Как найти предел неопределенной функции

Прежде чем рассказать о вычислении пределов с неопределенностью, хочется верить, что у вас уже есть понимание того, что такое предел и как вычислить элементарные пределы. Если такого понимания нет, то сначала прочитайте статью «Пределы. Понятие пределов. Вычисление пределов».
Теперь перейдем к рассмотрению пределов с неопределенностью.

Существует группа пределов, когда x Стрелка Бесконечность, а функция представляет собой дробь, подставив в которую значение х = Бесконечность получим неопределенность вида Пределы с неопределенностью.

Пример.

Необходимо вычислить предел Пределы с неопределенностью

Воспользуемся нашим правилом №1 и подставим Бесконечность в функцию. Как видно мы получаем неопределенность Пределы с неопределенностью.

В числителе находим х в старшей степени, которая в нашем случае = 2:

Пределы с неопределенностью

То же самое проделаем со знаменателем:

Пределы с неопределенностью

Здесь также старшая степень = 2.

Далее надо из двух найденных степеней выбрать самую старшую. В нашем случае степень числителя и знаменателя совпадают и =2.

Итак, для раскрытия неопределенности Пределы с неопределенностью нам потребуется разделить числитель и знаменатель на х в старшей степени, т.е. на x2:

Пределы с неопределенностью

Ответ: 2/3.

Существуют также пределы с другой неопределенностью — вида Пределы с неопределенностью. Отличие от предыдущего случая лишь в том, что х стремится уже не к Бесконечность, а к конечному числу.

Пример.

Необходимо вычислить предел Пределы с неопределенностью.

Снова воспользуемся правилом №1 и подставим в место х число -1:

Пределы с неопределенностью

Мы получили неопределенность Пределы с неопределенностью, для раскрытия которой необходимо разложить числитель и знаменатель на множители, для чего в свою очередь обычно решается квадратное уравнение или используются формулы сокращенного умножения.

В нашем случае решаем уравнение:

Пределы с неопределенностью

Находим дискриминант:

Пределы с неопределенностью

Пределы с неопределенностью.

Если корень не извлекается целый вероятней всего D вычислен неправильно.

Теперь находим корни уравнения:

Пределы с неопределенностью

Пределы с неопределенностью

Подставляем:

Пределы с неопределенностью

Числитель разложили.

В знаменателе у нас х + 1, что итак является простейшим множителем.

Тогда наш предел примет вид:

Пределы с неопределенностью

х + 1 красиво сокращается:

Пределы с неопределенностью

Теперь подставим вместо х значение -1 в функцию и получаем:

2*(-1) – 5 = -2 – 5 = -7

Ответ: -7.

Рассмотрим основные положения, применяемые при решении различного рода задач с пределами:

  • Предел суммы 2-х или более функций равен сумме пределов этих функций:

    Пределы - правила

  • Предел постоянной величины равен самой постоянной величине:

    Пределы - правила

  • За знак предела можно выносить постоянный коэффициент:

    Пределы - правила

  • Предел произведения 2-х и более функций равен произведению пределов этих функций ( последние должны существовать):

    Пределы - правила

  • Предел отношения 2-х функций равен отношению пределов этих функций (в том случае, если предел знаменателя Не равно0:

    Пределы - правила

  • Степень функции, находящейся под знаком предела, применима к самому пределу этой функции (степень должна быть действительным числом):

    Пределы - правила

На этом с вычислением пределов с неопределенностью всё. Еще в статье «Замечательные пределы: Первый и второй замечательный предел» мы отдельно рассматриваем интересную группу пределов. Статья вставит еще один блок для решения большинства пределов, встречающихся не просторах обучения.

Если у вас появились какие то вопросы по вычислению пределов с неопределенностью, то задавайте их в комментариях. Будем рады ответить.

Заметка: Если не хватает времени на учебу, вы можете заказать контрольную работу (http://forstuds.ru/kontrolnaya-rabota-na-zakaz), учтите правда наличие знаний по теме у вас после этого.


