Как найти предел прочности при разрыве

14Ноя


  • By:

  • Без рубрики
  • Comment: 0

Содержание статьи

  1. Предел прочности
  2. Как производится испытание на прочность
  3. Виды ПП
  4. Предел прочности на растяжение стали
  5. Предел текучести и временное сопротивление
  6. Усталость стали
  7. Предел пропорциональности
  8. Как определяют свойства металлов
  9. Механические свойства
  10. Классы прочности и их обозначения
  11. Формула удельной прочности
  12. Использование свойств металлов
  13. Пути увеличения прочностных характеристик

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе кратковременной прочности материала при разрыве и натяжении, расскажем, что это такое, его определение и обозначение, как работать с этим показанием.

формула

Что это значит

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не применяет при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Как производится испытание

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все проверки проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробности посмотрим на видео:

Виды ПП

Временное сопротивление разрыву определяют по различным воздействиям, согласно этому его классифицируют по:

  • сжатию – на образец действуют механические силы давления;
  • изгибу – деталь сгибают в разные стороны;
  • кручению – проверяется пригодность для использования в качестве крутящегося вала;
  • растягиванию – подробный пример проверки мы привели выше.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • От способов термообработки – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

свойства

Предел прочности материала: что называют текучестью

Новый термин обозначается в технической литературе буквой Т. Показатель актуален исключительно для пластичных образцов и показывает, как долго он может деформироваться без увеличения на него внешней нагрузки.

Обычно после преодоления этого порога кристаллическая решетка сильно меняется, перестраивается. Результатом выступают пластические деформации. Они не являются нежелательными, напротив, происходит самоупрочнение сплава.

Усталость стали

Обозначается буквой R. Это аналогичный параметр, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформирования и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения векторной величины, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Величины

Ниже разберемся в понимании и видах.

Статический

По определению ГОСТа 1497-84 его называют временным сопротивлением разрушению. Иначе говоря, сильное напряжение, которое действует на материал перед его деформацией или дроблением. Временной отрезок процесса составляет не более 10 секунд. Терминология происходит из понимания, ко которому материал может длительно выдерживать напряжение.

Динамический

Величина переменного механического напряжения. Если превысить порог, оно разрушит тело из определенного вещества. Время воздействия до разрушения обычно не более нескольких секунд. Поэтому такую характеристику принято называть условно-мгновенной или хрупко-кратковременной.

Предел прочности на сжатие

Это порог величины для переменного или постоянного предела прочности механического напряжения. В результате его превышения механическое напряжение может сжать тело из определенного вида материала. Что приведет к разрушению тела либо деформируется.

При изгибе

В процессе испытания напряжение, возникающее в материале по причине изгибания, называют поперечной прочностью на разрыв. Его оценка производится с помощью метода трехточечного изгиба – материал прямоугольного либо круглого сечения деформируется до разрушения. Оно означает максимальное напряжение, которое оказывает воздействие в момент текучести.

Значения прочности на разрыв веществ и металлов.

Материал, вещество

Прочность на разрыв 109 дин/см2

Материал, вещество

Прочность на разрыв 109 дин/см2

Кальций

0,42–0,6

Кетгут

4,2

Сварочное железо

2,9–4,5

Алюминий

2,0–4,5

Алюминий (литой)

0,9–1,0

Кожаный ремень

0,3–0,5

Алюминий (листовой)

0,9–1,5

Пеньковая веревка

0,6–1,0

Сталь отпущенная

9,3–10,8

Золото

2,0–2,5

Сталь рессорная

7,0–7,7

Отожженная медь

2,8–3,1

Сталь литая

4,0–6,0

Латунь

3,5–5,5

Сталь мягкая (0,2%C)

4,3–4,9

Холоднотянутая медь

4,0–4,6

Сталь никелевая 5% Ni

8,0–10,0

Железо на древесном угле

Чугун

1,0–2,3

Проволоки

Литая медь

1,2–1,7

Термопластичная пластмассы

0,28–0,70

Листовая медь

2,0–4,0

Термореактивные

0,42–1,5

Прессованный магний

1,7–1,9

Кварцевая нить

около 10

Литой магний

0,6–0,8

Шелковая нить

2,6

Кобальт

2,6–7,5

Паутина

1,8

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом численные характеристики должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образчик.

Параметр каждого из них находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма прежняя – пример, сжимание пружины), то такие качества нельзя называть пропорциональными.

временное сопротивление

Как определяют свойства металлов

Проверяют не только то, что называется пределом прочности, но и такую характеристику стали как твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под действием цикличных нагрузок.
  • Предел прочности стали при растяжении и на разрыв – это обозначение временного сопротивления внешним силам, напряжения (МПа), возникающего внутри.

Классы

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

Класс  Н/мм2
265 430
295 430
315 450
325 450
345 490
355 490
375 510
390 510
440 590

Видим, что для некоторых классов остаются одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула предельной прочности для механического напряжения

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется прочность материала и что понимается под удельным пределом  металла. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

углеродистый

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

Есть два типа:

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о вариантах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

никель

Также посмотрим более подробное видео:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Легирующие добавки

Также можно встретить следующие примеси:

  • Хром – увеличивает твёрдость.
  • Молибден – защищает от ржавчины.
  • Ванадий – для упругости.
  • Никель – хорошо влияет на прокаливаемость, но может привести к хрупкости.

Эти и другие химические вещества должны применяться в строгих пропорциях. В статье мы рассказали про предел прочности металла (кратковременное сопротивление материала) – что это, формулы, как определяется и обозначается сигма B при растяжении и сжатии в единицах измерения. А также дали несколько таблиц, которыми можно пользоваться при работе. В качестве завершения давайте посмотрим видеоролик:

После того, как ознакомитесь со статьей, можете ознакомиться с нашим ассортиментом ленточнопильных изделий. Компания «Рокта» уже 15 лет на российском рынке. За это время мы охватили практически все города страны. Чтобы уточнить интересующую вас информацию, свяжитесь с нашими менеджерами по телефонам 8 (908) 135-59-82; (473) 239-65-79; 8 (800) 707-53-38. Они ответят на все ваши вопросы.

14Ноя

  • By: Семантика
  • Без рубрики
  • Comment: 0

При строительстве объектов обязательно необходимо использовать расчеты, включающие подробные характеристики стройматериалов. В обратном случае на опору может быть возложена слишком большая, непосильная нагрузка, из-за чего произойдет разрушения. Сегодня поговорим о пределе прочности материала при разрыве и натяжении, расскажем, что это такое и как работать с этим показанием.

Предел прочности

ПП – будем использовать это сокращение, а также можно говорить об официальном сочетании «временное сопротивление» – это максимальная механическая сила, которая может быть применена к объекту до начала его разрушения. В данном случае мы не говорим о химическом воздействии, но подразумеваем, что нагревание, неблагоприятные климатические условия, определенная среда могут либо улучшать свойства металла (а также дерева, пластмассы), либо ухудшать.

