Как найти процесс заряда конденсатора

Конденсаторы часто применяются в электрических схемах, помогая трансформировать электросигнал под определенные характеристики. Используя их основное свойство — накапливать электрический заряд, можно регулировать прохождение тока по цепи, убирать нежелательные пульсации напряжения или повысить энергоэффективность сети. При решении подобных задач в расчет берутся конкретные параметры того или иного электронакопителя, а также общие процессы, связанные с зарядом и разрядом конденсаторов.

  • Заряд конденсатора
  • Процессы зарядки и разрядки конденсаторов
  • Емкость и энергия конденсатора
  • Как зарядить конденсатор
  • Время, необходимое для зарядки конденсатора
  • Заряд конденсатора: формула
  • Время разряда конденсатора

Заряд конденсатора

Устройство обычного конденсатора состоит из двух пластин (обкладок), подключаемых к выходам цепи, и диэлектрика между ними. При этом величина заряда, накаливаемого конденсатором, зависит от его емкостной характеристики основных параметров: площади обкладок, толщины и диэлектрических свойств прокладочного материала.

Емкость конденсатора определяется по формуле:

C = S • ε • ε0 / d,

где S – площадь обкладок, ε — диэлектрическая проницаемость прокладки, ε0 — диэлектрическая постоянная (8,85•10-12 Ф/м), d – расстояние между пластинами.

Конденсируемый же заряд равняется произведению емкости конденсатора на напряжение в цепи: q = С × U.

Процессы зарядки и разрядки конденсаторов

При включении конденсатора в цепь через него начинает проходить ток. С движением электронов по проводнику на одной обкладке устройства скапливается отрицательный заряд, а на другой (при недостатке электронов) — положительный. Между пластинами образуется индуктивное поле, создающее разность потенциалов определенного значения. В проводниках постоянного тока накопление заряда идет до тех пор, пока уровень напряжения на обкладках не сравняется с номинальным напряжением элемента питания, после чего течение электротока останавливается.

Когда цепь размыкается и на конденсатор не подается напряжение, он может сохранять заряд на протяжение определенного времени, а затем с исчезновением электрического поля между пластинами заряд начнет перетекать в проводник. Процесс разряда конденсатора характеризуется переходом электронов с одной обкладки на другую. Конденсатор разряжается полностью, когда количество свободных электронов на обеих пластинах сравнивается. При этом все электродинамические процессы в цепи прекращаются.

Емкость и энергия конденсатора

Конденсатор, как и всякий объект, получающий электрический заряд, обладает энергией. Для его зарядки требуется определенная работа, которая идет на разделение заряженных частиц — именно она считается энергией конденсаторного устройства. Ее можно увидеть, если заряженный конденсатор присоединить, например, к светодиоду. Накопитель отдаст заряд лампочке, и она на некоторое время загорится, тем самым энергия перейдет в свет и тепло.

Для определения энергии конденсатора в расчет берут количество заряда, толщину диэлектрика и напряженность электрического поля. Последняя является векторной величиной и представляет собой силу, действующую на точечный заряд.

Поскольку заряды на обкладках равны между собой по модулю, во внимание принимается только значение напряженности одной из них, а значит, эта величина делится пополам — Е/2. Общая же энергия определяется по формуле:

Wp = qEd/2.

Произведение напряженности на расстояние между пластинами само себе представляет разность потенциалов или напряжение — U = E × d. Таким образом, энергию можно выразить через заряд и напряжение на конденсаторе. Формула будет иметь следующий вид:

Wp = qU/2.

Учитывая, что заряд и напряжение находятся в зависимости от емкости конденсатора, можно вывести еще пару формул энергии:

 Wp = q2/2C

 Wp = CU2/2

Как зарядить конденсатор

Для зарядки конденсатора требуется генератор электротока. Возникающие при этом процессы удобнее разобрать на примере простой цепи, включающей в себя конденсатор (С) и резистор (R).

Зарядка конденсатора от источника постоянной ЭДС

В соответствии с законом Ома разность потенциалов, возникающая на резисторе и конденсаторе, суммарно равна электродвижущей силе генератора тока. Математически это можно представить следующими формулами:

UC = q/C – напряжение конденсатора;

UR = IR – напряжение резистора;

ε = UC + UR – ЭДС источника.

Для пояснения зарядного процесса определим равенство

IR = ε – q / C.

Эта формула представляет динамические изменения заряда силы тока. Более конкретно это может быть выражено уравнением:

I = dq / dt.

Изменение заряда во времени можно подставить к сопротивлению. Соответственно, получаем

R • dq / dt = ε – q / C.

В строгом смысле это уравнение предписывает бесконечное время зарядки конденсаторного устройства. Однако этим можно пренебречь, если учесть, что заряд фактически дискретен и может быть подвержен случайным изменением и флуктуациям. Таким образом, в данном выражении имеются в виду усредненная динамика зарядного процесса. На его основании можно записать изменение ЭДС и составляющих напряжений обоих элементов цепи:

dε = d(IR) + d(q/C).

