти плечо силы трения и аргументировать ответ.

Решение

Плечом силы трения называют кратчайшее расстояние от оси вращения до линии, вдоль которой действует сила. Чтобы найти такое расстояние, нужно провести из точки равновесия перпендикуляр к линии действия силы трения. Отрезок, заключенный между этой точкой и линией, будет являться плечом силы трения. На рисунке этому отрезку соответствует отрезок О3В.

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 9.7k

Момент силы. Условия равновесия рычага

  1. Устройство и виды рычагов
  2. Момент силы
  3. Правило моментов для двух сил
  4. Правило моментов для нескольких сил
  5. Применение рычагов в быту и технике
  6. Задачи
  7. Лабораторная работа №9. Проверка условия равновесия рычага

п.1. Устройство и виды рычагов

Устройство и виды рычагов Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

Рычаг состоит из перекладины и опоры.
Точка опоры делит перекладину рычага на два плеча рычага.

Назначение рычага – получить выигрыш в силе или расстоянии.
Если к плечу рычага достаточно приложить меньшую силу, то переместить конец рычага придётся на бóльшее расстояние: выигрыш в силе оборачивается проигрышем в расстоянии.
И наоборот, если удаётся сократить перемещение конца рычага, придётся приложить бóльшую силу: выигрыш в расстоянии оборачивается проигрышем в силе.

В зависимости от взаимного расположения точки опоры и нагрузки различают три вида рычагов.

п.2. Момент силы

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг.

Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы

На рисунке (l_1) – плечо силы (F_1, l_2) — плечо силы (F_2).

Силы вращают рычаг вокруг точки опоры – по часовой или против часовой стрелки.

Ось вращения проходит через точку опоры перпендикулярно плоскости вращения.

На рисунке сила (F_1) вращает рычаг против часовой стрелки, а сила (F_2) — по часовой стрелке.

Момент силы – это произведение силы, вращающей тело, на её плечо. $$ M=Fl $$ В системе СИ единица измерения момента силы — Н·м.

Момент силы определяется не для всего тела, а для некоторой его точки, удалённой от центра (оси) вращения. Эта величина имеет смысл только для вращающихся тел.

п.3. Правило моментов для двух сил

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил $$ F_1l_1=F_2l_2 $$

п.4. Правило моментов для нескольких сил

Правило моментов для нескольких сил
Рычаг находится в равновесии, если сумма моментов всех сил, вращающих его по ходу часовой стрелки, равен сумме моментов всех сил, вращающих его против хода часовой стрелки.

Например:

Правило моментов для нескольких сил Силы (F_1, F_2, F_3) вращают рычаг против часовой стрелки, а сила (F_4) — по часовой стрелке. Поэтому: $$ F_1l_1+F_2l_2+F_3l_3=F_4l_4 $$

п.5. Применение рычагов в быту и технике

Рычаги первого рода

Весы
Весы
Предмет, вес которого нужно измерить, — это нагрузка, а гиря создает усилие. Они равны, так как находятся на одном расстоянии от точки опоры.
Рычажные весы
Рычажные весы
Точка опоры смещена относительно центра. Грузило передвигается по основанию, пока не уравновесит взвешиваемый объект.
Гвоздодёр
Гвоздодёр
Усилие ручки увеличивается плечом и вытаскивает гвоздь. Нагрузкой здесь является сопротивление гвоздя.
Ручная тележка
Ручная тележка
Небольшое усилие, прикладываемое к ручкам тележки, позволяет поднимать тяжелый груз.
Плоскогубцы
Плоскогубцы
Составной рычаг, пара простых рычагов, соединенных в точке опоры. Нагрузка — сопротивление предмета захвату инструментом.
Ножницы
Ножницы
Составной рычаг первого рода, развивают мощное режущее действие очень близко к месту крепления. Нагрузка — сопротивление материала лезвиям.

Рычаги второго рода

Рычаги третьего рода

п.6. Задачи

Задача 1. Для каждого положения тела укажите плечо силы.
Задача 1
При необходимости достраиваем линию действия силы и опускаем на неё перпендикуляр из точки опоры. Этот перпендикуляр и есть искомое плечо.

Задача 2. Грузы уравновешены на рычаге. Отношение плеч рычага 1:5. Масса большего груза 2,5 кг. Найдите массу меньшего груза.

Дано:
(frac{l_1}{l_2}=frac 15)
(m_1=2,5 text{кг})
__________________
(m_2-?)

Задача 2
По правилу моментов begin{gather*} F_1l_1=F_2l_2 end{gather*} На обоих концах рычага действуют силы тяжести: $$ F_1=m_1g, F_2=m_2g $$ Получаем: begin{gather*} m_1gl_1=m_2gl_2\[7pt] m_2=frac{m_1l_1}{l_2} end{gather*} Подставляем: $$ m_2=2,5cdot frac 15=0,5 (text{кг}) $$ Ответ: 0,5 кг

Задача 3. На концах рычага действуют силы 15 Н и 60 Н, направленные вниз. Рычаг находится в равновесии. Расстояние между точками приложения сил 1 м. Где расположена точка опоры?