Ни один инженер не использует при проектировании крайние значения, потому что необходимо оставить допустимую погрешность – на окружающие факторы, на длительность эксплуатации. Рассказали, что называется пределом прочности, теперь перейдем к особенностям определения.

Предел прочности при изгибе | Мир сварки

Предел прочности при изгибе

Предел прочности при изгибе

(σв. изг.) – максимальное изгибающее напряжение, которое материал способен выдержать.

Предел прочности при изгибе измеряется:

1 кгс/мм2 = 10-6 кгс/м2 = 9,8·106 Н/м2 = 9,8·107 дин/см2 = 9,81·106 Па = 9,81 МПа.
Предел прочности при изгибе

Материал σв. изг.
кгс/мм2 107 Н/м2 МПа
Аминопласт 6-8 5,9-7,8 59-78
Асботекстолит 8,8-11,0 8,6-10,8 86-108
Винипласт 10-12 9,8-11,8 98-118
Гетинакс электротехнический (П) 10 9,8 98
Древесно-слоистый пластик ДСП-Б (длинный лист) 26 25,5 255
Древесный коротковолнистый волокнит К-ФВ25 5-7 4,9-6,9 49-69
Капрон стеклонаполненный 21-25 20,6-24,5 206-245
Полиамид наполненный П-68 9,5-10 9,3-9,8 93-98
Полиамид стеклонаполненный СП-68 12,5-15,0 12,3-14,7 123-147
Поливинилхлорид неориентированный 3,9-11,0 3,8-10,8 38-108
Поликапроамид 9 8,8 88
Поликапроамид стеклонаполненный 22-25 21,6-24,5 216-245
Поликарбонат (дифион) 8 7,8 78
Поликарбонат стеклонаполненный 17,5-22,3 17,2-21,9 172-219
Полипропилен ПП-1 8 7,8 78
Полипропилен стеклонаполненный 7 6,9 69
Полистирол стеклонаполненный 10,5-13,3 10,3-13,0 103-130
Полистирол суспензионный ПС-С 5 4,9 49
Полистирол эмульсионный А 10 9,8 98
Полиформальдегид стабилизированный 8 7,8 78
Полиэтилен высокого давления кабельный П-2003-5 0,75 0,74 7,4
Полиэтилен высокого давления П-2006-Т 1,20-1,70 1,18-1,67 11,8-16,7
Полиэтилен низкого давления П-4007-Э 2,20 2,16 21,6
Полиэтилен среднего давления 2,50-3,98 2,45-3,90 24,5-39,0
Сополимер стирола с метилстиролом 8,9 8,8 88
Стекло органическое ПА, ПБ, ПВ 8-14 7,8-13,7 78-137
Стеклотекстолит 40 39,2 392
Текстолит графитированный 12 11,8 118
Текстолит ПТК 16 15,7 157
Фаолит А 5 4,9 49
Фторопласт 3 6–8 5,9–7,8 59–78
Фторопласт 4 1,40 1,37 13,7

Литература

  1. Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. М., Атомиздат. 1976, 1008 с.

weldworld.ru

Как производится испытание на прочность

Изначально особенных мероприятий не было. Люди брали предмет, использовали его, а как только он ломался, анализировали поломку и снижали нагрузку на аналогичное изделие. Теперь процедура гораздо сложнее, однако, до настоящего времени самый объективный способ узнать ПП – эмпирический путь, то есть опыты и эксперименты.

Все испытания проходят в специальных условиях с большим количеством точной техники, которая фиксирует состояние, характеристики подопытного материала. Обычно он закреплен и испытывает различные воздействия – растяжение, сжатие. Их оказывают инструменты с высокой точностью – отмечается каждая тысячная ньютона из прикладываемой силы. Одновременно с этим фиксируется каждая деформация, когда она происходит. Еще один метод не лабораторный, а вычислительный. Но обычно математический анализ используется вместе с испытаниями.

Определение термина

Образец растягивается на испытательной машине. При этом сначала он удлиняется в размере, а поперечное сечение становится уже, а затем образуется шейка – место, где самый тонкий диаметр, именно здесь заготовка разорвется. Это актуально для вязких сплавов, в то время как хрупкие, к ним относится чугун и твердая сталь, растягиваются совсем незначительно без образования шейки. Подробнее посмотрим на видео:

В чем измеряется разрывная сила при растяжении

Для тканей разрывную нагрузку (абсолютную) обычно выражают в ньютонах (Н) или килограмм — силах (кгс); 1 кгс» ~9,8 Н.

Этот показатель является обязательным для большинства тканей различного волокнистого состава. Интерес к нему объясняется сравнительной простотой его определения; кроме того, разрывная нагрузка тканей позволяет косвенно оценить качественный состав сырья, используемого для выработки продукции, а также степень повреждения материала в процессах заключительной отделки. Например, ткани из дефектной шерсти или недостаточно зрелого хлопка имеют заниженные против норм значения разрывной нагрузки. Пережог, перекрас, неправильные опаливание, беление или отделка термореактивными смолами (несминаемая отделка) тоже приводят к снижению разрывной нагрузки ткани. Поэтому, несмотря на то что ткани, особенно бытового назначения, в процессе эксплуатации обычно не испытывают нагрузок, близких к разрывным, последние широко используют для характеристики механических свойств тканей и нормируют в стандартах.

Разрывную нагрузку часто используют для оценки кинетики изнашивания тканей. На рис. 3 приведены типичные кривые изменения разрывной нагрузки тканей в процессе эксплуатации последних. Как видим, высокое начальное значение разрывной нагрузки еще не определяет поведение ткани в носке. У одной ткани (кривая) начальное значение разрывной нагрузки было больше, чем у другой ткани (кривая). Но в процессе эксплуатации первая ткань изнашивается быстрее, и уже после определенного периода и ее разрывная нагрузка меньше, чем у второй ткани. В связи с этим ткань, которой соответствует кривая, имеет меньший срок носки.

Разрывное удлинение (абсолютное)это разница между длиной образца в момент разрыва и зажимной его длиной до разрыва.

Ткани, имеющие высокое удлинение при разрыве, например шерстяные и из синтетических волокон, обладают, как правило, хорошими эластичностью, несмииаемостью, стойкостью к истиранию и т. п. Как и разрывная нагрузка, удлинение при разрыве в значительной степени зависит от качественного состава сырья, из которого выработана ткань. При одинаковой разрывной нагрузке лучшей в отношении механических свойств считается та ткань, которая имеет более высокое разрывное удлинение. Механические свойства у ткани, которой соответствует кривая /, лучше, чем у ткани, которой соответствует кривая, так как из — за большего разрывного удлинения работа разрыва (заштрихованная площадь) у нее больше. Поскольку работа разрыва характеризует количество энергии, которое необходимо затратить на разрушение материала, первую ткань можно считать более «прочной», чем вторую.