Фактически ЭДС генератора не меняется во времени, а значит, dε = 0, а емкость конденсатора и сопротивление обладают постоянными значениями, поэтому их можно обозначить без d:

R • dI = — 1/C • dq.

Поделив данное уравнение на временной период, за который заряжается конденсатор, можно вывести выражение, учитывающее корреляцию между динамикой заряда и силой тока:

dI / dt = –I/RC.

Это уравнение означает отношение скорости, с которой уменьшается сила тока к ее фактическому значению.

В начале процесса заряда конденсатора значение q равняется нулю. В этот момент при наибольшей разнице напряжений источника питания и электронакопителя сила тока имеет максимальное значение. По мере увеличения заряда значение I постепенно падает. Когда конденсатор заряжается полностью, его напряжение сравнивается с ЭДС генератора, а сила тока принимает значение 0. Соответственно, электродинамический процесс прекращается.

Дополнительно можно рассмотреть, как в процессе зарядки трансформируется энергия. Вполне очевидно, что генератор тока является причиной возникновения электротока в цепи и, следовательно, заряда электронакопителя.

В этом усматривается некое противоречие: когда конденсатор получает от генератора тока заряд q, это значит, что ЭДС выполнила работу равную заряду (А = qe), однако энергия самого накопителя определяется по формуле W = q2 / 2C = qε / 2, что составляет только половину от работы, произведенной источником питания. Этот парадокс объясняется самим фактом прохождения тока по электроцепи, которое сопровождается выделением тепловой энергии на резисторе, то есть определенное количество энергопотери приходится на тепло.

Дифференциальные расчеты для малых отрезков времени процесса зарядки показывают, что энергия от генератора, действительно, разделяется на электрическую, идущую на заряд конденсаторного устройства, и тепловую. При этом сопротивление цепи само по себе никак не влияет на количество выделяемой теплоты, которое равняется энергии конденсатора.

Заряд конденсатора, ток

При подключении конденсатора к источнику тока в начале зарядки заряд на пластинах практически отсутствует. Максимальное значение I в этой ситуации объясняется минимальным сопротивлением. С увеличением заряженных частиц, возрастает сопротивление индуктивного поля, которое препятствует прохождению тока по проводнику.

Период времени, за начальную точку которого берут момент наибольшей силы тока, а за конечную полное прекращение движения заряженных частиц, носит название переходного периода зарядки конденсатора.

Начальный момент зарядки конденсатора характеризуется нулевым напряжением между его пластинами. Показатель U начинает возрастать с появлением на обкладках разноименно заряженных частиц. Большая сила тока в начале процесса обусловливает большую скорость увеличения напряжения. По мере ее падения рост напряжения замедляется, достигнув максимального значения при полной зарядке электронакопителя.

График увеличения напряжения имеет вид параболы, будучи противоположным графику снижения силы тока.

Математически динамическую взаимозависимость тока, напряжения и емкости конденсатора можно выразить следующим образом:

I = С • dV / dt.

Время, необходимое для зарядки конденсатора

Время зарядки конденсатора определяется его емкостью, электродвижущей силой генератора тока, напряжением и сопротивлением в цепи.

Заряд конденсатора описывается как экспоненциальный процесс. Чтобы оценить его время, принимается, что значение заряда увеличивается равномерно, при этом скорость заряда приравнивается к силе тока в начале процесса. Отсюда следует уравнение постоянной времени:

τ = q / I0 = RC.

Зависимость динамики напряжения от длительности зарядки определяется по следующей формуле:

U(t) = UC • (1 – e-t/τ).

Значение высчитывается с привлечением основания натурального логарифма (е), которое относится к функции экспоненты и равняется приблизительно 2,718. При этом UC обозначает напряжение ЭДС источника.

Процент заряда по постоянной времени τ определяется в соответствии с формулой:

(1 — 1/еτ) • 100%.

Таким образом, конденсатор достигает почти полной зарядки за 5 τ.

• 1 τ — 63,2%;

• 2 τ — 86,5%

• 3 τ — 95,1%

• 4 τ — 98,2%

• 5 τ — 99,3%

Учитывая экспоненциальный характер увеличения напряжения конденсатора, можно сказать, что время его зарядки до уровня ЭДС генератора длится бесконечно долго.

Заряд конденсатора: формула

Конденсатор заряжается довольно быстро. Обычно для этого достаточно нескольких миллисекунд. Равенство напряжения электродвижущей силы источника питания и электронакопителя определяет максимальный заряд конденсатора. Формула заряда может быть определена с учетом общих параметров конденсатора:

q = Uεε0S/d.

Также можно принять во внимание конструкционные особенности конденсатора. Так, для цилиндрического накопителя заряд равняется:

q = U2πεε0l/ln(r2/r1),

где l – высота цилиндров, r2 – радиус наружной пластины, r1 — радиус внутренней пластины.

