Как найти произведение координат вектора формула

Векторное произведение векторов

Определение

Определение

Векторным произведением векторов $ overline{a} $ и $ overline{b} $ является вектор $ overline{c} $, который расположен перпендикулярно к плоскости, образуемой векторами $ overline{a} $ и $ overline{b} $. Само произведение обозначается как $ [overline{a},overline{b}] $, либо $ overline{a} times overline{b} $.

векторное произведение векторов

Векторное произведение векторов, формула которого зависит от исходных данных задачи, можно найти двумя способами.

Формула

Формула 1

Если известен синус угла между векторами $ overline{a} $ и $ overline{b} $, то найти векторное произведение векторов можно по формуле:

$$ [overline{a},overline{b}] = |overline{a}| cdot |overline{b}| cdot sin (overline{a},overline{b}) $$

Формула 2

В случае когда векторы $ overline{a} $ и $ overline{b} $ заданы в координатной форме, то их произведение определяется по формуле:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 end{vmatrix} $$

где векторы $ overline{i},overline{j},overline{k} $ называются единичными векторами соответствующих осей $ Ox, Oy, Oz $.

Определитель во второй формуле можно раскрыть по первой строке:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 end{vmatrix} = overline{i} (a_2 b_3 — a_3 b_2) — overline{j} (a_1 b_3 — a_3 b_1) + overline{k} (a_1 b_2 — a_2 b_1) $$

Итого вторая формула приобретает окончательный короткий вид:

$$ overline{a} times overline{b} = (a_2 b_3 — a_3 b_2; a_3 b_1 — a_1 b_3; a_1 b_2 — a_2 b_1) $$

Свойства

  1. При изменении порядка множителей меняется знак на противоположный: $$ [overline{a},overline{b}] = -[overline{b},overline{a}] $$
  2. Вынос константы за знак произведения: $$ lambda [overline{a},overline{b}] = [lambda overline{a}, overline{b}] = [overline{a}, lambda overline{b}] $$
  3. $$ [overline{a}+overline{b}, overline{c}] = [overline{a},overline{c}] + [overline{b}, overline{c}] $$

Примеры решений

Пример 1

Найти векторное произведение векторов, заданных координатами

$$ overline{a} = (2,1,-3) $$ $$ overline{b} = (1,2,-1) $$

Решение

Составляем определитель, первая строка которого состоит из единичных векторов, а вторая и третья из координат векторов $ overline{a} $ и $ overline{b} $:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ 2&1&-3\1&2&-1 end{vmatrix} = overline{i} (-1+6) — overline{j}(-2+3) + overline{k}(4-1) = 5overline{i} — overline{j} + 3overline{k} $$

Полученный ответ можно записать в удобном виде:

$$ overline{a} times overline{b} = (5, -1, 3) $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ overline{a} times overline{b} = (5, -1, 3) $$

Геометрический смысл

  • Модуль векторного произведения векторов $ overline{a} $ и $ overline{b} $ в геометрическом смысле равен площади параллелограмма, построенного на этих векторах: $$ S_{parall} = |overline{a} times overline{b}| $$
  • Половина этого модуля это площадь треугольника: $$ S_Delta = frac{1}{2} |overline{a} times overline{b} | $$
  • Если векторное произведение равно нулю $ overline{a} times overline{b} = 0 $, то векторы коллинеарны.

 

    Пример 2
    Найти площадь треугольника по заданным векторам $$ overline{a} = (2,1,3) $$ $$ overline{b} = (-1,2,1) $$
    Решение

    Используя геометрический смысл, в частности вторую формулу находим половину модуля векторного произведения векторов.