Дано:
(F_1=15 text{Н})
(F_2=60 text{Н})
(l_1+l_2=1 text{м})
__________________
(l_1, l_2-?)

Задача 3
По правилу моментов begin{gather*} F_1l_1=F_2l_2. end{gather*} Получаем систему уравнений begin{gather*} left{ begin{array}{l l} 15l_1=60l_2 \ l_1+l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=4l_2 \ l_1+l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=4l_2 \ 4l_2+l_2=1 end{array} right. Rightarrow \[7pt] Rightarrow left{ begin{array}{l l} l_1=4l_2 \ 5l_2=1 end{array} right. Rightarrow left{ begin{array}{l l} l_1=0,8 \ l_2=0,2 end{array} right. end{gather*} Ответ: 0,8 м от точки приложения первой силы и 0,2 м от точки приложения второй силы.

Задача 4*. К балке, расположенной на двух опорах А и В подвешен груз массой 500 кг. Расстояние от точки подвеса груза к одному из концов балки в 4 раза больше, чем к другому. С какой силой балка давит на каждую из опор? Примите (gapprox 10 text{м/с}^2). Ответ запишите в килоньютонах.

Дано:
(m=500 text{кг})
(gapprox 10 text{м/с}^2)
(OB=4OA)
__________________
(F_A, F_B-?)

Задача 4*
Сила тяжести (F_{text{т}}=mg), направленная вниз, уравновешивается силами реакции опор (F_A) и (F_B), направленными вверх. begin{gather*} F_A+F_B=mg end{gather*} По правилу моментов при равновесии begin{gather*} F_Acdot OA=F_Bcdot OB=F_Bcdot 4OARightarrow F_A=4F_B \[7pt] F_A+F_B=5F_B=mgRightarrow F_B=frac{mg}{5} end{gather*} Получаем: begin{gather*} F_B=frac{500cdot 10}{5}=1000 text{Н}=1 text{кН}, F_A=4cdot 100=4000 text{Н}=4 text{кН} end{gather*} Ответ: 4 кН и 1 кН

п.7. Лабораторная работа №9. Проверка условия равновесия рычага

Цель работы
Исследовать условия равновесия рычага под действием двух параллельных сил.

Теоретические сведения

Рычаг – это твёрдое тело, которое может вращаться вокруг неподвижной опоры.

В работе используется рычаг 1-го рода, в котором опора располагается между точками приложения сил.

Плечо силы – это кратчайшее расстояние между точкой опоры и прямой, вдоль которой сила действует на рычаг. Чтобы найти плечо силы, нужно из точки опоры провести перпендикуляр на линию действия силы.

Момент силы – это произведение силы, вращающей тело, на её плечо: (M=Fl).

Правило моментов для двух сил
Рычаг находится в равновесии под действием двух сил, если момент силы, вращающей его по ходу часовой стрелки, равен моменту силы, вращающей его против хода часовой стрелки.

Правило моментов для двух сил begin{gather*} M_1=M_2\[7pt] F_1l_1=F_2l_2 end{gather*}

В работе используется лабораторный рычаг с отверстиями диаметром 4 мм, находящимися на расстоянии 5 см друг от друга. Отверстий нечетное количество; центральное отверстие (центр тяжести) используется для подвеса рычага на штативе в положении равновесия. Абсолютную погрешность определения плеча на данном рычаге принимаем равной половине диаметра отверстия $$ Delta l=frac D2=2 text{мм} $$

Для измерения веса груза используется динамометр с ценой деления $$ d=0,1 text{Н}. $$

Абсолютная погрешность определения веса $$ Delta_F=frac d2=0,05 text{Н}. $$

Относительные погрешности измерений: $$ delta_l=frac{Delta_l}{l}, delta_F=frac{Delta_F}{F}, delta_M=delta_l+delta_F $$

Абсолютная погрешность определения момента силы $$ Delta_M=Mcdot delta_M $$

Погрешности определения отношений сил и плечей: begin{gather*} r_F=frac{F_1}{F_2}, delta_{rF}=frac{Delta_F}{F_1}+frac{Delta_F}{F_2}, Delta_{rF}=frac{F_1}{F_2}cdot delta_{rF}\[7pt] r_l=frac{l_2}{l_1}, delta_{rF}=delta_{rl}frac{Delta_l}{l_1}+frac{Delta_l}{l_2}, Delta_{rl}=frac{l_2}{l_1}cdot delta_{rl} end{gather*}

Приборы и материалы
Лабораторный рычаг, штатив, стержень, динамометр, набор грузов.