Разрывную нагрузку и удлинение при разрыве тканей определяют путем испытания трех пробных полосок по основе и четырех по утку/Размеры пробных полосок указаны в табл. 6. При возникновении разногласий испытывают пробные полоски размерами 50X100 мм для шерстяных тканей и 50×200 мм для всех остальных тканей. Заготовки для пробных полосок вырезают из образца ткани с помощью специальных металлических шаблонов. Ширина заготовок 30 или 60 мм, длина должна быть больше зажимной длины на 150 мм. Продольные нити удаляют с обеих сторон заготовок до тех пор, пока рабочая ширина пробных полосок тканей не станет равной 25 или 50 мм.

Согласно ГОСТ 3813 —72, пробные полоски подвергают растяжению до разрушения на разрывных машинах трех типов: с переменной скоростью возрастания нагрузки и деформации, с постоянной скоростью возрастания нагрузки, с постоянной скоростью деформирования. Различие между этими машинами заключается в характере нагружения или деформирования испытуемого материала. На рис. 5 приведены диаграммы нагрузки и деформации, получаемые на разрывных машинах различных типов. Машины второго и третьего типов считаются более совершенными, так как характер роста нагрузки или деформации испытуемых на них материалов не зависит от особенностей механических свойств последних. Это позволяет более правильно оценивать в сравнении механические свойства различных материалов. Машины первого типа лишены такого преимущества. Например, а показаны диаграммы роста нагрузки и деформации двух тканей. Несмотря на то что конечные результаты испытания этих тканей (разрывная нагрузка и удлинение при разрыве) у них одинаковы, нельзя говорить о том, что механические свойства тканей одинаковы. Вместе с тем машины первого типа более просты в устройстве и эксплуатации.

Предел прочности на растяжение стали

Стальные конструкции давно заменили прочие материалы, так как они обладают отличными эксплуатационными характеристиками – долговечностью, надежностью и безопасностью. В зависимости от применяемой технологии, он подразделяется на марки. От самой обычной с ПП в 300 Мпа, до наиболее твердой с высоким содержанием углерода – 900 Мпа. Это зависит от двух показателей:

  • Какие способы термообработки применялись – отжиг, закалка, криообработка.
  • Какие примеси содержатся в составе. Одни считаются вредными, от них избавляются для чистоты сплава, а вторые добавляют для укрепления.

Усталость стали

Второе название – предел выносливости. Его обозначают буквой R. Это аналогичный показатель, то есть он определяет, какая сила может воздействовать на элемент, но не в единичном случае, а в цикле. То есть на подопытный эталон циклично, раз за разом действуют определенные давления. Среднее количество повторений – 10 в седьмой степени. Именно столько раз металл должен без деформаций и потери своих характеристик выдержать воздействие.

Если проводить эмпирические испытания, то потребуется множество времени – нужно проверить все значения силы, прикладывая ее по множеству циклов. Поэтому обычно коэффициент рассчитывается математически.

Временное сопротивление и усталость

Между ПП и временным сопротивлением различным нагрузкам есть прямая связь. Второй показатель в документации и технической литературе обозначают символом Т. Он показывает, сколько длится деформация образца, когда на него воздействует постоянная нагрузка. Когда временное сопротивление прекращается, кристаллическая решётка вещества перестраивается. Это характерно для твёрдых материалов. В результате вещество становится более прочным, чем было до этого. Это явление называется самоупрочнением.

Ещё одна важная характеристика — усталость металла. Говоря о стали, применяют выражение «предел выносливости». Для обозначения используют символ R. Эта характеристика показывает, воздействие какой силы материал может переносить постоянно, а не разово. Во время эксперимента на образец оказывают давление заданной силы. Число воздействий составляет 107. За время испытаний материал не должен деформироваться или утратить исходные характеристики.

На проведение таких экспериментов уходит много времени, поэтому их проводят не всегда. Часто обходятся математическими вычислениями, рассчитывая все важные коэффициенты.

Пределом пропорциональности называют максимальную нагрузку, при которой сохраняется соотношение, определяемое законом Гука. Согласно ему, тело деформируется прямо пропорционально величине оказываемого на него воздействия. Каждый материал обладает определённой степенью упругости. Она может быть классической и абсолютной. Изменения могут быть обратимыми и необратимыми. Пример первого типа — пружина: пока на неё воздействуют, она сжимается, а когда нажатие прекращается, расправляется.

Предел пропорциональности

Это показатель, определяющий длительность оказываемых нагрузок к деформации тела. При этом оба значения должны изменяться в разный степени по закону Гука. Простыми словами: чем больше оказывается сжатие (растяжение), тем сильнее деформируется образец.

Значение каждого материала находится между абсолютной и классической упругостью. То есть если изменения обратимы, после того как сила перестала действовать (форма стала прежняя – пример, сжатие пружины), то такие параметры нельзя называть пропорциональными.

Предел текучести (σт)

Величина механического напряжения, при которой деформация продолжает увеличиваться без увеличения нагрузки; служит для расчётов допустимых напряжений пластичных материалов.

После перехода предела текучести в структуре металла наблюдаются необратимые изменения: кристаллическая решетка перестраивается, появляются значительные пластические деформации. Вместе с тем происходит самоупрочнение металла и после площадки текучести деформация возрастает при увеличении растягивающей силы.

Нередко этот параметр определяют как «напряжение, при котором начинает развиваться пластическая деформация» [1], таким образом, отождествляя пределы текучести и упругости. Однако следует понимать, что это два разных параметра. Значения предела текучести превышают предел упругости ориентировочно на 5%.

Как определяют свойства металлов

Проверяют не только то, что называют пределом прочности, но и остальные характеристики стали, например, твердость. Испытания проводят следующим образом: в образец вдавливают шарик или конус из алмаза – наиболее прочной породы. Чем крепче материал, тем меньше след остается. Более глубокие, с широким диаметром отпечатки остаются на мягких сплавах. Еще один опыт – на удар. Воздействие оказывается только после заранее сделанного надреза на заготовке. То есть разрушение проверяется для наиболее уязвимого участка.

Механические свойства

Различают 5 характеристик:

  • Предел прочности стали при растяжении и на разрыв это – временное сопротивление внешним силам, напряжение, возникающее внутри.
  • Пластичность – это возможность деформироваться, менять форму, но сохранять внутреннюю структуру.
  • Твердость – готовность встретиться с более твердым материалом и не получить значительных ущербов.
  • Ударная вязкость – способность сопротивляться ударам.
  • Усталость – длительность сохранения качеств под воздействием цикличных нагрузок.

Значение термина

Предел прочности материала при растяжении сокращённо обозначается ПП. Также допускается использовать выражение «временное сопротивление». Для обозначения предела прочности применяют буквы R или σ В (сигма). Единица измерения — мегапаскаль (МПа). Показатель означает допустимую величину силы, которая может воздействовать на объект до того, как он начнёт разрушаться. Речь идёт о механическом воздействии, но следует учитывать, что химические факторы способны изменить первоначальные свойства материала, в том числе повлиять на ПП. К немеханическим нагрузкам относят следующие:

  • нагревание;
  • охлаждение;
  • погодные условия (ветер, осадки, влажность);
  • агрессивная среда.