Время разряда конденсатора

Если конденсатор переключить на нагрузку резистора, он сам станет источником питания и будет отдавать заряд в цепь. Движение тока при этом начинается от пластины с отрицательным зарядом на положительно заряженную пластину и далее по контуру. Напряжение в начальный момент будет такое же как и после полной зарядки накопителя. В соответствии с законом Ома можно определить и первоначальную силу тока:

IC = UC / R.

Отдавая заряд, конденсатор будет терять напряжение. Соответственно будет уменьшаться и сила тока. Снижение обоих показателей идет по экспоненциальной кривой с замедлением скорости падения. Это значит, что динамику разрядки конденсатора можно описать, как и в случае зарядки, при помощи постоянной времени τ.

Изменение основных электрических показателей при заряде и разряде конденсатора играют ключевую роль в электротехнике и радиоэлектронике. Эта функциональность в полной мере проявляется в цепях переменного тока, где оба процесса сменяют друг друга с определенной периодичностью. На частотно-зависимых качествах электронакопителей основан принцип действия таких электроустановок, как колебательные контуры, реле времени, цепи обратной связи, частотные фильтры и другие.

Понравилась статья? Расскажите друзьям:

Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 5 из 5.

Электрический конденсатор (англ. capacitor) — это устройство, которое может накапливать электрический заряд и хранить его некоторое время. Конденсаторы можно найти практически в любом электронном устройстве. Они бывают разных типов и размеров.

На электрических схемах конденсаторы обозначают двумя параллельными черточками. При этом, у полярных конденсаторов около положительного электрода дополнительно ставится плюсик.

Для чего нужен конденсатор?

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.

Полярные и неполярные конденсаторы

Очень важным является разделение конденсаторов на полярные и неполярные.

Приборы на основе оксидов: электролитические алюминиевые и танталовые обычно являются полярными, а значит если перепутать их полярность — они выйдут из строя. Причём этот выход из строя будет сопровождаться бурной электрохимической реакций вплоть до взрыва конденсатора.

На полярных конденсаторах всегда имеется маркировка. Как правило на электролитических конденсаторах на корпусе контрастной полосой отмечается отрицательный вывод (катод), у танталовых (в желтых прямоугольных корпусах) полоской помечается положительный вывод (анод). Если есть сомнения в маркировке, то лучше найти документацию на этот конденсатор и убедиться.

Неполярные же конденсаторы можно включать в цепь какой угодно стороной. К примеру, многослойные керамические конденсаторы — неполярные.

Ёмкость и напряжение конденсатора

Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение.

Ёмкость конденсатора характеризует способность конденсатора накапливать заряд. Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.

Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.

Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад! Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.

Номинальное напряжение — второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.

Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.

А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?

Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ

Формулы измерения напряжения конденсаторов

Численный показатель напряжения равен электродвижущей силе. Также он определяется, как емкость, поделенная на величину заряда, исходя из формулы определения его величины. В соответствии с ещё одним правилом, напряжение равно току утечки, поделенному на изоляционное сопротивление.

Вам это будет интересно Особенности профессии электрика

В целом, конденсатор – это устройство для аккумулирования электрического заряда, состоящее из нескольких пластинчатых электродов, которые разделены с помощью диэлектриков. Устройство имеет электрод, измеряемый в фарадах. Один фарад равен одному кулону. На напряжение устройства влияет ток, показатели которого можно вычислить через описанные выше формулы.

Параллельное и последовательное подключение конденсаторов

Как и в случае резисторов, конденсаторы можно составлять в цепочки. Это бывает нужно, когда в схеме необходима какая-то конкретная ёмкость, а у вас нет такого конденсатора.

Параллельное подключение

В отличие от резисторов, при параллельном подключении конденсаторов их ёмкости складываются. Например, если нам нужно получить ёмкость 3000 мкФ, а у нас есть два конденсатора по 1000 мкФ, и 10 штук по 100 мкФ, смело ставим их параллельно и получаем: 1000*2+100*10 = 2000 + 1000 = 3000 мкФ

Последовательно подключение

При последовательном подключении конденсаторы ведут себя как резисторы, соединённые параллельно. Например, посчитаем суммарную ёмкость двух конденсаторов на 100 мкФ, соединённых последовательно:

Суммарная ёмкость Ctot = 50 мкФ.

Заряд и разряд конденсатора — RC-цепочка

Теперь разберёмся с процессами, происходящими внутри конденсатора во время заряда и разряда. Для этого рассмотрим самую простую электрическую цепь с конденсатором. С левой стороны схемы подключим источник питания. Сверху разместим ключ и резистор, а справа сам конденсатор. Участок цепи, на котором есть конденсатор и резистор называют RC-цепью.