Ход работы

1. Закрепите стержень в штативе, наденьте на него рычаг. Если стержень проходит через центральное отверстие рычага, он находится в равновесии.
2. Подвесьте три груза на динамометре, запишите их вес (F_1).
3. Подвесьте грузы слева от оси вращения рычага на расстоянии 5 см.
4. С помощью динамометра определите, какую силу нужно приложить на расстоянии 15 см справа от оси вращения, чтобы удерживать рычаг в равновесии.
5. Как направлены в этом случае силы, действующие на рычаг? Запишите длину плеч этих сил.
6. Найдите моменты сил (M_1) и (M_2), их относительные и абсолютные погрешности.
7. Вычислите отношение сил (frac{F_1}{F_2}) и плеч (frac{l_2}{l_1}) для этого случая, погрешности их определения.
8. Сделайте выводы.

Результаты измерений и вычислений

(F_1, text{Н}) (l_1, text{см}) (F_2, text{Н}) (l_2, text{см}) (F_1/F_2) (l_2/l_1)
2,9 5 1,0 15 2,9 3,0

Погрешности прямых измерений: $$ Delta_l=2 text{мм}=0,2 text{см}, Delta_F=0,05 text{Н} $$ Найдем моменты сил и погрешности вычислений: begin{gather*} M_1=F_1cdot l_1=2,9cdot 5=14,5 (text{Н}cdot text{м})\[7pt] delta_{M1}=frac{Delta_l}{l_1}+frac{Delta_F}{F_1}=frac{0,2}{5}+frac{0,05}{2,9}approx 0,04+0,017=0,057=5,7text{%} \[7pt] Delta_{M1}=M_1cdot delta_{M1}=14,5cdot 0,057approx 0,8 (text{Н}cdot text{м})\[7pt] M_1=(14,5pm 0,8) text{Н}cdot text{м}\[7pt] \[7pt] M_2=F_2cdot l_2=1,0cdot 15=15,0 (text{Н}cdot text{м})\[7pt] delta_{M2}=frac{Delta_l}{l_2}+frac{Delta_F}{F_2}=frac{0,2}{15}+frac{0,05}{1,0}approx 0,013+0,05=0,063=6,3 text{%} \[7pt] Delta_{M2}=M_2cdot delta_{M2}=15,0cdot 0,063approx 0,9 (text{Н}cdot text{м})\[7pt] M_2=(15,0pm 0,9) text{Н}cdot text{м} end{gather*} Таким образом, с учетом вычисленных погрешностей: $$ M_1=M_2 $$

Погрешность вычислений для (frac{F_1}{F_2}) begin{gather*} delta_{rF}=frac{Delta_F}{F_1}+frac{Delta_F}{F_2}=frac{0,05}{2,9}+frac{0,05}{1,0}approx 0,017+0,05=0,067=6,7text{%}\[7pt] Delta_{rF}=frac{F_1}{F_2}cdot delta_{rF}=2,9cdot 0,067approx 0,2\[7pt] frac{F_1}{F_2}=2,9pm 0,2 end{gather*}

Погрешность вычислений для (frac{l_2}{l_1}) begin{gather*} delta_{rl}=frac{Delta_l}{l_1}+frac{Delta_l}{l_2}=frac{0,2}{5}+frac{0,2}{15}approx 0,04+0,013=0,053=5,3text{%}\[7pt] Delta_{rl}=frac{l_2}{l_1}cdot delta_{rl}=3,0cdot 0,053approx 0,2\[7pt] frac{l_2}{l_1}=3,0pm 0,2 end{gather*} Таким образом, с учетом вычисленных погрешностей: $$ frac{F_2}{F_2}=frac{l_2}{l_1} $$

Выводы
На основании проделанной работы можно сделать следующие выводы.

Моменты сил, приложенных слева и справа от оси вращения рычага, равны $$ M_1=(14,5pm 0,8) text{Н}cdot text{м}, M_2=(15,0pm 0,9) text{Н}cdot text{м} $$ Таким образом, с учетом вычисленных погрешностей, (M_1=M_2) — правило моментов выполняется.

Отношения сил и плечей равны begin{gather*} frac{F_1}{F_2}=2,9pm 0,2, frac{l_2}{l_1}=3,0pm 0,2 end{gather*}

Таким образом, с учетом вычисленных погрешностей (frac{F_1}{F_2}=frac{l_2}{l_1}) — правило отношений выполняется.

Эксперименты подтвердили условие равновесия рычага.

С тех пор как Архимед установил правило рычага, оно просуществовало в первозданном виде почти 1900 лет. И лишь в 1687 г. французский ученый П. Вариньон придал ему более общую форму, воспользовавшись понятием момента силы.

Моментом силы называется физическая величина, равная произведению силы на ее плечо:

    M = Fl,    (21.1)

где

М — момент силы, F — сила, l — плечо силы.

Докажем, что рычаг находится в равновесии, если момент силы, вращающей его по часовой стрелке, равен моменту силы, вращающей его против часовой стрелки, т. е.