Если материал был полезен, вы можете отправить донат или поделиться данным материалом в социальных сетях:


Правило. Для
вычисления предела функции
в точкеили принадо применить теоремы о пределах и
подставить предельное значение аргумента.

Для всех основных
элементарных функций в любой точке их
области определения имеет место равенство

.

Примеры

Найти пределы
функций:

2.
;

3.
;

4.
;

5.
.

При вычислении
пределов функций формальная подстановка
вместо х
предельного значения
часто приводит к неопределенным
выражениям вида:,,,,,,.

Например,
или.

Выражения вида
,,,,,,называютсянеопределенностями.

Вычисление предела
функции в этих случаях называют раскрытием
неопределенности
.

Рассмотрим правила
раскрытия таких неопределенностей.

Неопределенность вида

Если
ипри(),
то говорят, что их частноепредставляет собой неопределенность
вида.

Правило. Чтобы
раскрыть неопределенность вида
,
заданную отношением двух многочленов,
надо и числитель и знаменатель разделить
на самую высокую входящую в них степеньх.

Например,

.

Рассмотрим
дробно−рациональную функцию

(),

представляющую
собой отношение двух многочленов
относительно х
степеней m
и n
соответственно, и исследуем поведение
этой функции при
.

При нахождении
предела данной функции при
могут иметь место три варианта ответа:

1.

,
если
;

2.

,
если
;

3.

,
если
.

Из этого следует,
что предел отношения двух многочленов
при
во всех случаях равен пределу отношения
их старших членов.

Примеры

Найти пределы
функций:

1.
;

2.
;

3.
.

Неопределенность
вида

Если требуется
найти
,
гдеи− бесконечно малые функции при(),
т.е.,
то в этом случае вычисление предела
называют раскрытием неопределенности
вида
.

Рассмотрим возможные
приемы раскрытия такой неопределенности.

Выделение критического множителя

Правило. Чтобы
раскрыть неопределенность вида
,
заданную отношением двух многочленов,
надо и в числителе и в знаменателе
выделить критический множитель и
сократить на него дробь.

Примеры

Найти пределы
функций:

1.
;

2.
;

Преобразование иррациональных
выражений

Правило. Чтобы
раскрыть неопределенность вида
,
в которой числитель или знаменатель,
или тот и другой иррациональны, надо:

− перенести
иррациональность из числителя в
знаменатель, или из знаменателя в
числитель, домножив дробь на сопряженные
выражения,

− либо сделать
замену переменной.

Замечание.

Если под знаком
предела делается замена переменной, то
все величины, входящие под знак предела,
должны быть выражены через эту новую
переменную. Из равенства, выражающего
зависимость между старой переменной и
новой, должен быть определен предел
новой переменной.

Примеры

Найти пределы
функций:

1.

;

2.

;

3.

;

4.

.

Применение первого замечательного
предела

Правило. Для
раскрытия неопределенности вида
,
содержащей тригонометрические выражения,
используют первый замечательный предел:

или
,

где
и.

Примеры

Найти пределы
функций:

1.
;

2.
;

4.
.

Применение эквивалентных бесконечно
малых величин

Правило. Для
раскрытия неопределенности вида
можно и числитель и знаменатель заменить
величинами им эквивалентными (п.2.12).

Примеры

Найти пределы
функций:

1.
;

2.
;

3.
;

4.

.

Неопределенности
вида
и

Если
ипри,
то их разностьпредставляет собой неопределенность
вида
.

Если
ипри,
то их произведение− это неопределенность вида
.

Правило.
Неопределенности
вида
ираскрываются путем их преобразования
и сведения к неопределенностям видаили.

Примеры

Найти пределы
функций:

.

Неопределенности
вида
,,

Пусть функция
имеет вид:

.

Если при
,,
а,
то имеем неопределенность вида
.
Для раскрытия этой неопределенности
применяют второй замечательный предел:

;

;

или

;

.