Предел прочности при растяжении

Формула предела прочности при растяжении записывается так: R=0,64 (P/F), где F — площадь поверхности раскола предмета, а P — разрушающая нагрузка. При проектировании нельзя опираться на крайние значения, поэтому инженеры оставляют допуски на различные факторы, а также на период эксплуатации. Это значит, что при строительстве используется материал, у которого ПП превышает расчётное напряжение.

Изначально способность элемента выдерживать нагрузки определяли опытным путём. Материал использовали, не зная, как он себя поведёт во время эксплуатации, а после поломки заменяли более прочным. Со временем перешли к экспериментам и испытаниям, и по-прежнему самый точный способ найти предел прочности при натяжении и разрыве остаётся эмпирический.

Исследования проводят в лабораторных условиях, с использованием точной техники. Приборы фиксируют характеристики материала и то, как они изменяются под нагрузкой разной величины. Как правило, прочность измеряется так: предмет жёстко закрепляют и оказывают на него воздействие.

Сначала закреплённый элемент растягивают. Он становится длиннее, при этом в одном месте образуется перешеек, и именно здесь заготовка разорвётся. Так ведут себя не все материалы, а только вязкие. Чугун, сталь и другие хрупкие сплавы растягиваются незначительно. При увеличении нагрузки они трескаются и разрушаются по наклонным плоскостям. Шейки не образуются.

Сила, прикладываемая в каждый момент, измеряется с точностью до тысячных долей ньютона. Одновременно определяют размер и характер деформации. Данные сверяют с таблицами.

Второй способ — математический анализ. Он заключается в том, что прочность определяют с помощью сложных вычислений. Однако без испытаний данные, полученные расчётным путём, нельзя считать полными. Дело в том, что на практике вещество может повести себя по-другому.

Классы прочности и их обозначения

Все категории записаны в нормативных документах – ГОСТах, по ним все российские предприниматели изготавливают любой металлопрокат и прочие металлические изделия. Вот соответствие обозначения и параметра в таблице:

Класс Временное сопротивление, Н/мм2
265 430
295 430
315 450
325 450
345 490
355 490
375 510
390 510
440 590

Видим, что для некоторых классов остается одинаковыми показатели ПП, это объясняется тем, что при равных значениях у них может различаться текучесть или относительное удлинение. В зависимости от этого возможна различная максимальная толщина металлопроката.

Формула удельной прочности

R с индексом «у» – обозначение данного параметра в физике. Рассчитывается как ПП (в записи – R) поделенное на плотность – d. То есть этот расчет имеет практическую ценность и учитывает теоретические знания о свойствах стали для применения в жизни. Инженеры могут сказать, как меняется временное сопротивление в зависимости от массы, объема изделия. Логично, что чем тоньше лист, тем легче его деформировать.

Формула выглядит так:

Ry = R/d

Здесь будет логичным объяснить, в чем измеряется удельный предел прочности. В Н/мм2 – это вытекает из предложенного алгоритма вычисления.

Углеродистые стали

Углеродистая конструкционная сталь.

В соответствии с имеющимися стандартами углеродистая конструкционная сталь делится на:

  • сталь обыкновенного качества (ГОСТ 380—50)
  • сталь качественную (ГОСТ 1050—52).

Сталь обыкновенного качества

Сталь обыкновенного качества

согласно ГОСТ 380—50 делится на две группы (А и В).

Стали группы А

Группа А

объединяет марки по механическим свойствам, гарантируемым заводом-поставщиком; химический состав стали в этой группе ГОСТ не оговаривается, и завод-поставщик не несет за него ответственности.

Сталь группы А маркируется следующим образом:

  • Ст. 0,
  • Ст. 1,
  • Ст. 2,
  • Ст. 3
  • и т.д. до Ст. 7.

Предел прочности на разрыв

у стали:

  • Ст. 0—32—47 кг/мм2,
  • у Ст. 1— 32—40 кг/мм2,
  • у Ст. 2

    —34—42
    кг/мм
    2.

  • У сталей Ст. 3, Ст. 4, Ст. 5, Ст. 6 и Ст. 7 примерно соответствует цифре, определяющей марку стали (в десятках кг/мм2).

    Например, у Ст. 6 минимальное значение предела прочности составит около 60
    кг/мм2.

Стали группы А

обычно используются для изготовления изделий, применяемых
без термической обработки:

  • листы,
  • ленты,
  • проволока,
  • балки и т.д.
Стали группы В

Для стали группы В

регламентируется
химический состав
и указывается
способ изготовления:

  • М — мартеновская;
  • Б — бессемеровская,
  • Т — томасовская)

В этой группе установлены следующие марки сталей:

  • М Ст. 0,
  • М Ст. 1,
  • М Ст. 2
  • и т.д. до сталей М Ст. 7, Б Ст. 0, Б Ст. 3, Б Ст. 4, Б Ст. 5, Б Ст. 6.

Стали группы В

используются для изготовления деталей
обыкновенного качества:
Марки и состав
мартеновской стали
приведены в табл. 3.

Продолжение классификации углеродистой стали

читайте в следующей статье.

§

www.conatem.ru

Использование свойств металлов

Два важных показателя – пластичность и ПП – взаимосвязаны. Материалы с большим первым параметром намного медленнее разрушаются. Они хорошо меняют свою форму, подвергаются различным видам металлообработке, в том числе объемной штамповке – поэтому из листов делают элементы кузова автомобиля. При малой пластичности сплавы называют хрупкими. Они могут быть очень твердыми, но при этом плохо тянуться, изгибаться и деформироваться, например, титан.

Сопротивление

Есть два типа:

  • Нормативное – прописано для каждого типа стали в ГОСТах.
  • Расчетное – получается после вычислений в конкретном проекте.

Первый вариант скорее теоретический, для практических задач используется второй.

Пути увеличения прочностных характеристик

Есть несколько способов это сделать, два основных:

  • добавка примесей;
  • термообработка, например, закал.

Иногда они используются вместе.

Общие сведения о сталях

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Также посмотрим более подробное видео:

Все они обладают химическими свойствами и механическими. Ниже подробнее поговорим о способах увеличения прочности, но для начала представим схему, на которой представлены все разновидности:

Углерод

Чем больше углеродность вещества, тем выше твердость и меньше пластичность. Но в составе не должно быть более 1% химического компонента, так как большее количество приводит к обратному эффекту.

Марганец

Очень полезная добавка, но при массовой доле не более двух процентов. Обычно Mn добавляют для улучшения качеств обрабатываемости. Материал становится более подвержен ковке и свариванию. Это объясняется вытеснением кислорода и серы.

Кремний

Эффективно повышает прочностные характеристики, при этом не затрагивая пластичность. Максимальное содержание – 0,6%, иногда достаточно и 0,1%. Хорошо сочетается с другими примесями, в совокупности можно увеличить устойчивость к коррозии.