    Находим определитель:

    $$ begin{vmatrix} overline{i}&overline{j}&overline{k}\2&1&3\-1&2&1 end{vmatrix} = overline{i}(1-6) — overline{j}(2+3) + overline{k}(4+1) = -5overline{i} — 5overline{j} + 5overline{k} $$

    Вычисляем модуль полученного вектора как корень квадратный из суммы квадратов координат этого вектора:

    $$ |overline{a} times overline{b}| = sqrt{(-5)^2 + (-5)^2 + 5^2} = sqrt{25 + 25 + 25} = sqrt{75} $$

    По формуле нахождения площади треугольника имеем:

    $$ S_Delta = frac{1}{2} |overline{a} times overline{b}| = frac{1}{2} sqrt{75} = 4.33 $$

    Ответ
    $$ S_Delta = 4.33 $$

    Определение векторного произведения

    Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

    Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

    Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

    Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

    вектор

    Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

    Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

    Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

    Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

    Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

    Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

    тройка векторов

    Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

    Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

    тройка векторов рис2

    В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

    И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

    Еще не устали от теории? Онлайн-школа Skysmart предлагает
    обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

    Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

    Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

    Векторным произведением вектора

    Векторное произведение двух векторов a = {ax; ay; az} и b = {bx; by; bz} в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

    Векторное произведение векторов →a и →b обозначается как [→a • →b].

    Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

    правая тройка векторов

    Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

    Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

    • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
    • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
    • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

    Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

    Альтернативный текст для изображения

    Узнай, какие профессии будущего тебе подойдут

    Пройди тест — и мы покажем, кем ты можешь стать, а ещё пришлём подробный гайд, как реализовать себя уже сейчас

    Узнай, какие профессии будущего тебе подойдут

    Координаты векторного произведения

    Рассмотрим векторное произведение векторов в координатах.

    Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

    В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

    Координаты векторного произведения

    , где

    →i, →j, →k — координатные векторы.

    Это определение показывает нам векторное произведение в координатной форме.

    Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

     векторное произведение в координатной форме

    Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

    равенство из определения векторного произведения в координатах

    Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

    Свойства векторного произведения

    Векторное произведение в координатах представляется в виде определителя матрицы:

    Свойства векторного произведения

    На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

    1. Антикоммутативность
      Антикоммутативность
    2. Свойство дистрибутивности
      Свойство дистрибутивности

      или

      Свойство дистрибутивности рис2

    3. Сочетательное свойство
      Сочетательное свойство

      или

      Сочетательное свойство рис 2

      , где λ произвольное действительное число.

    Для большей ясности докажем свойство антикоммутативности векторного произведения.

    По определению

     антикоммутативности векторного произведения

    и

    антикоммутативности векторного произведения рис 2

    Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

    значение определителя матрицы изменяется на противоположное, если переставить местами две строки

    что доказывает свойство антикоммутативности векторного произведения.

    Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

    Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

     

    Примеры решения задач

    Пример 1

    а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

    б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

    Как решаем:

    а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

    пример решения

    Ответ:

    ответ 1

    Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

    б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

    пример решения 2

    Ответ:

    ответ 2

    Пример 2

    Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

    Как решаем:

    По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

    формула

    Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

    Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

    Ответ:

    ответ3

    Пример 3

    Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

    Как решаем:

    Сначала найдём векторы:

    найдем векторы

    Затем векторное произведение:

    найдем векторное произведение

    Вычислим его длину:

    длинна векторного произведения

    Подставим данные в формулы площадей параллелограмма и треугольника:

    формула 2

    Ответ:

    ответ4

    Геометрический смысл векторного произведения

    По определению длина векторного произведения векторов равна

    Геометрический смысл векторного произведения

    А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

    Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

    геометрический смысл векторного произведения

    Физический смысл векторного произведения

    В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

    Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

    Физический смысл векторного произведения

    Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

    Вектор линейной скорости

    Автор статьи

    Любовь Петровна Гаврилюк

    Эксперт по предмету «Геометрия»

    Задать вопрос автору статьи

    Угол между векторами

    Для того чтобы мы могли ввести понятие векторного произведения двух векторов, нужно сначала разобраться с таким понятие, как угол между этими векторами.

    Пусть нам даны два вектора $overline{α}$ и $overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline{α}=overline{OA}$ и $overline{β}=overline{OB}$, тогда угол $AOB$ будет называться углом между этими векторами (рис. 1).

    Угол между векторами. Автор24 — интернет-биржа студенческих работ

    Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

    Логотип baranka

    Сдай на права пока
    учишься в ВУЗе

    Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

    Получить скидку 3 000 ₽

    Причем мы будем считать, что если векторы $overline{α}$ и $overline{β}$ будут сонаправленными, или один или оба из них нулевой, то угол между этими векторами будет равен $0^circ$.