     М1 = М2    (21.2)

Для доказательства этого равенства воспользуемся формулой (20.1). Используя свойство пропорции (произведение крайних членов пропорции равно произведению ее средних членов), перепишем эту формулу в виде

F1l1 = F2l2

Но F2l2 = M2 — момент силы, стремящейся повернуть рычаг по часовой стрелке (см. рис. 50), а F1l1 = M1 — момент силы, стремящейся повернуть рычаг против часовой стрелки. Таким образом, M1 = M2, что и требовалось доказать.

Формула (21.2) выражает правило моментов. Это правило справедливо для любого твердого тела, способного вращаться вокруг закрепленной оси. Таково, например, тело, изображенное на рисунке 53. Ось вращения этого тела перпендикулярна плоскости рисунка и проходит через точку, обозначенную буквой O. Плечом силы F1 в данном случае является расстояние l1 от оси вращения до линии действия силы.

Момент силы

В общем случае момент силы находят следующим образом. Сначала проводят линию действия силы. Затем из точки O, через которую проходит ось вращения, опускают на линию действия силы перпендикуляр. Длина этого перпендикуляра является плечом данной силы. Умножив силу на ее плечо, получают момент силы относительно оси вращения.

Момент силы характеризует вращающее действие силы. Это действие зависит как от силы, так и от ее плеча. Именно поэтому, например, желая открыть дверь, стараются приложить силу как можно дальше от оси вращения. С помощью небольшой силы при этом создают значительный момент, и дверь открывается. Открыть ее, оказывая давление около петель, значительно труднее. По той же причине гайку легче отворачивать более длинным гаечным ключом, шуруп легче вывернуть с помощью отвертки с более широкой ручкой и т. д.

Единицей момента силы в СИ является ньютон-метр (1 Н*м). Это момент силы 1 Н, имеющей плечо 1 м.

1. Что называют моментом силы? 2. Сформулируйте правило моментов. 3. Что характеризует момент силы? 4. Почему ручку у двери прикрепляют на противоположной от петель стороне? 5. Как находится момент силы в общем случае? 6. Что принимают за единицу момента силы?

Момент силы зависит от длины плеча. Для многих подобная фраза — просто сухой набор фактов. На самом деле, если разобраться, за терминами «длина плеча», «момент силы» прячутся удобные и вполне понятные физические концепции. На данном уроке мы приподнимем над всем этим завесу тайны, а также откроем для себя условие равновесия и правило моментов. Нюансы а-ля в чем там измеряется момент силы и формула момента силы прилагаются!

Момент силы: вновь Архимед и его рычаг

Поговаривают, что древнейшим открытием и в какой-то степени самым первым научным достижением человека можно смело называть рычаг. Удивительно, но наши предки на уровне интуиции понимали, что увесистый камень намного проще поднять или передвинуть с помощью самой обычной палки. При этом удивляет больше не наличие палки во всей этой истории, а осознание первобытным человеком принципа простых механизмов. Ведь палки первые разумные жители планеты специально искали подлиннее. Они понимали: чем длиннее, тем будет проще совершить работу.

«Катить проще, чем тянуть» — еще одно древнейшее «научное»  открытие примитивного человека наряду с рычагом.

Принцип рычага передавался из уст в уста, от одного племени к другому, от одного поколения к следующему. Мы не знали, почему это работает. У нас не было формул, не было определений. Был лишь рычаг в самых его разных формах проявления и четкое знание — возьмись подальше от точки опоры, если тяжело.

И лишь в третьем веке до нашей эры Архимед впервые произвел необходимые математические расчеты. Он наконец описал теорию рычага, которой мы пользуемся и по сей день. Он первым связал друг с другом понятия груза, плеча и силы. Как гласит легенда, осознав масштабы своего открытия, воскликнул: «Дайте мне точку опоры, и я переверну Землю!»

Благодаря опытам Архимеда, его фундаментальному пониманию закона равновесия рычага, впоследствии возникла крайне важная физическая величина — момент силы

Закон равновесия: опыт с грузами

Определить момент силы можно разными способами. Мы воспользуемся самым простым. Нам достаточно вспомнить условие равновесия рычага и провести несложный опыт с подвешенными грузами. 

Во-первых, возьмем небольшую деревянную балку. К ее верхнему концу прикрепим болтом мерную линейку таким образом, чтобы крепление располагалось в центре тяжести линейки (рисунок 1). Далее к линейке прикрепим по сантиметровым делениям два крючка, за которые будем подвешивать грузики разной массы. Начнем с отметок $10 space см$ и $20 space см$ — по пять влево и вправо от центра тяжести в $15 space см$. 