Азот и кислород

Если они попадают в сплав, но ухудшают его характеристики, при изготовлении от них пытаются избавиться.

Пределом прочности называют характеристику материала указывающую величину механических напряжений соответствующую максимальному значению нагрузки при испытаниях на растяжение.

Обозначение — σпч
Размерность — Паскаль [Па], либо кратные значения [МПа].
Синоним предела прочности — временное сопротивление (σв).

Предел прочности

Рис. 1. Предел прочности на диаграмме напряжений

Определяется экспериментально, как наивысшая точка условной диаграммы напряжений (рис. 1).

Либо по диаграмме растяжения как отношение максимальной продольной силы Fmax к начальной площади A0 поперечного сечения испытуемого образца:

σпч=Fmax/A0

Предел прочности является предельным напряжением при расчете допустимых напряжений для хрупких материалов.

Предел упругости >
Примеры решения задач >

Сохранить или поделиться с друзьями

Вы находитесь тут:

На нашем сайте Вы можете получить решение задач и онлайн помощь

Подробнее

Решение задач и лекции по технической механике, теормеху и сопромату

From Wikipedia, the free encyclopedia

Two vises apply tension to a specimen by pulling at it, stretching the specimen until it fractures. The maximum stress it withstands before fracturing is its ultimate tensile strength.

Ultimate tensile strength (also called UTS, tensile strength, TS, ultimate strength or {displaystyle F_{text{tu}}} in notation)[1][2][3] is the maximum stress that a material can withstand while being stretched or pulled before breaking. In brittle materials the ultimate tensile strength is close to the yield point, whereas in ductile materials the ultimate tensile strength can be higher.

The ultimate tensile strength is usually found by performing a tensile test and recording the engineering stress versus strain. The highest point of the stress–strain curve is the ultimate tensile strength and has units of stress. The equivalent point for the case of compression, instead of tension, is called the compressive strength.

Tensile strengths are rarely of any consequence in the design of ductile members, but they are important with brittle members. They are tabulated for common materials such as alloys, composite materials, ceramics, plastics, and wood.

Definition[edit]

The ultimate tensile strength of a material is an intensive property; therefore its value does not depend on the size of the test specimen. However, depending on the material, it may be dependent on other factors, such as the preparation of the specimen, the presence or otherwise of surface defects, and the temperature of the test environment and material.

Some materials break very sharply, without plastic deformation, in what is called a brittle failure. Others, which are more ductile, including most metals, experience some plastic deformation and possibly necking before fracture.

Tensile strength is defined as a stress, which is measured as force per unit area. For some non-homogeneous materials (or for assembled components) it can be reported just as a force or as a force per unit width. In the International System of Units (SI), the unit is the pascal (Pa) (or a multiple thereof, often megapascals (MPa), using the SI prefix mega); or, equivalently to pascals, newtons per square metre (N/m2). A United States customary unit is pounds per square inch (lb/in2 or psi). Kilopounds per square inch (ksi, or sometimes kpsi) is equal to 1000 psi, and is commonly used in the United States, when measuring tensile strengths.

Ductile materials[edit]

Figure 1: «Engineering» stress–strain (σ–ε) curve typical of aluminum

  1. Ultimate strength
  2. Yield strength
  3. Proportional limit stress
  4. Fracture
  5. Offset strain (typically 0.2%)

Many materials can display linear elastic behavior, defined by a linear stress–strain relationship, as shown in figure 1 up to point 3. The elastic behavior of materials often extends into a non-linear region, represented in figure 1 by point 2 (the «yield point»), up to which deformations are completely recoverable upon removal of the load; that is, a specimen loaded elastically in tension will elongate, but will return to its original shape and size when unloaded. Beyond this elastic region, for ductile materials, such as steel, deformations are plastic. A plastically deformed specimen does not completely return to its original size and shape when unloaded. For many applications, plastic deformation is unacceptable, and is used as the design limitation.

After the yield point, ductile metals undergo a period of strain hardening, in which the stress increases again with increasing strain, and they begin to neck, as the cross-sectional area of the specimen decreases due to plastic flow. In a sufficiently ductile material, when necking becomes substantial, it causes a reversal of the engineering stress–strain curve (curve A, figure 2); this is because the engineering stress is calculated assuming the original cross-sectional area before necking. The reversal point is the maximum stress on the engineering stress–strain curve, and the engineering stress coordinate of this point is the ultimate tensile strength, given by point 1.

Ultimate tensile strength is not used in the design of ductile static members because design practices dictate the use of the yield stress. It is, however, used for quality control, because of the ease of testing. It is also used to roughly determine material types for unknown samples.[4]

The ultimate tensile strength is a common engineering parameter to design members made of brittle material because such materials have no yield point.[4]

Testing[edit]

Round bar specimen after tensile stress testing

The «cup» side of the «cup–cone» characteristic failure pattern

Some parts showing the «cup» shape and some showing the «cone» shape

Typically, the testing involves taking a small sample with a fixed cross-sectional area, and then pulling it with a tensometer at a constant strain (change in gauge length divided by initial gauge length) rate until the sample breaks.

When testing some metals, indentation hardness correlates linearly with tensile strength. This important relation permits economically important nondestructive testing of bulk metal deliveries with lightweight, even portable equipment, such as hand-held Rockwell hardness testers.[5] This practical correlation helps quality assurance in metalworking industries to extend well beyond the laboratory and universal testing machines.

Typical tensile strengths[edit]