При замыкании ключа, в такой цепи образуется электрический ток, сила которого зависит от сопротивления резистора и внутреннего сопротивления самого конденсатора. Заряженные частицы устремятся к конденсатору, но не смогут преодолеть слой диэлектрика (по крайней мере все разом). Вследствие чего, с одной стороны конденсатора накопятся отрицательно заряженные частицы, а с другой стороны — положительно заряженные. Концентрация заряженных частиц на обкладках создаст мощное электрическое поле между ними.

С течением времени, напряжение на конденсаторе растет, а сила тока падает. После завершения процесса заряда, ток в цепи упадет почти до нуля. Останется только очень маленький ток утечки, который образуется благодаря тому, что некоторым заряженным частицам всё же удается проскочить через слой диэлектрика. Напряжение, напротив, станет практически равным напряжению источника.

Когда мы отключим конденсатор от источника питания, этот самый ток утечки постепенно разрядит конденсатор. Эта особенность электрических конденсаторов не даёт нам сделать из них контейнер для длительного хранения энергии. Хотя частично эту проблему решают ионисторы.

Характеристики конденсаторов

Главной характеристикой прибора является емкость, то есть, количество энергии, которое он может накопить в виде электронов. Общее число зарядов на пластинах определяет величину емкости конденсатора.

Обратите внимание! Емкость зависит от площади обкладок и диэлектрической проницаемости материала. Чем больше площадь конденсаторных пластин, тем больше заряженных частиц могут поместиться на них и тем выше показатель емкости.

Из важнейших характеристик также можно назвать удельную емкость, плотность, номинальную силу заряда и полярность. Из дополнительных параметров можно указать количество фаз, метод установки конденсатора, рабочую температуру, активный электрический ток переменного или постоянного типа.

В электротехнике существуют также понятия негативных факторов, искажающих рабочие свойства колебательного контура. К ним относятся электрическое сопротивление и эквивалентная последовательная индуктивность. В качестве примера негативного критерия можно привести показатель, показывающий падение заряда после отключения электричества.

Вам это будет интересно Особенности светильника ДРЛ 250

Резистор и время заряда конденсатора

Зачем в цепи нужен резистор? Что на мешает подключить его напрямую к источнику? Тому есть две причины.

Резистор ограничивает ток, протекающий через конденсатор. Чем меньше заряженных частиц за единицу времени прибывает в конденсатор, тем больше времени для заряда ему потребуется.

Конденсатор заряжается и разряжается по экспоненциальному закону. Зная это, мы можем легко рассчитать время заряда/разряда в зависимости от его ёмкости и от сопротивления резистора.

По картинке можно понять, что за время T конденсатор заряжается на 63,2%. А вот за время 3T уже на 95%. Время T здесь равно произведению ёмкости конденсатора C на сопротивление R, последовательно соединенного резистора:

Например, у нас есть конденсатор ёмкостью 100 мкФ, соединенный с резистором 1 кОм. Посчитаем за сколько секунд он зарядится хотя бы до 95%:

Теперь умножаем это на 3 и получаем 3T = 0,3 секунды — за такое время конденсатор почти полностью будет заряжен.

Таким образом, меняя ёмкость конденсатора и резистора мы можем управлять временем его заряда, что нам ещё пригодится в будущем.

Вторая важная причина, по которой в цепи присутствует резистор — защита источника питания. Дело в том, что разряженные конденсаторы имеют очень низкое внутреннее сопротивление, которое составляет доли Ома. По сути, их можно рассматривать как обычные проводники. А что будет, если замкнуть выводы питания проводником? Будет короткое замыкание! Такой режим работы цепи является аварийным для источника питания, и его нужно всячески избегать.

Зависимость напряжения на конденсаторе от времени его разряда

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Санкт-Петербургский государственный горный университет

Кафедра общей и технической физики

Отчёт по лабораторной работе

По дисциплине: Физика .

(наименование учебной дисциплины согласно учебному плану)

Тема: «исСледование процессов накопления и релаксации заряда в диэлектрических материалах»

Выполнила: студентка гр. РМ-11 ______________ /Даниленко А.К./

(подпись) (Ф.И.О.)

Проверил: ____________ /Ходьков Д.А./

(подпись) (Ф.И.О.)

Санкт-Петербург,

2012

Цель работы: 1. Определение постоянной времени RC-цепи.

2.Определение входного сопротивления вольтметра путем измерения разрядных характеристик конденсатора.

3. Оценка величины заряда, не связанного с поляризацией диэлектрика в конденсаторе.

Краткие теоретические сведения.

Релаксация заряда

Релаксация заряда в базе Q(t) зависит от схемы включения, так как она определяется не только рекомбинацией неравновесных носителей, но и током базы составляющей тока эмиттера.

Для исследования релаксации заряда конкретного вида, например, инжектированного гомозаряда, обычно используются изотермические процессы при повешенной температуре, учитывается перезахват носителей заряда мелкими ловушками и процесс высвобождения носителей, захваченных глубокими ловушками.