Рисунок 1. Простая система из линейки, балки, крепления и крючков

Возьмем грузик массой $20 space г$ и подвесим его за крючок (рисунок 2). Очевидно, что рычаг в результате не окажется в положении равновесия

Рисунок 2. Справа от точки опоры рычага подвешиваем первый грузик массой $20 space г$

Теперь с другой стороны от центра тяжести подвесим грузик массой $40 space г$ (рисунок 3). Очевидно, что рычаг снова не окажется в положении равновесия: с левой стороны на плечо рычага действует бó‎льшая сила $mg$. 

Рисунок 3. Отклонение рычага в левую сторону при подвешивании второго грузика массой $40 space г$

Приводим рычаг в равновесие

Интуитивно мы понимаем, что дабы соблюсти условие равновесия данной системы, один из грузиков нужно куда-то сместить. Мы так же интуитивно понимаем, что если смещать грузик массой $40 space г$, его нужно подвесить за крючок, располагающийся ближе к точке опоры. Смещать грузик массой $20 space г$ нужно в другую сторону — подальше от точки опоры.

Вопрос на миллион: если, скажем, мы хотим перевесить двадцатиграммовый грузик, на сколько делений должно увеличиться плечо груза?

Используем стандартный метод проб и ошибок. Перевешивая крючок с грузиком по разным отметкам на линейке, мы обнаружим, что рычаг придет в положение равновесия, если двадцатиграммовый грузик подвесить на расстоянии десяти сантиметров от точки опоры — на отметке $25 space см$ (рисунок 4). Обратите внимание на то, как пропорциональны получаемые величины: грузики массой $40 space г$ и $20 space г$ уравновешивают друг друга на плечах длиной $5 space см$ и $10 space см$ соответственно. 

Рисунок 4. Рычаг в положении равновесия

Условие равновесия

Именно таким образом Архимедом было сформулировано условие равновесия рычага. Можно долго перевешивать грузики, пользоваться различными массами, рычагами короткими, рычагами длинными, но одна вещь всегда будет объединять все элементы и переменные:

Рычаг находится в положении равновесия при условии, что отношение масс, подвешенных грузов, будет обратно пропорционально отношению расстояний от точки опоры до центров тяжести грузов:
$frac{m_1}{m_2}=frac{l_2}{l_1}$.

Если от масс перейти к силам, формулу можно улучшить до следующего вида:
$frac{m_1g}{m_2g} = frac{l_2}{l_1}$.

Лучше, но все равно не то. Где гарантии, что на наш абстрактный грузик будет действовать только сила тяжести? Ведь на грузик можно и надавить. Так что улучшим пропорцию еще раз и придем к окончательному математическому выражению под условие равновесия:
$frac{F_1}{F_2} = frac{l_2}{l_1}$,
где $F_1$ и $F_2$ — силы, действующие на рычаг, $l_1$ и $l_2$ — плечи сил.

Таким образом: 

Рычаг находится в положении равновесия, когда отношение сил, действующих на рычаг, обратно пропорционально отношению плеч этих сил.  

А теперь заметим, что согласно основному свойству пропорции из формулы выше получается следующее равенство:
$F_1cdot l_1 = F_2cdot l_2$.

Ранее мы с подобным не сталкивались — с произведением силы на плечо силы. Именно это произведение и называется в физике момент силы.

Определение момента силы

Момент силы — физическая величина, характеризующая действие силы. Равняется произведению модуля силы на ее плечо.

Формула момента силы соответственно следующая:

$M = F cdot l$,

где $F$ — модуль силы, $l$ — длина плеча.

Обратите внимание на то, как выглядит формула момента силы: в физике момент силы обозначается заглавной латинской литерой $M$ и измеряется в $Н cdot м$ — в ньютонах на метр. Характеризует момент силы, как мы указали в определении, действие силы.

Так-так, в чем измеряется момент силы?

Еще раз, формула момента силы включает в себя произведение модуля силы на длину плеча. Сила $F$ измеряется в ньютонах. Длина плеча, как и любая другая длина, согласно СИ измеряется в метрах. Ну и в чем же тогда измеряется момент силы? В ньютонах на метр ($Hcdot м$), разумеется.

И как понять, что характеризует момент силы?

Возьмем гаечный ключ. Ухватимся рукой за его конец и приложим некоторое усилие, чтобы провернуть гайку. После перехватим гаечный ключ примерно до середины ручки и также попробуем приложить некоторое усилие. Во втором случае провернуть гайку будет сложнее, чем если бы мы держались за конец ручки инструмента.

Рисунок 5. Опыт с гаечным ключом. Обратите внимание на направление момента силы $M$

Причина? Образуются разные величины момента силы! Помните, как мы говорили о механическом выигрыше на прошлом уроке? При нем образуется бóльший момент силы.

Иными словами, момент силы — это и есть в своем роде величина усилия. Чем больше момент, тем быстрее двигается предмет, тем проще он проворачивается, тем легче выполняется действие. Формула момента силы наглядно это демонстрирует.

