Как найти проекцию вектора на данную ось

Автор статьи

Анна Кирпиченкова

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.

Предварительные сведения

Основное понятие – непосредственно понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок. Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу — его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $overline{a}$ (рис. 1).

а) вектор $overline{a}$. б) вектор $overline{AB}$

Введем еще несколько понятий, связанных с понятием вектора.

Определение 3

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой или на прямых, параллельных друг другу (рис.2).

«Проекция вектора на ось. Как найти проекцию вектора» 👇

Определение 4

Два ненулевых вектора будем называть сонаправленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они будут направлены в одну сторону (рис. 3).

Обозначение: $overline{a}↑↑overline{b}$

Определение 5

Два ненулевых вектора будем называть противоположно направленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они направлены в разные стороны (рис. 4).

Обозначение: $overline{a}↑↓overline{d}$

Определение 6

Длиной вектора $overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|overline{a}|$

Перейдем к определению равенства двух векторов

Определение 7

Два вектора будем называть равными, если они удовлетворяют двух условиям:

  1. Они сонаправлены;
  2. Их длины равны (рис. 5).

Геометрическая проекция

Как мы уже сказали ранее, результатом геометрической проекции будет вектор.

Определение 8

Геометрической проекцией вектора $overline{AB}$ на ось будем называть такой вектор, который получается следующим образом: Точка начала вектора $A$ проецируется на данную ось. Получаем точку $A’$ — начало искомого вектора. Точка конца вектора $B$ проецируется на данную ось. Получаем точку $B’$ — конец искомого вектора. Вектор $overline{A’B’}$ и будет искомым вектором.

Рассмотрим задачу:

Пример 1

Постройте геометрическую проекцию $overline{AB}$ на ось $l$, изображенные на рисунке 6.

Решение.

Проведем из точки $A$ перпендикуляр к оси $l$, получим на ней точку $A’$. Далее проведем из точки $B$ перпендикуляр к оси $l$, получим на ней точку $B’$ (рис. 7).

Полученный на оси $l$ вектор $overline{A’B’}$ и будет искомой геометрической проекцией.

Замечание 1

Заметим, что если угол между вектором и осью острый, то проекция сонаправлена с осью, а если тупой, то проекция противоположно направлена с осью.

Числовая проекция

Как мы уже знаем, результатом алгебраической проекции будет неотрицательное действительное число.

Определение 9

Числовой (алгебраической) проекцией на ось будем называть неотрицательное число, равное длине вектора геометрической проекции.

Рассмотрим это понятие на примере задачи:

Пример 2

Найти числовую проекцию вектора $overline{F} на сонаправленную ему ось $x$, если угол между ними равняется $α$ (рис. 8). (рис. 8).

Решение.

Введем на рисунке следующие обозначения:

Видим, что длина вектора геометрической проекции, равняется длине $XY$. Из определения косинуса получим, что

$XY=|overline{F}|cosα$

где $|overline{F}|$ — длина вектора $overline{F}$. Это и будет искомая алгебраическая проекция на ось.

Другие случаи можете видеть на рисунке 9.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Проекция вектора на ось


Ориентированной
осью

называется
прямая, на которой закреплена точка —
начало отсчета, выбрана единица длины
и направление отсчета.

Рис. 6

Проекцией
вектора


на ось


называется величина, численно равная
длине отрезка

между основаниями перпендикуляров,
опущенных из точек А
и В
на l.
Эта длина берется со знаком плюс,
если направление от

к

совпадает с направлением оси l
и минус
в противном
случае (рис. 6). Аналогично определяется
проекция одного вектора на другой.

Углом
между осью и вектором

называется угол,


на который
нужно повернуть ось до совмещения с
вектором кратчайшим образом (так чтобы
их стрелки совпали). Из такого определения
следует, что
.

Свойства
проекции вектора на ось.

1.
Проекция
равна нулю тогда и только тогда, когда
вектор перпендикулярен оси (говорят,
вектор ортогонален
оси).

2.
При параллельном переносе вектора его
проекция не меняется.

3.
Проекция вектора на ось равна произведению
длины вектора на

косинус
угла между вектором и осью.

.

Рис.
7 Рис. 8

В
этой формуле знак проекции регулируется
знаком косинуса:


если

острый угол (рис. 7), то

и
;


если

тупой угол (рис. 8), то

и
.

4. Скалярный
множитель можно выносить за знак проекции

.

5.
Проекция суммы векторов равна сумме
проекций слагаемых

.

Декартова прямоугольная система координат

Базис
называется ортонормированным,
если его векторы попарно ортогональны
и по длине равны единицам.


Система
координат, базис которой ортонормирован,
называется декартовой
прямоугольной системой координат
.

Рис.
9

Базисные
векторы такой системы называются ортами
и обозначаются соответственно
,

,


(рис. 9). Оси идущие в направлении базисных
векторов соответственно OX
ось абсцисс,
OY
ось ординат,
OZ
ось
аппликат. Система координат называется
правой,
если кратчайший поворот первого базисного
вектора

до совмещения со вторым базисным вектором


смотрится с конца третьего базисного
вектора

происходящим против хода часовой
стрелки. В противном случае имеем левую
систему координат. Нетрудно видеть
(рис. 10), что координатами вектора
,
равно как и точки М,
являются проекции

на координатные оси.

Рис.
10

Тогда

,
аналогично
,

.
Теперь радиус-вектор

или
,
где

координаты
радиус-вектора

,
а
,,
— составляющие или компоненты
этого вектора.

.

Поскольку,
например,
,
а
.
Теперь
.

,
где

— угол между вектором

и осью OX.
Теперь
,
аналогично
,

,
где

и

— углы между

и осями OY
и OZ
соответственно.
Приведенные косинусы называются
направляющими
косинусами

радиуса вектора
.