Примеры

Найти пределы
функций:

1.
;

2.
;

3.
;

Если при
,,
а,
то имеем неопределенность вида
.

Если
ипри,
то имеет место неопределенность
.

Для раскрытия
неопределенностей вида
иих преобразуют и сводят к неопределенности
видаследующим образом:

.

Примеры

Найти пределы
функций:

1.
;

2.
;

В заключение
отметим, что в дальнейшем будут рассмотрены
более эффективные методы вычисления
пределов функций, основанные на
использовании понятия производной.

Упражнения

Односторонние
пределы. Найти пределы:

1.
; Ответ:;

; Ответ:
;

2.
; Ответь:;

; Ответ:
0.

Непосредственное
вычисление пределов. Найти пределы:

3.
; Ответ:
15;

4.
; Ответ:.

5.
; Ответ:
0.

Раскрытие
неопределенности
.
Найти пределы:

6.
; Ответ:
0;

7.
; Ответ:
-2;

8.
; Ответ:;

9.
; Ответ:.

Раскрытие
неопределенности
.
Найти пределы:

10.
; Ответ:;

11.
; Ответ:
-2;

12.
; Ответ:;

13.
; Ответ:;

14.
; Ответ:
-12;

15.
; Ответ:.

16.
; Ответ:;

17.
; Ответ:;

18.
; Ответ:;

19.
; Ответ:;

20.
; Ответ:.

Раскрытие
неопределенностей
.
Найти пределы:

21.
; Ответ:;

22.
; Ответ:;

23.
; Ответ:
0;

24.
; Ответ:
1.

Раскрытие
неопределенности.
Найти пределы:

25.
; Ответ:;

26.
; Ответ:;

27.
; Ответ:;

28.
; Ответ:.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Заказать задачи по любым предметам можно здесь от 10 минут

Как решать пределы для чайников?

Для тех, кто хочет научиться находить пределы в данной статье мы расскажем об этом. Не будем углубляться в теорию, обычно её дают на лекциях преподаватели. Так что «скучная теория» должна быть у Вас законспектирована в тетрадках. Если этого нет, то почитать можно учебники взятые в библиотеке учебного заведения или на других интернет-ресурсах.

Итак, понятие предела достаточно важно в изучении курса высшей математики, особенно когда вы столкнетесь с интегральным исчислением и поймёте связь между пределом и интегралом. В текущем материале будут рассмотрены простые примеры, а также способы их решения.

Примеры решений

Пример 1
Вычислить а) $ lim_{x to 0} frac{1}{x} $; б)$ lim_{x to infty} frac{1}{x} $
Решение

а) $$ lim limits_{x to 0} frac{1}{x} = infty $$

б)$$ lim_{x to infty} frac{1}{x} = 0 $$

Нам часто присылают эти пределы с просьбой помочь решить. Мы решили их выделить отдельным примером и пояснить, что данные пределы необходимо просто запомнить, как правило.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ text{a)} lim limits_{x to 0} frac{1}{x} = infty text{ б)}lim limits_{x to infty} frac{1}{x} = 0 $$
Пример 2
$$ lim limits_{x to 1} frac{x^2 + 2x + 1}{x + 1} $$
Решение

Внимание «чайникам» :) Чтобы вычислить предел любого типа и вида нужно подставить значение x, указанное под пределом, в функцию, стоящую под знаком предела. Давайте попробуем это сделать:

$$ lim limits_{x to 1} frac{x^2+2 cdot x+1}{x+1}=frac{1^2+2 cdot 1+1}{1+1} = $$

$$ = frac{4}{2}=2 $$

Как видим в итоге у нас вычислился предел, результатом стала двойка. Хорошо, когда так получается, но бывает так, что результатом становятся неопределенности. Попробуем разобраться с ними — это не так страшно как кажется :)