Как рассчитать момент силы

Момент силы всегда рассчитывается как произведение модуля силы на плечо силы:
$M = F cdot l$.

Иногда определять приходится результирующий момент — когда на тело действует несколько разнонаправленных сил. Однако подобные «превратности» нам встретятся в программе лишь через пару лет.

Момент силы трапеции

Для примера возьмем нечто отвлеченное от привычных нам двуплечих рычагов — ясно, что внутри подобной механической системы плечо силы чаще всего будет совпадать с плечом рычага, так что сложности как таковой с расчетом плеча силы не возникнет. Представим вместо этого, что мы раскручиваем прикрепленную к поверхности фигуру в форме трапеции. Ого!.. 

Итак, наша вращающаяся трапеция. Силу мы прикладываем к концу фигуры — направление силы указано на изображении (рисунок 6). Согласитесь, увидеть плечо силы для подобной схемы движения уже не так просто, особенно когда глаз привык к рычагам.

Рисунок 6. Приложение силы к трапеции

Не паникуем и вспоминаем, что плечо силы есть перпендикуляр к линии действия силы, опущенный из точки опоры или, вернее сказать, из оси вращения (рисунок 7).

Рисунок 7. Плечо силы трапеции

Плечо силы будет равно длине отрезка $OA$. Ось вращения трапеции находится в точке $О$. Все гениальное просто, согласны?

Знак момента силы

Еще один немаловажный момент при расчете момента силы — знак величины. Момент может быть отрицательным или положительным. Это зависит от того, в каком направлении действует сила, приложенная к телу. Если она вращает тело по часовой стрелке, то момент силы считается положительным. Если наоборот — против часовой стрелки, то момент считается отрицательным

Рисунок 8. Знак момента силы

Может ли момент быть нулевым? Конечно, почему нет. Логично предположить, что в случае, если плечо силы равно нулю, то сила не создает никакого момента. Например, если вы надавите на ось вращения, сдвинуть при таком приложении силы что-либо невозможно.

Задача на моменты

Образавр предлагает решить задачу самостоятельно!

На земле лежит палка массой $20 space кг$ и длиной $4 space м$. Палку приподнимают за конец, прикладывая усилие в $120 space Н$. Какие моменты при этом создают силы, действующие на доску? Моменты силы тяжести в поднятом положении палки и в вертикальном положении к земле равны.

Дано:
$m = 20 space кг$
$d = 4 space м$
$F = 120 space Н$

$M — ?$

Рисунок 9. Схема рычага к задаче

Решение задачи на моменты

Показать решение и ответ

Скрыть

На палку действуют: сила реакции опоры $vec{N}$, сила тяжести $mvec{g}$ и внешняя сила, которую мы прикладываем к концу, $vec{F}$. Ось вращения при этом располагается в точке $B$: мысленно представим, что палка совершает вращательное движение, а так как точка $B$ будет находиться в центре полученной окружности, она и будет считаться осью вращения.

Плечо силы реакции опоры $vec{N}$ равно нулю: точка приложения силы и ось вращения совпадают. Следовательно $M_N$ силы реакции опоры мы можем определить сразу. Он равен нулю:
$M_N = 0$.

Далее опускаем перпендикуляр из оси вращения $B$ к внешней силе $vec{F}$. Получаем, что плечо внешней силы $vec{F}$ равно длине палки $d$:
$l_F = d$.

По формуле $M = F cdot l$, зная, что по условию задачи длина палки составляет $4 space м$, а модуль внешней силы равен $120 space Н$, рассчитаем момент внешней силы $M_F$. Вращение происходит по часовой стрелке, следовательно, момент будет положительным по знаку.

Считаем:
$M_F = 120 cdot 4 = 480 space H cdot м$.

Нюанс и финальный расчет

Если допустить, что момент силы тяжести $M_{mg}$ в поднятом положении палки равен моменту в вертикальном положении к земле, то плечо силы тяжести $l_{mg}$ равно половине длины палки:
$l_{mg} = frac{1}{2} cdot d =2 space м$.

Примечание. Подобное допущение необходимо исключительно для простоты расчетов. Если бы пришлось определять плечо силы тяжести «честно», в задаче также должны фигурировать как минимум высота подъема палки и угол подъема. Для вычисления плеча в треугольнике понадобились бы теорема косинусов и признаки подобия треугольников. Такие дела… Поэтому считаем «нечестно». Нахождением сложных плеч вы будете заниматься в курсе статики для 10 класса.

Теперь рассчитаем момент силы тяжести $M_{mg}$ по формуле моментов, учитывая, что движение происходит против часовой стрелки. Момент отрицательный:

$M_{mg}=-frac{1}{2}cdot mgcdot l_{mg}=-0.5 cdot 20 cdot 9.8 cdot 2 =-196~Н cdot м$.

Ответ: $M_N = 0$, $M_F = 480 space Нcdot м$, $M_{mg} = -196 cdot Н cdot м$.