Если


произвольный вектор и X,
Y,
Z
его проекции
на оси, то перенося начало

в точку О,
будем иметь
,

,

,

,

.

Если
вектор задан координатами начала

и конца
,
то

и расстояние

между точками А
и В будет

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Проекция вектора на ось. Проекция вектора на вектор

Навигация по странице:

  • Определение проекции вектора на ось
  • Определение проекции вектора на вектор
  • Формула вычисления проекции вектора на вектор
  • Примеры задач на проекцию вектора
    • плоские задачи
    • пространственные задачи

Определение. Проекцией вектора AB на ось l называется число, равное величине отрезка A1B1 оси l, где точки A1 и B1 являются проекциями точек A и B на ось l. (рис. 1).

Проекция вектора на ось
рис. 1

Определение. Проекцией вектора a на направление вектора b , называется число, равное величине проэкции вектора a на ось проходящую через вектор b.

Формула вычисления проекции вектора на вектор

Для вычисления проекции вектора a на направление вектора b из определения скалярного произведения получена формула:

Примеры задач на проекцию вектора

Примеры вычисления проекции вектора для плоских задач

Пример 1. Найти проекцию вектора a = {1; 2} на вектор b = {3; 4}.

Решение:

Найдем скалярное произведение этих векторов

a · b = 1 · 3 + 2 · 4 = 3 + 8 = 11

Найдем модуль вектора b

|b| = √32 + 42 = √9 + 16 = √25 = 5

Найдем проекцию вектора a на вектор b

Пр ba =  a · b  =  11  = 2.2
|b| 5

Ответ: Пр ba = 2.2.

Примеры вычисления проекции вектора для пространственных задачи

Пример 2. Найти проекцию вектора a = {1; 4; 0} на вектор b = {4; 2; 4}.

Решение:

Найдем скалярное произведение этих векторов

a · b = 1 · 4 + 4 · 2 + 0 · 4 = 4 + 8 + 0 = 12

Найдем модуль вектора b

|b| = √42 + 22 + 42 = √16 + 4 + 16 = √36 = 6

Найдем проекцию вектора a на вектор b

Пр ba =  a · b  =  12  = 2
|b| 6

Ответ: Пр ba = 2.

В математике существуют два определения:

1) геометрическая проекция вектора — вектор;

2) проекция вектора на ось — число.

Геометрическая проекция вектора — это вектор, который можно получить, если провести перпендикуляры от концов вектора до выбранной оси. Проекция начала вектора соответствует началу геометрической проекции, а проекция конца вектора соответствует концу геометрической проекции.


Ваш браузер не поддерживает HTML5 видео

Для вектора

v→

 геометрическая проекция на оси (t) — это вектор

vt→

.

Для вектора

n→

 геометрическая проекция на оси (y) — это вектор

ny→

.

Проекция вектора на ось — это скалярная величина (число), равная длине геометрической проекции вектора, если направление оси и геометрической проекции совпадают; или число, противоположное длине геометрической проекции вектора, если направления геометрической проекции и оси — противоположные.

векторы-проекция.png

ax=4bx=−3

Если длина вектора

a→

 равна

a→

 и

α

 — это острый угол, созданный вектором и осью (x), то скалярная проекция вектора вычисляется по формуле: 

ax=a→⋅cosα

.

Знак проекции вектора выбирается в зависимости от направления оси.

векторы-проекция-треугольник.png

На рисунке видно, что эту формулу можно получить из соотношения в прямоугольном треугольнике:

cosα=прилежащий катетгипотенуза=ax→a→

.

Обрати внимание!

Если вектор и ось проекций параллельны, то скалярная проекция на этой оси — число, которое равно длине вектора, если направления вектора и оси совпадают, или число, противоположное длине вектора, если направления вектора и оси — противоположные.

Если вектор и ось проекций перпендикулярны, то проекция вектора на этой оси равна (0).

Projekcijas_vekt.png

at=3bt=−5ct=0dt=0

В данной публикации мы рассмотрим, что такое проекция вектора на ось или на другой вектор, и приведем формулу, с помощью которой можно найти значение этой проекции. Также разберем примеры решения задач по этой теме.

  • Нахождение проекции вектора

  • Примеры задач

Нахождение проекции вектора

Проекция вектора AB на ось l – это число, которое равняется отрезку A1B1. Точки A1 и B1 при этом являются проекциями точек A и B на ось l.

Проекция вектора на ось

Проекция вектора a на направление вектора b – это число, которое равно проекции a на ось, проходящую через b.

Формула для нахождения проекции вектора на вектор

Рассчитать проекцию a на направление b можно следующим образом:

Формула для нахождения проекции вектора на вектор

Примеры задач

Задание 1
Найдем проекцию вектора a = {3; 5} на b = {2; 8}.

Решение:

1. Сперва посчитаем скалярное произведение заданных векторов:

a · b = 3 · 2 + 5 · 8 = 46

2. Теперь вычислим длину (модуль) b:

Пример расчета длины (модуля) вектора

3. Остается только воспользоваться формулой выше для нахождения проекции вектора:

Пример расчета проекции вектора на вектор

Задание 2
Вычислим проекцию вектора a = {4; -7; 5} на b = {11; 3; 6}.

Решение:
Поочередно выполняем те же самые действия, что и в примере, разобранном выше.

a · b = 4 · 11 + (-7) · 3 + 5 · 6 = 53

Пример расчета длины (модуля) вектора

Пример нахождения проекции вектора на вектор

Понравилась статья? Поделить с друзьями:
  • Как найти по адресу кто мировой судья
  • Как найти все делители факториала
  • Как найти значение перечисления по имени
  • Как найти телефон huawei p40 lite
  • Как найти объем прямоугольного параллелограмма