Квазистационарные процессы

Квазистационарными процессами называют процессы, протекающие в ограниченной системе и распространяющиеся в ней так быстро, что за время распространения этого процесса в пределах ее системы ее состояние не успевает измениться. Понятие квазистационарный процесс может быть применен и к другим системам – механическим и термодинамическим.

Квазистационарные процессы можно исследовать с помощью законов постоянного тока, если применять эти законы к мгновенным значениям сил токов и напряжений на участках цепи.

Из-за огромного значения скорости света время установления электрического равновесия в цепи оказывается весьма малым. Поэтому к квазистационарным можно отнести многие достаточно быстрые в обычном смысле процессы. Например, быстрые колебания в радиотехнических цепях с частотами порядка миллиона колебаний в секунду и даже выше очень часто еще можно рассматривать как квазистационарные.

Процессы, протекающие во времени в цепях обычно являются медленными в рассматриваемом смысле. В данной работе рассматривается процесс накопления заряда на конденсаторе С

(т.е. его зарядка от источника напряжения) и релаксация этого заряда (т.е. разряд конденсатора) в цепи сопротивлением
R
. Ниже будет показано, что при разумных значениях емкости и сопротивления данный процесс можно считать квазистационарным.

Конденсатор — электроэлемент, который накапливает электричество в форме

электрического поля.

Переходный процесс— процесс изменения во времени характеристик динамической

системы, при её переходе из одного установившегося

состояния в другое, под действием приложенного

возмущения.

Постоянная времени RC – величина, показывающая через какое время после

начала разряда напряжение на конденсаторе

уменьшается в е

= 2,72 раз.

Поляризация диэлектриков — явление, связанное с ограниченным смещением

связанных зарядов в диэлектрике или поворотом

электрических диполей, обычно под воздействием

внешнего электрического поля, иногда под

действием других внешних сил или спонтанно.

Инжекция носителей заряда — увеличение концентрации носителей заряда в

полупроводнике (диэлектрике) в результате

переноса носителей током из областей с

повышенной концентрацией под действием

внешнего электрического поля.

Миграционные заряды — избыточные электрические заряды, сообщённые

проводящему или непроводящему телу и вызывающие

нарушение его электронейтральности.

Схема установки.

Расчетные формулы:

1). — зависимость напряжения на конденсаторе от времени в

процессе его заряда, где: Uc

– мгновенное значение

напряжения на конденсаторе (В), R –

сопротивление

цепи (Ом), С – электроемкость конденсатора (Ф).

2). — зависимость напряжения на конденсаторе от времени в

процессе его разряда, где Uнач –

начальное напряжение (В).

3). — постоянная времени RC

– цепи, где: — постоянной времени RC – цепи,

R –

сопротивление цепи (Ом), С – электроемкость конденсатора (Ф).

4). — сопротивление, где: – интервал времени между

измерениями напряжений и на емкости в

процессе ее разрядки.

5). — сила тока, где: Uc

– мгновенное значение напряжения на конденсаторе

(В), R –

сопротивление цепи (Ом).

6). — нахождение заряда, оставшегося в диэлектрике, при известной

зависимости I(t)

за очень большое время наблюдения.

7). , где: — оставшийся в диэлектрике заряд, S –

площадь под

графиком I(t)

, а
I1
и
t1
–масштабы по осям тока и времени.

8). — полный заряд заряженного конденсатора.

Таблица исходных данных.

Таблица 1.

Зависимость напряжения на конденсаторе от времени его заряда

U0= 12,1В, R=100кОм, С=470мкФ

t,c 6 12 19 28 38 51 67 92 134
Uс,B 1,2 2,4 3,6 4,8 6,0 7,2 8,4 9,6 10,8
Ucтеор,В 16,3 20,4 25,3 31,6 38,5 47,6 58,7 76 105,2

Таблица 2.

Зависимость напряжения на конденсаторе от времени его разряда

Uнач= 10,8В, R=100кОм, С=470мкФ

t,c 6 13 22 32 45 69 85 127 558
Uс,B 9,6 8,4 7,2 6,0 4,8 3,6 2,4 1,2 0
Uc теор,В 3,7 8,1 13,6 19,9 27,9 48 59,1 88,3 387,9

Таблица 3.

Зависимость напряжения на конденсаторе от времени его разряда через искомое входное сопротивление вольтметра Rв

Uнач= 12,1В, С=470мкФ

№ измерения 1 2 3 4 5 6 7 8 9
t, c 566 768 893 987 1208 1312 1435 1345 1498
Uс,B 10,8 9,6 8,4 7,2 6,0 4,2 3,6 2,4 1,2
Пара №-в измер., выбр. Для расч. 1 и 5 3 и 7 2 и 8 3 и 9 1 и 4 3 и 8 2 и 6 5 и 9 1 и 7
Rв,МОм 2,324 1,361 0,89 0,66 2,2 0,77 1,4 0,38 1,7

Таблица 4.