Правило моментов

Остается последнее — разобраться, зачем нужно отрицательное значение момента силы.

Ранее мы говорили о том, что условие равновесия рычага — обратная пропорциональность отношений сил к плечам этих сил. Однако условие равновесия можно задать и через смежное понятие момента силы. В некоторых случаях даже удобнее для вычислений. 

Рисунок 10. Трапеции в состоянии равновесия

Вернемся к нашей вращающейся трапеции. Представим, что вы стоите и прикладываете к одному концу трапеции силу $vec{F}_1$. Ваш друг берется за другой конец трапеции и тянет фигурку в противоположную сторону c силой $vec{F}_2$. Вы в одну сторону, он в другую. При этом трапеция вращаться никуда не хочет. Она упрямо находится в положении равновесия. Но, казалось бы, моменты сил создаются. Где движение?

Правило моментов — формула

Дело в том, что один момент силы, условно говоря, «гасит» другой. Математически вычитается. Как только создаваемый вами момент силы превысит тот, что создается вашим другом, фигурка начнет движение по часовой стрелке, к вам. Если друг поднажмет, то трапеция пойдет против часовой стрелки, от вас.

Таким образом, мы можем складывать все моменты, действующие на тело, чтобы понимать, движется ли тело, и если да, то в какую сторону. Знак числа — удобный математический инструмент, позволяющий работать с направлениями. Если сумма всех моментов положительна, вращательное движение идет по часовой стрелке. Если отрицательна — против часовой.

А если сумма моментов равна нулю?

Логично, что тогда тело находится в положении равновесия. Оно не двигается. Вот как мы можем получить условие равновесия (неважно — рычага или другого тела), выраженное через момент силы.

Подобное равенство называется правило моментов.

Тело находится в состоянии покоя, если алгебраическая сумма всех моментов сил, приложенных к телу, равняется нулю:
$sum_i M_i= M_1+M_2+…+M_i =0$. 

Статика твёрдого тела.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: момент силы, условия равновесия твёрдого тела.

Статика изучает равновесие тел под действием приложенных к ним сил. Равновесие — это состояние тела, при котором каждая его точка остаётся всё время неподвижной в некоторой инерциальной системе отсчёта.

Условием равновесия материальной точки является равенство нулю равнодействующей (т. е. векторной суммы) всех сил, приложенных к точке. В этом случае наша точка будет двигаться равномерно и прямолинейно в произвольной инерциальной системе отсчёта. Значит, система отсчёта, связанная с точкой, также будет инерциальной, и в ней точка будет покоиться.

В случае твёрдого тела ситуация сложнее. Прежде всего, важно учитывать точку приложения каждой силы.

-Сила тяжести приложена в центре тяжести тела. Для тела простой формы центр тяжести совпадает с центром симметрии.

-Силы упругости и трения приложены в точке или в плоскости контакта тела с соприкасающимся телом.

Прямая линия, проходящая через точку приложения вдоль вектора силы, называется линией действия силы. Оказывается, точку приложения силы можно переносить вдоль линии её действия — от этого механическое состояние тела не изменится (в частности, равновесие не нарушится).

Для равновесия твёрдого тела недостаточно потребовать равенства нулю векторной суммы всех приложенных к телу сил.

В качестве примера рассмотрим пару сил — так называются две равные по модулю противоположно направленные силы, линии действия которых не совпадают. Пусть пара сил vec{F_{1}} и vec{F_{2}} приложена к твёрдому стержню (рис. 1).

Рис. 1. Пара сил

Векторная сумма этих сил равна нулю. Но стержень покоиться не будет: он начнёт вращаться. В данном случае не выполнено второе условие равновесия твёрдого тела. Чтобы его сформулировать, нужно ввести понятие момента силы.

Как должна быть направлена линия действия силы, чтобы тело стало вращаться вокруг неподвижной оси? Для начала заметим следующее.

— Если линия действия силы параллельна данной оси, то вращения не будет.
— Если линия действия силы пересекает данную ось, то вращения не будет.

В каждом из этих случаев действие силы вызывает лишь деформацию твёрдого тела.

Чтобы началось вращение, линия действия силы и ось вращения должны быть скрещивающимися прямыми.

Без ограничения общности можно считать эти прямые перпендикулярными друг другу. Мы всегда можем этого добиться, разложив силу на две составляющие — параллельную и перпендикулярную оси вращения — и отбросив параллельную составляющую как не вызывающую вращения. Поэтому везде далее мы считаем, что все силы, действующие на тело, перпендикулярны оси вращения.

Момент силы.

Плечо силы — это расстояние от оси вращения до линия действия силы (т. е. длина общего перпендикуляра к двум этим прямым).

В качестве примера на рис. 2 изображён диск, к которому приложена сила vec{F}. Ось вращения перпендикулярна плоскости чертежа и проходит через точку O. Плечом силы является величина l=OH, где H — основание перпендикуляра, опущенного из точки O на линию действия
силы.