    Обозначение: $∠(overline{α},overline{β})$

    Понятие векторного произведения векторов и формула нахождения

    Определение 1

    Векторным произведением двух векторов называется вектор, перпендикулярный обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.

    Обозначение: $overline{α}хoverline{β}$.

    Математически это выглядит следующим образом:

    1. $|overline{α}хoverline{β}|=|overline{α}||overline{β}|sin⁡∠(overline{α},overline{β})$
    2. $overline{α}хoverline{β}⊥overline{α}$, $overline{α}хoverline{β}⊥overline{β}$
    3. $(overline{α}хoverline{β},overline{α},overline{β})$ и $(overline{i},overline{j},overline{k})$ одинаково ориентированы (рис. 2)

    «Как найти векторное произведение векторов» 👇

    Произведение векторов. Автор24 — интернет-биржа студенческих работ

    Рисунок 2. Произведение векторов. Автор24 — интернет-биржа студенческих работ

    Очевидно, что внешнее произведение векторов будет равняться нулевому вектору в двух случаях:

    1. Если длина одного или обоих векторов равняется нулю.
    2. Если угол между этими векторами будет равняться $180^circ$ или $0^circ$ (так как в этом случае синус равняется нулю).

    Чтобы наглядно увидеть, как находится векторное произведение векторов, рассмотрим следующие примеры решения.

    Пример 1

    Найти длину вектора $overline{δ}$, который будет являться результатом векторного произведения векторов, с координатами $overline{α}=(0,4,0)$ и $overline{β}=(3,0,0)$.

    Решение.

    Изобразим эти векторы в декартовом координатном пространстве (рис. 3):

    Векторы в декартовом координатном пространстве.  Автор24 — интернет-биржа студенческих работ

    Рисунок 3. Векторы в декартовом координатном пространстве. Автор24 — интернет-биржа студенческих работ

    Видим, что эти векторы лежат на осях $Ox$ и $Oy$, соответственно. Следовательно, угол между ними будет равняться $90^circ$. Найдем длины этих векторов:

    $|overline{α}|=sqrt{0+16+0}=4$

    $|overline{β}|=sqrt{9+0+0}=3$

    Тогда, по определению 1, получим модуль $|overline{δ}|$

    $|overline{δ}|=|overline{α}||overline{β}|sin90^circ=4cdot 3cdot 1=12$

    Ответ: $12$.

    Вычисление векторного произведения по координатам векторов

    Из определения 1 сразу же вытекает и способ нахождения векторного произведения для двух векторов. Поскольку вектор кроме значения имеет еще и направление, находить его только при помощи скалярной величины невозможно. Но помимо него существует еще способ нахождения с помощью координат данных нам векторов.

    Пусть нам даны векторы $overline{α}$ и $overline{β}$, которые будут иметь координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно. Тогда вектор векторного произведения (а именно его координаты) можно найти по следующей формуле:

    $overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}$

    Иначе, раскрывая определитель, получим следующие координаты

    $overline{α}хoverline{β}=(α_2 β_3-α_3 β_2,α_3 β_1-α_1 β_3,α_1 β_2-α_2 β_1)$

    Пример 2

    Найти вектор векторного произведения коллинеарных векторов $overline{α}$ и $overline{β}$ с координатами $(0,3,3)$ и $(-1,2,6)$.

    Решение.

    Воспользуемся формулой, приведенной выше. Получим

    $overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\0&3&3\-1&2&6end{vmatrix}=(18-6)overline{i}-(0+3)overline{j}+(0+3)overline{k}=12overline{i}-3overline{j}+3overline{k}=(12,-3,3)$

    Ответ: $(12,-3,3)$.

    Свойства векторного произведения векторов

    Для произвольных смешанных трех векторов $overline{α}$, $overline{β}$ и $overline{γ}$, а также $r∈R$ справедливы следующие свойства:

    1. $overline{α}хoverline{β}=-(overline{β}хoverline{α})$

      Верность этого свойства будет следовать из третьего пункта определения 1.