Плавное выключение светодиода при помощи конденсатора

Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.

Принципиальная схема

Внешний вид макета

Подключим Ардуино к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?

Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.

Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается

  1. Конденсаторы.

Емкостью обладают
не только отдельные проводники, но и
системы проводников. Система, состоящая
из двух проводников, разделенных слоем
диэлектрика, называется конденсатором.
Проводники в этом случае называются
обкладками конденсатора. Заряды на
обкладках имеют противоположные знаки,
но по модулю – одинаковы. Практически
все поле конденсатора сосредоточено
между обкладками и.

Емкостью конденсатора
называется величина

С=
,

(1)

где q
– абсолютная величина заряда одной из
обкладок, U
— разность потенциалов (напряжение)
между обкладками.

В зависимости от
формы обкладок, конденсаторы бывают
плоскими, сферическими, цилиндрическими.

Найдем емкость
плоского конденсатора, обкладки которого
имеют площадь S,
расположены на расстоянии d,
а пространство между обкладками заполнено
диэлектриком с диэлектрической
проницаемостью ε.

Если поверхностная
плотность заряда на обкладках равна σ
(σ=
),
то напряженность поля конденсатора
(поле считается однородным) равна:

Е=

=

Разность потенциалов
между обкладками связана с напряженностью
поля: Е =
, откуда получим U=Ed
=

=

Используя формулу
( 1 ), получим для емкости плоского
конденсатора выражение:

С
=
(2)

  1. Соединение конденсаторов.

Используются два
основных вида соединения: последовательное
и параллельное.

При параллельном
соединении (рис 1), общая емкость батареи
равна сумме емкостей всех конденсаторов:

Собщ.=
С1
23+…=ΣСi
. (3)

При последовательном
соединении (рис.2) величина, обратная
общей емкости, равна сумме величин,
обратных емкостям всех конденсаторов:

.
(4)

Если последовательно
соединены n
конденсаторов с одинаковой емкостью
С, то общая емкость: Собщ.=

Рис. 1.Параллельное
соединение. Рис. 2.Последовательное
соединение

  1. Энергия конденсатора.

Если процесс
зарядки конденсатора является медленным
(квазистационарным), то можно считать,
что в каждый момент времени потенциал
любой из обкладок конденсатора во всех
точках одинаков. При увеличении заряда
на величину dq
совершается работа
,
где u
– мгновенное значение напряжения между
обкладками конденсатора. Учитывая, что
,
получаем:
.
Если емкость не зависит от напряжения,
то эта работа идет на увеличение энергии
конденсатора. Интегрируя данное
выражение, получим:

,

где W
– энергия конденсатора, U
– напряжение между обкладками заряженного
конденсатора.

Используя связь
между зарядом, емкостью конденсатора
и напряжением, можно представить
выражение для энергии заряженного
конденсатора в других видах:

.

(5)

  1. Квазистационарные токи. Процессы зарядки и разрядки конденсатора.

При зарядке или
разрядке конденсатора в цепи конденсатора
течет ток. Если изменения тока происходят
очень медленно, то есть за время
установления электрического равновесия
в цепи изменения токов и э.д.с. малы, то
для определения их мгновенных значений
можно использовать законы постоянного
тока. Такие медленно меняющиеся токи
называют квазистационарными.

Так как скорость
установления электрического равновесия
велика, под понятие квазистационарных
токов подпадают и довольно быстрые в
обычном понимании процессы: переменный
ток, многие электрические колебания,
используемые в радиотехнике.
Квазистационарными являются и токи
зарядки или разрядки конденсатора.

Рассмотрим
электрическую цепь, общее сопротивление
которой обозначим R.
Цепь содержит конденсатор емкостью C,
подключенный к источнику питания с
э.д.с. ε (рис. 3).

Рис. 3. Процессы
зарядки и разрядки конденсатора.

Зарядка
конденсатора
.
Применяя к контуру εRC1ε
второе правило Кирхгофа, получим:

,

где I,
U
– мгновенные значения силы тока и
напряжения на конденсаторе (направление
обхода контура указано стрелкой).

Учитывая, что
,
,
можно привести уравнение к одной
переменной:

.

Введем новую
переменную:
.
Тогда уравнение запишется:

.

Разделив переменные
и проинтегрировав, получим:
.

Для определения
постоянной А используем начальные
условия:

t=0,
U=0,
u=
— ε.
Тогда получим: А= — ε.
Возвращаясь к переменной
,
получим окончательно для напряжения
на конденсаторе выражение:

.

(6)

С течением времени
напряжение на конденсаторе растет,
асимптотически приближаясь к э.д.с.
источника (рис.4, I.).

Разрядка
конденсатора.
Для
контура CR2C
по второму правилу Кирхгофа: RI=U.
Используем также:

,
и

(ток течет в обратном направлении).

Приведя к переменной
U,
получим:

.
Интегрируя, получим:
.