Рис. 2. Плечо силы

Момент силы относительно оси вращения — это произведение силы на плечо:

M=Fl.

Чтобы учесть также направление вращения, вызываемого действием силы, моменту силы приписывают знак. Именно, момент силы считается положительным, если сила стремится поворачивать тело против часовой стрелки, и отрицательным, если по часовой стрелке.

Условия равновесия.

Если тело имеет неподвижную ось вращения и если алгебраическая сумма моментов всех сил относительно этой оси обращается в нуль, то тело будет находиться в равновесии. Это так называемое правило моментов . Оказывается, что в этом случае обращается в нуль алгебраическая сумма моментов всех сил относительно любой другой оси, параллельной оси вращения.

В общем случае, когда твёрдое тело может совершать как поступательное, так и вращательное движение, мы имеем два условия равновесия.

1. Равна нулю векторная сумма всех сил, приложенных к телу.
2. Равна нулю алгебраическая сумма моментов всех сил, приложенных к телу, относительно данной оси вращения или любой другой оси, параллельной данной.

Так, в примере на рис. 1 алгебраическая сумма моментов пары сил не обращается нуль (оба момента положительны). Поэтому стержень не находится в равновесии.

При решении задач удобно использовать сформулированные выше условия равновесия в следующем виде.

1′. Силы уравновешены вдоль любой оси.
2′. Суммарный момент сил, вращающих тело в одну сторону, равен суммарному моменту сил, вращающих тело в другую сторону.

Сейчас мы разберём одну достаточно содержательную задачу по статике и посмотрим, как работают наши условия равновесия.

Задача.
Однородная лестница опирается на гладкую вертикальную стену, образуя с ней угол alpha . При каком максимальном значении alpha лестница будет покоиться? Коэффициент трения между лестницей и полом равен mu .

Решение.
Пусть лестница опирается о пол и стену в точках A и B соответственно (рис. 3). Расставим силы, действующие на лестницу.

Рис. 3. К задаче

Поскольку лестница однородная, сила тяжести mvec{g} приложена в середине лестницы. Сила упругости пола vec{N_{1}} и сила трения vec{f} приложены в точке A. На рис. 3 точка приложения этих сил немного смещена от точки A внутрь лестницы; тем самым мы однозначно указываем, что силы приложены именно к лестнице (а не к полу).

Точно так же сила упругости стены vec{N_{2}} приложена в точке B. Поскольку стена гладкая, сила трения между стеной и лестницей отсутствует.
Воспользуемся условием 1′. Вдоль горизонтальной оси силы уравновешены:

f=N_{2}. (1)

Вдоль вертикальной оси силы также уравновешены:

mg=N_{1}. (2)

Теперь переходим к правилу моментов — условию 2′. Какую ось вращения выбрать? Удобнее всего взять ось, проходящую через точку A (перпендикулярно плоскости рисунка). В таком случае моменты сразу двух сил vec{f} и vec{N_{1}} обратятся в нуль — ведь плечи этих сил относительно точки A равны нулю (поскольку линии действия сил проходят через эту точку). Ненулевые моменты относительно точки A имеют силы mvec{g} и vec{N_{2}}, которые стремятся вращать лестницу в разные стороны; стало быть, моменты данных сил должны быть равны друг другу.

Плечо силы vec{N_{2}} — это длина перпендикуляра AC, опущенного из точки A на линию BC действия силы vec{N_{2}}. Плечо силы mvec{g} — это длина перпендикуляра AD, опущенного из точки A на линию действия силы mvec{g}. Согласно правилу моментов имеем:

N_{2}cdot AC=mgcdot AD.

Пусть длина лестницы равна 2l. Тогда AC=2l cosalpha , AD=l sinalpha . Подставляем эти соотношения в равенство моментов:

N_{2}cdot 2l cosalpha=mgcdot l sinalpha,

откуда

2N_{2}=mg tgalpha, (3)

С учётом равенства (1) имеем вместо (3):

2f=mg tgalpha. (4)

Вспомним теперь, что в условии спрашивается максимальное значение alpha. При максимальном угле alpha лестница пока ещё стоит, но уже находится на грани проскальзывания. Это означает, что сила трения f достигла своего максимального значения, равного силе трения скольжения:

f=mu N_{1}.

Теперь из (4) получаем:

2mu N_{1}=mg tgalpha,

а с учётом равенства (2):

2mu mg=mg tgalpha.

Отсюда получаем искомую максимальную величину alpha:

alpha= arctg (2mu).

Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Статика твёрдого тела.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Понравилась статья? Поделить с друзьями:
  • Как найти источник внимания
  • Как найти целое зная его часть дробь
  • Как найти кандидата на работу по резюме
  • Как найти свой hwid
  • Как найти вектор поворота