    2. $(roverline{α})хoverline{β}=r(overline{α}хoverline{β})$ и $overline{α}х(roverline{β})=r(overline{α}хoverline{β})$

      Из формулы для нахождения векторного произведения будем получать:

      $(roverline{α})overline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\rα_1&rα_2&rα_3\β_1&β_2&β_3end{vmatrix}=rbegin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}=r(overline{α}хoverline{β})$

      $overline{α}х(roverline{β})=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\rβ_1&rβ_2&rβ_3end{vmatrix}=rbegin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}=r(overline{α}хoverline{β})$

    3. $overline{α}х(overline{β}+overline{γ})=overline{α}overline{β}+overline{α}overline{γ}$ и $(overline{α}+overline{β})overline{γ}=overline{α}overline{γ}+overline{β}overline{γ}$.

      Данное свойство векторного произведения векторов также можно проверить с помощью формулы.

      Следующее свойство называют геометрическим смыслом векторного произведения:

    4. Длина вектора векторного произведения равняется площади параллелограмма, который нужно было построить между ними (рис. 4)

      Длина вектора векторного произведения. Автор24 — интернет-биржа студенческих работ

      Рисунок 4. Длина вектора векторного произведения. Автор24 — интернет-биржа студенческих работ

    Пример 3

    Найдите площадь параллелограмма, вершины которого имеют координаты $(3,0,0)$, $(0,0,0)$, $(0,8,0)$ и $(3,8,0)$.

    Решение.

    Вначале изобразим данный параллелограмм в координатном пространстве (рис.5):

    Параллелограмм в координатном пространстве. Автор24 — интернет-биржа студенческих работ

    Рисунок 5. Параллелограмм в координатном пространстве. Автор24 — интернет-биржа студенческих работ

    Видим, что две стороны этого параллелограмма построены с помощью коллинеарных векторов с координатами $overline{α}=(3,0,0)$ и $overline{β}=(0,8,0)$. Используя четвертое свойство, получим:

    $S=|overline{α}хoverline{β}|$

    Найдем вектор $overline{α}хoverline{β}$:

    $overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\3&0&0\0&8&0end{vmatrix}=0overline{i}-0overline{j}+24overline{k}=(0,0,24)$

    Следовательно

    $S=|overline{α}хoverline{β}|=sqrt{0+0+24^2}=24$

    Ответ: $24$.

    Находи статьи и создавай свой список литературы по ГОСТу

    Поиск по теме

    Содержание:

    • Формула
    • Примеры вычисления векторного произведения векторов

    Формула

    Для того чтобы найти векторное произведение
    $[bar{a}, bar{b}]$ двух векторов, заданных своими координатами
    $bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$ и
    $bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$ соответственно, необходимо
    вычислить следующий определитель

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z}end{array}right|$$

    Обычно такой определитель вычисляют разложением по первой строке. Отметим также, что результатом векторного произведения является вектор.

    Примеры вычисления векторного произведения векторов

    Пример

    Задание. Найти векторное произведение векторов
    $bar{a}=(1 ; 0 ; 0)$ и $bar{b}=(0 ; 1 ; 0)$

    Решение. Для вычисления векторного произведения заданных векторов воспользуемся формулой

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z}end{array}right|$$

    Подставляя координаты заданных векторов, получим:

    $$[bar{a}, bar{b}]=left|begin{array}{lll}bar{i} & bar{j} & bar{k} \ 1 & 0 & 0 \ 0 & 1 & 0end{array}right|$$

    Раскладываем определитель по первой строке:

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ 1 & 0 & 0 \ 0 & 1 & 0end{array}right|=$$
    $$=bar{i} cdotleft|begin{array}{cc}0 & 0 \ 1 & 0end{array}right|-bar{j} cdotleft|begin{array}{cc}1 & 0 \ 0 & 0end{array}right|+bar{k} cdotleft|begin{array}{cc}1 & 0 \ 0 & 1end{array}right|=$$
    $$=0 cdot bar{i}-0 cdot bar{j}+1 cdot k$$

    Первые два определителя равны нулю, так как они содержат нулевой столбец, а третий определитель вычисляем
    как определитель второго порядка: от произведения элементов главной диагонали отнимаем произведение элементов побочной.