Постоянную
интегрирования B
определим из начальных условий: t=0,
U=ε.
Тогда получим: В=ε.

Для напряжения на
конденсаторе получим окончательно:

.

(7)

С течением времени
напряжение падает, приближаясь к 0 (рис.
4, II).

Рис. 4. Графики
зарядки (I)
и разрядки (II)
конденсатора.

  1. Постоянная
    времени
    .
    Характер протекания процессов зарядки
    и разрядки конденсатора (установление
    электрического равновесия) зависит от
    величины:

,

(8)

которая имеет
размерность времени и называется
постоянной времени электрической цепи.
Постоянная времени показывает, через
какое время после начала разрядки
конденсатора напряжение уменьшается
в e
раз (е=2,71).

Теория метода

Прологарифмируем
выражение (7):


(учли,
что RC=τ).

График зависимости
lnU
от t
(линейная зависимость) выражается прямой
линией (рис.5), пересекающей ось y
(lnU)
в точке с координатами (0; lnε).
Угловой коэффициент К этого графика и
будет определять постоянную времени
цепи:
,
откуда:

.

(9)

Рис. 5. Зависимость
натурального логарифма напряжения от
времени при разрядке конденсатора

Используя формулы:


и
,
можно
получить, что для одного и того же
интервала времени
:

.

Отсюда:
.

(10)

Экспериментальная
установка

Установка состоит
из основного блока – измерительного
модуля, имеющего клеммы для подключения
дополнительных элементов, источника
питания, цифрового мультиметра и набора
минимодулей с различными значениями
сопротивления и емкости.

Для выполнения
работы собирается электрическая цепь
в соответствии со схемой, изображенной
на верхней панели модуля. В гнезда «R1»
подключается минимодуль с номиналом
1Мом, в гнезда «R2»
— минимодуль
с номиналом 100Ом. Параметры исследуемого
конденсатора, подключаемого в гнезда
«С», задаются преподавателем. В гнезда
подключения амперметра устанавливается
перемычка. В гнезда вольтметра подключается
цифровой мультиметр в режиме вольтметра.

Следует отметить,
что сопротивления резисторов заряда-разряда
(минимодулей) R
и цифрового вольтметра RV
образуют делитель напряжения, что
приводит к тому, что фактически
максимальное напряжение на конденсаторе
будет равно не ε, а
,

где r0
сопротивление источника питания.
Соответствующие поправки необходимо
будет вносить и при вычислении постоянной
времени. Однако, если входное сопротивление
вольтметра (107Ом)
значительно превышает сопротивление
резисторов, и сопротивление источника
мало, то данными поправками можно
пренебречь.

Порядок выполнения
работы

  1. Собрать электрическую
    цепь с заданным преподавателем значением
    емкости. Тумблер (переключатель
    заряда-разряда) установить в среднее
    положение (стоп). Переключатель предела
    измерения цифрового мультиметра
    установить в положение «20В» (режим
    измерения постоянного напряжения).

  2. Подключить модуль
    к сети переменного тока (клавиша
    включения на задней панели модуля) и
    установить выходное напряжение
    ,
    заданное преподавателем (6,5В-15В). Включить
    цифровой мультиметр. Нажатием кнопки
    «Сброс» подготовить модуль к началу
    измерений.

  3. Тумблер перевести
    в положение «Заряд». При этом запускается
    секундомер, и начинает меняться
    напряжение на конденсаторе (показания
    вольтметра). Довести напряжение на
    конденсаторе до значения примерно
    0,8ε.

  4. Сбросить показания
    секундомера нажатием кнопки «Сброс».
    Перевести тумблер в положение «Разряд»
    и измерять напряжения на конденсаторе
    при его разрядке с интервалом времени
    5с. Занести данные в таблицу 1.

  5. Подключить в цепь
    конденсатор с неизвестным значением
    емкости и повторить измерения по п. 4.
    Данные занести в таблицу 2.

  6. Подключить в цепь
    конденсатор и резистор с другим известным
    значением емкости. Повторить измерения
    по п. 4. Данные занести в таблицу 3.

  7. Нажать кнопку
    «Сброс». Выключить источник питания и
    мультиметр. Отключить от сети измерительный
    модуль и отсоединить от него дополнительные
    элементы.

Таблица
1

ε=
В,
R1=
Ом,
, С
1=
Ф

Разрядка

t (с)

U
(В)

lnU

τ1±Δτ1
(с)

Таблица
2

ε=
В,
R1=
Ом, С
х=?
Ф

Разрядка

t
(с)

U
(В)

lnU

τх±Δτх
(с)

Сх±ΔСх
(Ф)

Таблица
3

ε=
В,
R2=
Ом,
С
2
=
Ф

Разрядка

t (с)

U
(В)

lnU

τ2±Δτ2
(с)

Обработка
результатов измерения

По результатам
измерений студенты выполняют одно из
следующих заданий (по указанию
преподавателя).