Typical tensile strengths of some materials

Material Yield strength
(MPa)
Ultimate tensile strength
(MPa)
Density
(g/cm3)
Steel, structural ASTM A36 steel 250 400–550 7.8
Steel, 1090 mild 247 841 7.58
Chromium-vanadium steel AISI 6150 620 940 7.8
Steel, 2800 Maraging steel[6] 2617 2693 8.00
Steel, AerMet 340[7] 2160 2430 7.86
Steel, Sandvik Sanicro 36Mo logging cable precision wire[8] 1758 2070 8.00
Steel, AISI 4130,
water quenched 855 °C (1570 °F), 480 °C (900 °F) temper[9]
951 1110 7.85
Steel, API 5L X65[10] 448 531 7.8
Steel, high strength alloy ASTM A514 690 760 7.8
Acrylic, clear cast sheet (PMMA)[11] 72 87[12] 1.16
High-density polyethylene (HDPE) 26–33 37 0.85
Polypropylene 12–43 19.7–80 0.91
Steel, stainless AISI 302[13] 275 620 7.86
Cast iron 4.5% C, ASTM A-48 130 200 7.3
«Liquidmetal» alloy[citation needed] 1723 550–1600 6.1
Beryllium[14] 99.9% Be 345 448 1.84
Aluminium alloy[15] 2014-T6 414 483 2.8
Polyester resin (unreinforced)[16] 55 55  
Polyester and chopped strand mat laminate 30% E-glass[16] 100 100  
S-Glass epoxy composite[17] 2358 2358  
Aluminium alloy 6061-T6 241 300 2.7
Copper 99.9% Cu 70 220[citation needed] 8.92
Cupronickel 10% Ni, 1.6% Fe, 1% Mn, balance Cu 130 350 8.94
Brass 200 + 500 8.73
Tungsten 941 1510 19.25
Glass   33[18] 2.53
E-Glass 1500 for laminates,
3450 for fibers alone
2.57
S-Glass 4710 2.48
Basalt fiber[19] 4840 2.7
Marble 15 2.6
Concrete 2–5 2.7
Carbon fiber 1600 for laminates,
4137 for fibers alone
1.75
Carbon fiber (Toray T1100G)[20]
(the strongest human-made fibres)
  7000 fibre alone 1.79
Human hair 140–160 200–250[21]  
Bamboo fiber   350–500 0.4–0.8
Spider silk (see note below) 1000 1.3
Spider silk, Darwin’s bark spider[22] 1652
Silkworm silk 500   1.3
Aramid (Kevlar or Twaron) 3620 3757 1.44
UHMWPE[23] 24 52 0.97
UHMWPE fibers[24][25] (Dyneema or Spectra) 2300–3500 0.97
Vectran   2850–3340 1.4
Polybenzoxazole (Zylon)[26] 2700 5800 1.56
Wood, pine (parallel to grain)   40  
Bone (limb) 104–121 130 1.6
Nylon, molded, 6PLA/6M [27] 75-85 1.15
Nylon fiber, drawn[28] 900[29] 1.13
Epoxy adhesive 12–30[30]
Rubber 16  
Boron 3100 2.46
Silicon, monocrystalline (m-Si) 7000 2.33
Ultra-pure silica glass fiber-optic strands[31] 4100
Sapphire (Al2O3) 400 at 25 °C,
275 at 500 °C,
345 at 1000 °C
1900 3.9–4.1
Boron nitride nanotube 33000 2.62[32]
Diamond 1600 2800
~80–90 GPa at microscale[33]
3.5
Graphene intrinsic 130000;[34]
engineering 50000–60000[35]
1.0
First carbon nanotube ropes ? 3600 1.3
Carbon nanotube (see note below) 11000–63000 0.037–1.34
Carbon nanotube composites 1200[36]
High-strength carbon nanotube film 9600[37]
Iron (pure mono-crystal) 3 7.874
Limpet Patella vulgata teeth (goethite whisker nanocomposite) 4900
3000–6500[38]
^a Many of the values depend on manufacturing process and purity or composition.
^b Multiwalled carbon nanotubes have the highest tensile strength of any material yet measured, with one measurement of 63 GPa, still well below one theoretical value of 300 GPa.[39] The first nanotube ropes (20 mm in length) whose tensile strength was published (in 2000) had a strength of 3.6 GPa.[40] The density depends on the manufacturing method, and the lowest value is 0.037 or 0.55 (solid).[41]
^c The strength of spider silk is highly variable. It depends on many factors including kind of silk (Every spider can produce several for sundry purposes.), species, age of silk, temperature, humidity, swiftness at which stress is applied during testing, length stress is applied, and way the silk is gathered (forced silking or natural spinning).[42] The value shown in the table, 1000 MPa, is roughly representative of the results from a few studies involving several different species of spider however specific results varied greatly.[43]
^d Human hair strength varies by ethnicity and chemical treatments.

Typical properties of annealed elements[edit]

Typical properties for annealed elements[44]

Element Young’s
modulus
(GPa)
Yield
strength
(MPa)
Ultimate
strength
(MPa)
Silicon 107 5000–9000
Tungsten 411 550 550–620
Iron 211 80–100 350
Titanium 120 100–225 246–370
Copper 130 117 210
Tantalum 186 180 200
Tin 47 9–14 15–200
Zinc 85–105 200–400 200–400
Nickel 170 140–350 140–195
Silver 83 170
Gold 79 100
Aluminium 70 15–20 40–50
Lead 16 12

See also[edit]

  • Flexural strength
  • Strength of materials
  • Tensile structure
  • Toughness
  • Failure
  • Tension (physics)
  • Young’s modulus

References[edit]

  1. ^ «Generic MMPDS Mechanical Properties Table». stressebook.com. 6 December 2014. Archived from the original on 1 December 2017. Retrieved 27 April 2018.
  2. ^ Degarmo, Black & Kohser 2003, p. 31
  3. ^ Smith & Hashemi 2006, p. 223
  4. ^ a b «Tensile Properties». Archived from the original on 16 February 2014. Retrieved 20 February 2015.
  5. ^ E.J. Pavlina and C.J. Van Tyne, «Correlation of Yield Strength and Tensile Strength with Hardness for Steels», Journal of Materials Engineering and Performance, 17:6 (December 2008)
  6. ^ «MatWeb – The Online Materials Information Resource». Archived from the original on 15 December 2013. Retrieved 20 February 2015.
  7. ^ «MatWeb – The Online Materials Information Resource». Archived from the original on 21 February 2015. Retrieved 20 February 2015.
  8. ^ «MatWeb – The Online Materials Information Resource». Archived from the original on 21 February 2015. Retrieved 20 February 2015.
  9. ^ «MatWeb – The Online Materials Information Resource». Archived from the original on 28 March 2017. Retrieved 20 February 2015.
  10. ^ «USStubular.com». Archived from the original on 13 July 2009. Retrieved 27 June 2009.
  11. ^ [1] Archived 23 March 2014 at the Wayback MachineIAPD Typical Properties of Acrylics
  12. ^ strictly speaking this figure is the flexural strength (or modulus of rupture), which is a more appropriate measure for brittle materials than «ultimate strength.»
  13. ^ «Stainless Steel — Grade 302 (UNS S30200)». AZoM.com. 25 February 2013. Retrieved 2 February 2023.
  14. ^ «MatWeb – The Online Materials Information Resource». Archived from the original on 21 February 2015. Retrieved 20 February 2015.
  15. ^ «MatWeb – The Online Materials Information Resource». Archived from the original on 21 February 2015. Retrieved 20 February 2015.
  16. ^ a b «Guide to Glass Reinforced Plastic (fibreglass) – East Coast Fibreglass Supplies». Archived from the original on 16 February 2015. Retrieved 20 February 2015.
  17. ^ «Properties of Carbon Fiber Tubes». Archived from the original on 24 February 2015. Retrieved 20 February 2015.
  18. ^ «Soda-Lime (Float) Glass Material Properties :: MakeItFrom.com». Archived from the original on 3 July 2011. Retrieved 20 February 2015.
  19. ^ «Basalt Continuous Fibers». Archived from the original on 3 November 2009. Retrieved 29 December 2009.
  20. ^ «Toray Properties Document». Archived from the original on 17 September 2018. Retrieved 17 September 2018.
  21. ^ «Tensile Testing Hair». instron.us. Archived from the original on 28 September 2017.
  22. ^
  23. ^ Oral, E; Christensen, SD; Malhi, AS; Wannomae, KK; Muratoglu, OK (2006). «PubMed Central, Table 3». J Arthroplasty. 21 (4): 580–91. doi:10.1016/j.arth.2005.07.009. PMC 2716092. PMID 16781413.
  24. ^ «Tensile and creep properties of ultra high molecular weight PE fibres» (PDF). Archived from the original (PDF) on 28 June 2007. Retrieved 11 May 2007.
  25. ^ «Mechanical Properties Data». www.mse.mtu.edu. Archived from the original on 3 May 2007.
  26. ^ «MatWeb – The Online Materials Information Resource». Archived from the original on 21 February 2015. Retrieved 20 February 2015.
  27. ^ https://advancednylons.co.za/Materialproperties.pdf[bare URL PDF]
  28. ^ «Nylon Fibers». University of Tennessee. Archived from the original on 19 April 2015. Retrieved 25 April 2015.
  29. ^ «Comparing aramids». Teijin Aramid. Archived from the original on 3 May 2015.
  30. ^ «Uhu endfest 300 epoxy: Strength over setting temperature». Archived from the original on 19 July 2011.
  31. ^ «Fols.org» (PDF). Archived from the original (PDF) on 25 July 2011. Retrieved 1 September 2010.
  32. ^ «What is the density of Hydrogenated Boron Nitride Nanotubes (H-BNNT)?». space.stackexchange.com. Archived from the original on 13 April 2017.
  33. ^ Dang, Chaoqun; et al. (1 January 2021). «Achieving large uniform tensile elasticity in microfabricated diamond». Science. 371 (6524): 76–78. Bibcode:2021Sci…371…76D. doi:10.1126/science.abc4174. PMID 33384375.
  34. ^ Lee, C.; et al. (2008). «Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene». Science. 321 (5887): 385–8. Bibcode:2008Sci…321..385L. doi:10.1126/science.1157996. PMID 18635798. S2CID 206512830. Archived from the original on 19 February 2009.
    • Phil Schewe (28 July 2008). «World’s Strongest Material». Inside Science News Service. American Institute of Physics. Archived from the original on 25 February 2009.