    Итак, координаты искомого вектора равны коэффициентам при ортах, то есть

    $$[bar{a}, bar{b}]=(0 ; 0 ; 1)$$

    Ответ. $[bar{a}, bar{b}]=(0 ; 0 ; 1)$

    236

    проверенных автора готовы помочь в написании работы любой сложности

    Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

    Пример

    Задание. Даны векторы
    $bar{a}=(5 ; 3 ;-4)$ и $bar{b}=(6 ; 7 ;-8)$ . Найти координаты векторного произведения
    $[bar{a}, bar{b}]$

    Решение. Координаты векторного произведения
    $[bar{a}, bar{b}]$ вычисляются по формуле

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z}end{array}right|$$

    Подставляя координаты заданных векторов, получим:

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ 5 & 3 & -4 \ 6 & 7 & -8end{array}right|$$

    Раскладываем полученный определитель по первой строке:

    $$=bar{i} cdotleft|begin{array}{cc}3 & -4 \ 7 & -8end{array}right|-bar{j} cdotleft|begin{array}{cc}5 & -4 \ 6 & -8end{array}right|+bar{k} cdotleft|begin{array}{cc}5 & 3 \ 6 & 7end{array}right|=$$
    $$=[3 cdot(-8)-7 cdot(-4)] cdot bar{i}-[5 cdot(-8)-6 cdot(-4)] cdot bar{j}+$$
    $$+[5 cdot 7-6 cdot 3] cdot bar{k}=(-24+28) bar{i}-(-40+24) bar{j}+(35-18) bar{k}=$$
    $$=4 cdot bar{i}+16 cdot bar{j}+17 cdot bar{k}$$

    Тогда

    $$[bar{a}, bar{b}]=(4 ; 16 ; 17)$$

    Ответ. $[bar{a}, bar{b}]=(4 ; 16 ; 17)$

    Читать дальше: как найти смешанное произведение векторов.

    Что такое произведение векторов

    Определение

    Векторное произведение двух векторов в трёхмерном евклидовом пространстве — вектор, перпендикулярный обоим исходным векторам, длина которого равна площади параллелограмма, образованного исходными векторами.

    Это одна из основных операций над векторами в векторной алгебре. Вектор, в отличие от обычного отрезка, имеет не только длину, но и направление в пространстве.

    Основные типы перемножения векторов

    В математике есть два основных вида умножения векторов: скалярное и векторное. Результатом первого является число, результатом второго — вектор. Оба произведения применяются к двум векторам. Также выделяют смешанное произведение векторов, которое является комбинацией двух вышеописанных. Оно применяется, когда необходимо узнать результат умножения трех векторов.

    Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

    Скалярное

    Определение

    Скалярным произведением двух векторов называется число (скаляр), равное произведению длин этих векторов на косинус угла между ними. Длина вектора является его модулем.

    Записывается скалярное произведение двумя способами: ( (overline a,;overline b) ) или ( overline acdotoverline b.)

    Алгебраические свойства скалярного произведения

    1. Перестановочность. Произведение не меняется от перемены мест множителей: (overline acdotoverline b=overline bcdotoverline a.)
    2. Сочетательность относительно числа. Умножение одного из векторов на число равносильно умножению обоих векторов на это число: ((lambdaoverline a)cdotoverline b=lambda(overline acdotoverline b)(lambdaoverline a)cdot(muoverline b)=(lambdamu)(overline acdotoverline b).)
    3. Распределительный закон. Скалярное произведение суммы двух векторов на третий равносильно сумме скалярных произведений этих векторов на третий вектор: ((overline a+overline b)cdotoverline c=overline acdotoverline c+overline bcdotoverline c.)

    Примечание

    Таким образом, при выполнении алгебраических действий, связанных со скалярным произведением, с векторами можно обращаться как с числами.

    Геометрические свойства скалярного умножения

    1. Скалярное произведение вектора на него же равняется квадрату его модуля: (overline acdotoverline a=overline a^2=overline{left|aright|}cdotoverline{left|aright|}cdotcosleft(0right)=left|overline a^2right|.)
    2. Если угол между векторами острый (меньше (90^circ)), то скалярное произведение этих векторов больше нуля.
    3. Если угол между векторами тупой (больше (90^circ)), то их скалярное произведение меньше нуля.
    4. Если вектора перпендикулярны (угол равен (90^circ)), то их скалярное произведение будет равняться нулю.
    5. Если координаты перемножаемых векторов известны, то их скалярное произведение будет равняться сумме произведений соответствующих координат:( overline acdotoverline b=a_xcdot b_x+a_ycdot b_y+a_zcdot b_z.)