Ответ
$$ lim limits_{x to 1} frac{x^2 + 2x + 1}{x + 1} = 2 $$

Что делать с неопределенностью вида: $ bigg [frac{0}{0} bigg ] $

Пример 3
Решить $ lim limits_{x to -1} frac{x^2-1}{x+1} $
Решение

Как всегда начинаем с подстановки значения $ x $ в выражение, стоящее под знаком предела. 

$$ lim limits_{x to -1} frac{x^2-1}{x+1} = frac{(-1)^2-1}{-1+1}=frac{0}{0} $$

Что теперь дальше? Что же должно получиться в итоге? Так как это неопределенность, то это ещё не ответ и продолжаем вычисление. Так как в числители у нас многочлен, то разложим его на множители, помощью знакомой всем формулы ещё со школьной скамьи $$ a^2-b^2=(a-b)(a+b) $$. Вспомнили? Отлично! Теперь вперед и с песней применять её :)

Получаем, что числитель $ x^2-1=(x-1)(x+1) $

Продолжаем решать учитывая вышеприведенное преобразование:

$$ lim limits_{x to -1}frac{x^2-1}{x+1} = lim limits_{x to -1}frac{(x-1)(x+1)}{x+1} = $$

$$ = lim limits_{x to -1}(x-1)=-1-1=-2 $$

Ответ
$$ lim limits_{x to -1} frac{x^2-1}{x+1} = -2 $$
Пример 4
$$ lim limits_{x to 2}frac{x^2-4}{x^2-4x+4} $$
Решение

$$ lim limits_{x to 2}frac{x^2-4}{x^2-4x+4} = frac{0}{0} = $$

$$ = lim limits_{x to 2}frac{(x-2)(x+2)}{(x-2)^2} = $$

$$ = lim limits_{x to 2}frac{x+2}{x-2} = frac{2+2}{2-2} = frac{4}{0} = infty $$

Бесконечность получилась в результате — это следует из примера 1. Когда число делится на 0 под знаком предела, то получается бесконечность.

Ответ
$$ lim limits_{x to 2}frac{x^2-4}{x^2-4x+4} = infty $$

Устремим предел в последних двух примерах к бесконечности и рассмотрим неопределенность: $ bigg [frac{infty}{infty} bigg ] $

Пример 5
Вычислить $ lim limits_{x to infty} frac{x^2-1}{x+1} $
Решение

$ lim limits_{x to infty} frac{x^2-1}{x+1} = frac{infty}{infty} $

Что же делать? Как быть? Не стоит паниковать, потому что невозможное — возможно. Нужно вынести за скобки и в числителе и в знаменателе икс, а потом его сократить. После этого предел попытаться вычислить. Пробуем…

$$ lim limits_{x to infty} frac{x^2-1}{x+1} =lim limits_{x to infty} frac{x^2(1-frac{1}{x^2})}{x(1+frac{1}{x})} = $$

$$ = lim limits_{x to infty} frac{x(1-frac{1}{x^2})}{(1+frac{1}{x})} = $$

Используя определение из примера 2 и подставляя в место х бесконечность получаем:

$$ = frac{infty(1-frac{1}{infty})}{(1+frac{1}{infty})} = frac{infty cdot 1}{1+0} = frac{infty}{1} = infty $$

Ответ
$$ lim limits_{x to infty} frac{x^2-1}{x+1} = infty $$
Пример 6
$$ lim limits_{x to infty}frac{x^2-4}{x^2-4x+4} $$
Решение

$$ lim limits_{x to infty}frac{x^2-4}{x^2-4x+4} = frac{infty}{infty} $$

Чтобы устранить такую неопределенность нужно вынести за скобки икс в числителе и в знаменателе, далее их сократить. В полученное выражение подставить икс равное бесконечности. Пробуем…

$$ lim limits_{x to infty}frac{x^2-4}{x^2-4x+4} = frac{infty}{infty} = $$

$$ lim limits_{x to infty}frac{x^2(1-frac{4}{x^2})}{x^2(1-frac{4}{x}+frac{4}{x^2})} = $$

$$ lim limits_{x to infty}frac{1-frac{4}{x^2}}{1-frac{4}{x}+frac{4}{x^2}} = frac{1}{1} = 1 $$