  35. ^ Cao, K. (2020). «Elastic straining of free-standing monolayer graphene». Nature Communications. 11 (284): 284. Bibcode:2020NatCo..11..284C. doi:10.1038/s41467-019-14130-0. PMC 6962388. PMID 31941941.
  36. ^ IOP.org Z. Wang, P. Ciselli and T. Peijs, Nanotechnology 18, 455709, 2007.
  37. ^ Xu, Wei; Chen, Yun; Zhan, Hang; Nong Wang, Jian (2016). «High-Strength Carbon Nanotube Film from Improving Alignment and Densification». Nano Letters. 16 (2): 946–952. Bibcode:2016NanoL..16..946X. doi:10.1021/acs.nanolett.5b03863. PMID 26757031.
  38. ^ Barber, A. H.; Lu, D.; Pugno, N. M. (2015). «Extreme strength observed in limpet teeth». Journal of the Royal Society Interface. 12 (105): 105. doi:10.1098/rsif.2014.1326. PMC 4387522. PMID 25694539.
  39. ^ Yu, Min-Feng; Lourie, O; Dyer, MJ; Moloni, K; Kelly, TF; Ruoff, RS (2000). «Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load». Science. 287 (5453): 637–640. Bibcode:2000Sci…287..637Y. doi:10.1126/science.287.5453.637. PMID 10649994.
  40. ^ Li, F.; Cheng, H. M.; Bai, S.; Su, G.; Dresselhaus, M. S. (2000). «Tensile strength of single-walled carbon nanotubes directly measured from their macroscopic ropes». Applied Physics Letters. 77 (20): 3161. Bibcode:2000ApPhL..77.3161L. doi:10.1063/1.1324984. Archived from the original on 28 December 2012.
  41. ^ K.Hata. «From Highly Efficient Impurity-Free CNT Synthesis to DWNT forests, CNTsolids and Super-Capacitors» (PDF). Archived (PDF) from the original on 12 June 2010.
  42. ^ Elices; et al. «Finding Inspiration in Argiope Trifasciata Spider Silk Fibers». JOM. Archived from the original on 15 January 2009. Retrieved 23 January 2009.
  43. ^ Blackledge; et al. (2005). «Quasistatic and continuous dynamic characterization of the mechanical properties of silk from the cobweb of the black widow spider Latrodectus hesperus». Journal of Experimental Biology. The Company of Biologists. 208 (10): 1937–1949. doi:10.1242/jeb.01597. PMID 15879074. S2CID 9678391. Archived from the original on 1 February 2009. Retrieved 23 January 2009.
  44. ^ A.M. Howatson, P. G. Lund, and J. D. Todd, Engineering Tables and Data, p. 41

Further reading[edit]

  • Giancoli, Douglas, Physics for Scientists & Engineers Third Edition (2000). Upper Saddle River: Prentice Hall.
  • Köhler T, Vollrath F (1995). «Thread biomechanics in the two orb-weaving spiders Araneus diadematus (Araneae, Araneidae) and Uloboris walckenaerius (Araneae, Uloboridae)». Journal of Experimental Zoology. 271: 1–17. doi:10.1002/jez.1402710102.
  • T Follett, Life without metals
  • Min-Feng Y, Lourie O, Dyer MJ, Moloni K, Kelly TF, Ruoff RS (2000). «Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load» (PDF). Science. 287 (5453): 637–640. Bibcode:2000Sci…287..637Y. doi:10.1126/science.287.5453.637. PMID 10649994. Archived from the original (PDF) on 4 March 2011.
  • George E. Dieter, Mechanical Metallurgy (1988). McGraw-Hill, UK

Использование материалов в строительстве невозможно без учёта их характеристик. Одна из важнейших — предел прочности при растяжении. Если не брать во внимание этот показатель, возведённое здание разрушится, так как конструктивные элементы не смогут выдержать нагрузку. Знать о свойстве стройматериала недостаточно, нужно уметь применять его на практике.

Предел прочности материала при растяжении — формула, характеристики и расчеты

Значение термина

Предел прочности материала при растяжении сокращённо обозначается ПП. Также допускается использовать выражение «временное сопротивление». Для обозначения предела прочности применяют буквы R или σ В (сигма). Единица измерения — мегапаскаль (МПа). Показатель означает допустимую величину силы, которая может воздействовать на объект до того, как он начнёт разрушаться. Речь идёт о механическом воздействии, но следует учитывать, что химические факторы способны изменить первоначальные свойства материала, в том числе повлиять на ПП. К немеханическим нагрузкам относят следующие:

  • нагревание;
  • охлаждение;
  • погодные условия (ветер, осадки, влажность);
  • агрессивная среда.