    Геометрический смысл

    Скалярное произведение двух векторов равно произведению модуля одного из них на проекцию второго вектора на первый.

    (overline acdotoverline b=left|overline aright|cdot пр_overline aoverline b=overline{left|bright|}cdot пр_overline boverline a)

    (пр_overline boverline a=frac{overline acdotoverline b}{left|overline bright|})

    Физический смысл

    Скалярное произведение применяется для расчета работы, выполняемой при перемещении материальной точки вдоль вектора (overline s) под действием силы (overline F), приложенной под некоторым углом (varphi.)

    Физический смысл скалярного произведения

     

    Рисунок 1. Физический смысл скалярного произведения

    Силу (overline F) необходимо разложить на ортогональные компоненты (overline{F_1}) и (overline{F_2}.) Тогда (overline{F_1}) будет являться проекцией силы (overline F) на вектор (overline s:)

    (left|overline{F_1}right|=left|overline Fright|cdotcosleft(varphiright).)

    В свою очередь, работа A вычисляется по формуле:

    (A=left|overline{F_1}right|cdotleft|overline Sright|.)

    Соединив данные формулы получим:

    (A=left|overline Fright|cdotleft|overline Sright|cdotcosleft(varphiright),)

    что является скалярным произведением векторов (overline F) и (overline s:)

    (A=overline Fcdotoverline S.)

    Векторное

    Определение

    Векторным произведением векторов overline a и overline b называют перпендикулярный им вектор overline c из правой тройки, модуль которого равняется произведению модулей векторов overline a и overline b на синус угла между ними.

    Упорядоченная тройка некомпланарных векторов называется правой, если с конца третьего вектора кратчайший поворот от первого ко второму совершается против часовой стрелки. В противном случае такая тройка называется левой.

    Три вектора называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.

    Векторное произведение может выражаться в записи двумя способами: (overline atimesoverline b) и (lbrackoverline a,overline brbrack.)

    Алгебраические свойства

    1. Антиперестановочность. В отличие от скалярного произведения, в векторном при перемене мест множителей знак меняется на противоположный: (overline atimesoverline b=-(overline btimesoverline a))
    2. Сочетательность относительно числа. Как и в случае со скалярным умножением, произведение числа на один из векторов равняется произведению его на другой или на оба вектора: ((lambdaoverline a)timesoverline b=overline atimes(lambdaoverline b)=lambda(overline atimesoverline b).)
    3. Распределительный закон. Векторное произведение суммы двух векторов на третий равносильно сумме векторных произведений этих векторов на третий вектор: ((overline a+overline b)timesoverline c=overline atimesoverline c+overline btimesoverline c.)

    Из этого следует, что при выполнении алгебраических действий, связанных с векторным произведением, скобки можно раскрывать так же, как при работе с числами, с поправкой на правило антиперестановочности.

    Геометрические свойства

    1. Если вектора (overline a) и (overline b) параллельны, то их векторное произведение равняется нулю.
    2. Векторное произведение векторов с известными координатами выражается в матричном виде: (overline atimesoverline b=begin{vmatrix}i&j&k\a_x&a_y&a_z\b_x&b_y&b_zend{vmatrix}=left(begin{vmatrix}a_y&a_z\b_y&b_zend{vmatrix};;-begin{vmatrix}a_x&a_z\b_x&b_zend{vmatrix};;begin{vmatrix}a_x&a_y\b_x&b_yend{vmatrix}right).)

    Геометрический смысл

    Модуль векторного произведения двух векторов равняется площади параллелограмма, сторонами которого являются эти вектора.

    Геометрический смысл векторного произведения

     

    Рисунок 2. Геометрический смысл векторного произведения

    Из определения векторного умножения следует, что модуль полученного вектора равняется произведению модулей исходных векторов на синус угла между ними:

    (left|overline cright|=left|overline aright|cdotleft|overline bright|cdotsinleft(varphiright))

    Площадь параллелограмма вычисляется так:

    (S=left|overline aright|cdot h, где h=left|overline bright|cdotsinleft(varphiright).)