Ответ
$$ lim limits_{x to infty}frac{x^2-4}{x^2-4x+4} = 1 $$

Алгоритм вычисления лимитов

Итак, давайте кратко подведем итог разобранным примерам и составим алгоритм решения пределов:

  1. Подставить точку х в выражение, следующее после знака предела. Если получается определенное число, либо бесконечность, то предел решен полностью. В противном случае имеем неопределенность: «ноль делить на ноль» или «бесконечность делить на бесконечность» и переходим к следующим пунктам инструкции.
  2. Чтобы устранить неопределенность «ноль делить на ноль» нужно разложить числитель и знаменатель на множители. Сократить подобные. Подставить точку х в выражение, стоящее под знаком предела.
  3. Если неопределенность «бесконечность делить на бесконечность», тогда выносим и в числителе, и в знаменателе x наибольшей степени. Сокращаем иксы. Подставляем значения икса из под предела в оставшееся выражение.

В этой статье Вы ознакомились с основами решения пределов, часто используемых в курсе Математического анализа. Конечно же это не все типы задач, предлагающихся экзаменаторами, а только простейшие пределы. В следующих статьях поговорим о других типах заданий, но сперва необходимо усвоить этот урок, чтобы двигаться далее. Обсудим, что делать, если есть корни, степени, изучим бесконечно малые эквивалентные функции, замечательные пределы, правило Лопиталя.

Если у Вас не получается самостоятельно решить пределы, то не паникуйте. Мы всегда рады помочь!

Теория пределов – раздел математического анализа. Наряду с системами линейных уравнений и диффурами пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Понятие предела в математике

Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции , так как именно с ними чаще всего сталкиваются студенты. Но сначала — самое общее определение предела:

Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a, то a – предел этой величины.

Для определенной в некотором интервале функции f(x)=y пределом называется такое число A, к которому стремится функция при х, стремящемся к определенной точке а. Точка а принадлежит интервалу, на котором определена функция.

Звучит громоздко, но записывается очень просто:

понятие предела для чайников

Lim — от английского limit — предел.

Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

Приведем конкретный пример. Задача — найти предел.

вычислить пределы для чайников

Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

математический анализ пределы для чайников

Кстати, если Вас интересуют базовые операции над матрицами, читайте отдельную статью на эту тему.

В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

пределы с нуля для чайников

Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х. Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность. Что делать в таких случаях? Прибегать к хитростям!

Решение пределов требует контроля

 

Неопределенности в пределах

Неопределенность вида бесконечность/бесконечность

Пусть есть предел:

пределы с подробным решением для чайников пошагово

Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

пределы объяснение

Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

задания по математике пределы

Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.

Пределы

 

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Еще один вид неопределенностей: 0/0

В таких случаях рекомендуется раскладывать числитель и знаменатель на множители. Но давайте посмотрим на конкретный пример. Нужно вычислить предел:

предел функции в точке для чайников

Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

как решать пределы для чайников с корнями

Сократим и получим:

объяснение пределов для чайников

Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

Математика. Таблица пределов

 

Правило Лопиталя в пределах

Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

Наглядно правило Лопиталя выглядит так:

пределы математика для чайников

Важный момент: предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

А теперь – реальный пример:

Правило Лопиталя

Налицо типичная неопределенность 0/0. Возьмем производные от числителя и знаменателя:

Правило Лопиталя для чайников

Вуаля, неопределенность устранена быстро и элегантно.

Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос «как решать пределы в высшей математике». Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.

Понравилась статья? Поделить с друзьями:
  • Как найти чертеж своего дома
  • Как найти покупателя на квартиру с обременением
  • Как найти хорду на которую опирается угол
  • Как найти нок информатика
  • Как составить группу лиц для фас