Предел прочности материала при растяжении — формула, характеристики и расчеты

Формула предела прочности при растяжении записывается так: R=0,64 (P/F), где F — площадь поверхности раскола предмета, а P — разрушающая нагрузка. При проектировании нельзя опираться на крайние значения, поэтому инженеры оставляют допуски на различные факторы, а также на период эксплуатации. Это значит, что при строительстве используется материал, у которого ПП превышает расчётное напряжение.

Изначально способность элемента выдерживать нагрузки определяли опытным путём. Материал использовали, не зная, как он себя поведёт во время эксплуатации, а после поломки заменяли более прочным. Со временем перешли к экспериментам и испытаниям, и по-прежнему самый точный способ найти предел прочности при натяжении и разрыве остаётся эмпирический.

Исследования проводят в лабораторных условиях, с использованием точной техники. Приборы фиксируют характеристики материала и то, как они изменяются под нагрузкой разной величины. Как правило, прочность измеряется так: предмет жёстко закрепляют и оказывают на него воздействие.

Предел прочности материала при растяжении — формула, характеристики и расчеты

Сначала закреплённый элемент растягивают. Он становится длиннее, при этом в одном месте образуется перешеек, и именно здесь заготовка разорвётся. Так ведут себя не все материалы, а только вязкие. Чугун, сталь и другие хрупкие сплавы растягиваются незначительно. При увеличении нагрузки они трескаются и разрушаются по наклонным плоскостям. Шейки не образуются.

Сила, прикладываемая в каждый момент, измеряется с точностью до тысячных долей ньютона. Одновременно определяют размер и характер деформации. Данные сверяют с таблицами.

Второй способ — математический анализ. Он заключается в том, что прочность определяют с помощью сложных вычислений. Однако без испытаний данные, полученные расчётным путём, нельзя считать полными. Дело в том, что на практике вещество может повести себя по-другому.

Классификация параметра

Материал обладает временным сопротивлением в ответ на воздействия разного характера, поэтому характеристику классифицируют на несколько групп. Усилия, которым подвергается заготовка или конструктивный элемент:

  • Растяжение. Изделие тянут за края с помощью специальной машины.
  • Кручение. Предмет помещается в условия, при которых работает крутящий вал.
  • Изгиб. Заготовку сгибают и разгибают в нескольких направлениях.
  • Сжатие. На материал давят попеременно с разных сторон.

Предел прочности материала при растяжении — формула, характеристики и расчеты

У одного и того же материала ПП может различаться. В качестве примера можно привести сталь. Она используется чаще, чем другие сплавы, потому что стальные конструкции показали себя как наиболее прочные, долговечные и устойчивые к неблагоприятным факторам. При этом они надёжны и не выделяют в атмосферу вредных веществ.

Существует несколько марок стали. Они производятся по разным технологиям, и в зависимости от этого различаются характеристики заготовок и конструкций. У обычных марок ПП составляет 300 Мпа. По мере увеличения содержания углерода прочность увеличивается. Самые твёрдые марки имеют показатель 900 МПа. Факторы, от которых зависят прочностные характеристики:

  • количество полезных и нежелательных примесей;
  • способ термической обработки (криообработка, закалка, отжиг).

Временное сопротивление и усталость

Между ПП и временным сопротивлением различным нагрузкам есть прямая связь. Второй показатель в документации и технической литературе обозначают символом Т. Он показывает, сколько длится деформация образца, когда на него воздействует постоянная нагрузка. Когда временное сопротивление прекращается, кристаллическая решётка вещества перестраивается. Это характерно для твёрдых материалов. В результате вещество становится более прочным, чем было до этого. Это явление называется самоупрочнением.

Ещё одна важная характеристика — усталость металла. Говоря о стали, применяют выражение «предел выносливости». Для обозначения используют символ R. Эта характеристика показывает, воздействие какой силы материал может переносить постоянно, а не разово. Во время эксперимента на образец оказывают давление заданной силы. Число воздействий составляет 107. За время испытаний материал не должен деформироваться или утратить исходные характеристики.

Предел прочности материала при растяжении — формула, характеристики и расчеты

На проведение таких экспериментов уходит много времени, поэтому их проводят не всегда. Часто обходятся математическими вычислениями, рассчитывая все важные коэффициенты.

Пределом пропорциональности называют максимальную нагрузку, при которой сохраняется соотношение, определяемое законом Гука. Согласно ему, тело деформируется прямо пропорционально величине оказываемого на него воздействия. Каждый материал обладает определённой степенью упругости. Она может быть классической и абсолютной. Изменения могут быть обратимыми и необратимыми. Пример первого типа — пружина: пока на неё воздействуют, она сжимается, а когда нажатие прекращается, расправляется.

Определение характеристик

Материалы обладают не только прочностным пределом, но и другими характеристиками. В случае со сталью это твёрдость и способность воспринимать ударные нагрузки. Испытания проводят следующим образом: в заготовку вдавливают алмазный конус или шар. Алмаз — эталон твёрдости. Размер следа зависит от того, насколько крепок испытуемый образец. Чем от мягче, тем больше отпечаток, и наоборот.

Прочность на удар рассчитывают так: на образце делают срез, затем ударяют. Результаты показывают характеристику для участка, который наиболее уязвим. Другие механические свойства, для которых получают данные эмпирическим путём:

  • Пластичность. Она показывает, до какой степени образец может изменять форму, сохраняя исходную структуру.
  • Усталость. Эта категория отображает, как долго материал не теряет свойства, испытывая длительные нагрузки.
  • Ударная вязкость. Характеристика означает, в какой степени вещество способно сопротивляться ударному воздействию.

Предел прочности материала при растяжении — формула, характеристики и расчеты

По прочности вещества делятся на классы. Они различаются по одной или нескольким характеристикам. Так, для двух классов показатели ПП могут быть одинаковыми, а значения относительного удлинения или текучести — разными.

Удельная прочность — величина, производная от предельной. Её получают путём деления исходного показателя на плотность материала. Практическая ценность расчёта состоит в том, что знание характеристики позволяет применять материал для различных целей, а не просто располагать данными о ПП. Показатель меняется в зависимости от объёма, толщины и веса изделия. Пример: тонкий лист легче деформировать, чем толстый.

Предел прочности и пластичность тесно связаны. Чем меньше второй параметр, тем быстрее разрушается образец. Материалы, у которых высокая пластичность, лучше поддаются обработке, они пригодны для изготовления деталей путём штамповки. Пример: элементы кузова штампуют из листов стали. Если у сплава невысокая пластичность, он относится к хрупким, хотя может быть иметь отличные показатели твёрдости. Одно из таких веществ — титан. Он плохо изгибается и тянется, но по твёрдости превосходит многие другие сплавы.

Для улучшения прочностных характеристик в материалы вводят добавки. Другой способ — термообработка.

Понравилась статья? Поделить с друзьями:
  • Предложение в музыке как найти
  • Рассказать почему двигатель ткани может плохо продвигать ткань как исправить эти недостатки
  • Как найти поперечную силу в точке
  • Как найти корзину в своем компьютере
  • Как составить дежурство по школе