Задание 1.
Построение кривых разрядки конденсаторов
и экспериментальное подтверждение
закона, описывающего данный процесс.

  1. Используя данные,
    взятые из таблиц 1 и 3, постройте графики
    зависимости напряжения от времени при
    разрядке конденсаторов С1и
    С2.
    Проанализируйте их, сравните с
    теоретическими (рис. 4).

  2. Постройте графики
    разрядки конденсаторов С1и
    С2
    в осях (lnU,
    t).
    Проанализируйте их, сравните с
    теоретическими (рис. 5).

  3. Определите по
    графикам угловые коэффициенты К1и
    К2.
    Среднее значение углового коэффициента
    находится как отношение, определяющее
    тангенс угла наклона прямой:

.

  1. Случайные
    погрешности графическим методом можно
    оценить по отклонению опытных точек
    относительно проведенной прямой.
    Относительная погрешность углового
    коэффициента может быть найдена согласно
    формуле:

,

где δ(lnU)
– отклонение (в проекции на ось lnU)
от прямой линии наиболее удаленной
опытной точки,

— интервал, на котором сделаны измерения.

  1. По значениям
    угловых коэффициентов определите
    постоянные времени τ1
    и τ2,
    используя формулу (9). Сравните полученные
    значения со значениями постоянной
    времени, рассчитанными по формуле (8).

  2. Посчитайте
    относительные и абсолютные погрешности
    для постоянной времени:

    ,
    .

  3. Сделайте выводы
    о соответствии экспериментальных
    графиков экспоненциальному виду
    зависимости напряжения от времени, и
    о влиянии постоянной времени на
    протекание процессов зарядки и разрядки
    конденсатора.

Задание 2.
Определение неизвестной емкости
конденсатора.

  1. Используя данные,
    взятые из таблиц 1 и 2, постройте графики
    зависимости напряжения от времени при
    разрядке конденсаторов С1
    и Сх.
    Проанализируйте их, сравните с
    теоретическими (рис. 4).

  2. Постройте графики
    разрядки конденсаторов С1
    и Сх
    в осях (lnU,
    t).
    Сравните их и сделайте вывод о соотношении
    постоянных времени (см. рис.5).

  3. Определите по
    формуле (10) неизвестную емкость, используя
    графики и данные таблиц 1 и 2.

  4. Найдите относительные
    погрешности угловых коэффициентов εК1
    и εкх
    (см. п.4
    задания 1).

  5. Определите
    относительную и абсолютную погрешности
    емкости:


,
.

  1. Сравните полученное
    значение Сх
    со значением,
    измеренным при помощи цифрового
    мультиметра в режиме измерения емкости.
    Сделайте вывод.

Дополнительное
задание.

Рассчитайте энергию
заряженного конденсатора, используя
формулу (5).

Контрольные
вопросы

  1. Что представляет
    собой конденсатор? Что называется
    емкостью конденсатора?

  2. Докажите, что
    электрическое поле плоского конденсатора
    сосредоточено между его обкладками.

2. Сколько надо
взять конденсаторов емкостью 2мкФ и как
их соединить,

чтобы получить
общую емкость 5 мкФ?

  1. Как можно найти
    энергию заряженного конденсатора?

  2. Какие токи
    называются квазистационарными? Почему
    токи зарядки и разрядки конденсатора
    можно отнести к квазистационарным?

  3. По какому закону
    изменяется напряжение на конденсаторе
    в процессах а) зарядки и б) разрядки?

  4. Что показывает
    постоянная времени цепи? От чего она
    зависит?

  5. Зачем в данной
    работе строится график зависимости
    lnU
    от t?

  6. Как в данной работе
    определяется постоянная времени
    электрической цепи?

ЛИТЕРАТУРА

1.Трофимова Т.И.
Курс физики. / Т.И. Трофимова. — М.: Высшая
школа, 2006-2009 г. г. – 544с.

2 Савельев И.В. Курс
физики. В 3-х томах. Том 2. Электричество.
Колебания и волны. Волновая оптика. Изд.
3-е, стереотип. / И.В. Савельев — М.: Лань,
2007. — 480 с.

3. Грабовский Р. И.
Курс физики / Р.И. Грабовский — СПб:
издательство «Лань», 2012. – 608с.

4 Зисман Г. А., Тодес
О. М. Курс общей физики. В 3-х томах. Том
2. Электричество и магнетизм / Г.А. Зисман,
О.М. Тодес — СПб: «Лань», 2007. — 352 c.

Концевой
титул

Учебное
издание

Составитель:

Плотникова
Ольга
Васильевна

Соседние файлы в папке 12-02-2015_08-16-01

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти количество символов в блокноте
  • Как составить сложную таблицу в экселе
  • Как найти сходящиеся ряды онлайн
  • Как ребята смогли найти потерянное время
  • Как найти сведения об имуществе