    Таким образом, получаем:

    (S=left|overline aright|cdotleft|overline bright|cdotsinleft(varphiright)=left|overline atimesoverline bright|)

    Отсюда следует формула для площади треугольника:

    (S_bigtriangleup=frac12left|overline atimesoverline bright|)

    Физический смысл

    В физике векторное произведение применяется для расчета момента силы, приложенной к одной точке относительно другой:

    (overline M=overline{AB}timesoverline F)

    Смешанное умножение векторов

    Фактически, смешанное произведение векторов представляется как скалярное умножение одного вектора на векторное произведение двух других. Результатом смешанного произведения является число.

    Свойства смешанного умножения

    1. ((overline atimesoverline b)cdotoverline c=overline acdot(overline btimesoverline c)=overline acdotoverline bcdotoverline c.)
    2. Если (overline acdotoverline bcdotoverline c) больше нуля, тройка векторов — правая.
    3. Если( overline acdotoverline bcdotoverline c) меньше нуля, тройка векторов — левая.
    4. Если вектора (overline a, overline b) и (overline c) компланарны, то их смешанное произведение равняется нулю.

    Геометрический смысл

    Если вектора overline a, overline b и overline c не компланарны, то их смешанное произведение равно объему параллелепипеда, построенного на этих векторах. Число будет положительным, если тройка векторов правая, и отрицательным, если тройка левая.

    (V_{пар.}=overline acdotoverline bcdotoverline c)

    Следствием этого является формула нахождения объема пирамиды:

    (V_{пир.}=frac16left(overline acdotoverline bcdotoverline cright))

    Произведение векторов, примеры и решения

    Задача №1

    Даны вектора (overline a=(-1,;0,;3) и overline b=(2,;-3,;1).)

    Найти их скалярное произведение.

    Решение

    Возьмем формулу скалярного произведения для векторов с известными координатами:

    (overline acdotoverline b=a_xcdot b_x+a_ycdot b_y+a_zcdot b_z) и подставим имеющиеся значения:

    (overline acdotoverline b=(-1)cdot2+0cdot(-3)+3cdot1=1)

    Задача №2

    Найти площадь треугольника с известными координатами угловых точек

    Задача №2

     

    Координаты точек: (A(-1,;2,;3), B(0,;-2,;1), C(1,;2,;1))

    Решение

    Для решения этой простейшей задачи из геометрии воспользуемся следствием геометрического смысла векторного произведения:

    (S_bigtriangleup=frac12left|overline atimesoverline bright|)

    В данном случае треугольник построен на векторах( overline{AB}) и (overline{AC}). Чтобы рассчитать их координаты, необходимо вычесть из координат конечной точки координаты начальной:

    (overline{AB}=(0-(-1),;(-2)-2,;1-3)=(1,;-4,;-2))

    (overline{AC}=(1-(-1),;2-2,;1-3)=(2,;0,;-2))

    Векторное произведение векторов с известными координатами выполняется в матричном виде:

    (overline atimesoverline b=begin{vmatrix}i&j&k\a_x&a_y&a_z\b_x&b_y&b_zend{vmatrix}=left(begin{vmatrix}a_y&a_z\b_y&b_zend{vmatrix};;-begin{vmatrix}a_x&a_z\b_x&b_zend{vmatrix};;begin{vmatrix}a_x&a_y\b_x&b_yend{vmatrix}right))

    Подставляем значения векторов( overline{AB}) и (overline{AC}) в матрицу и производим вычисления:

    (overline{AB}timesoverline{AC}=begin{vmatrix}i&j&k\1&-4&-2\2&0&-2end{vmatrix}=left(ibegin{vmatrix}-4&-2\0&-2end{vmatrix};;-jbegin{vmatrix}1&-2\2&-2end{vmatrix};;kbegin{vmatrix}1&-4\2&0end{vmatrix}right)=8i-2j+8k)

    Подставляем полученное значение в формулу вычисления площади треугольника, учитывая, что в ней фигурирует модуль произведения:

    (S_bigtriangleup=frac12left|overline{AB}timesoverline{AC}right|=frac12sqrt{8^2+{(-2)}^2+8^2}=sqrt{132}=11.49)

    Понравилась статья? Поделить с друзьями:
  1. Как найти основание если известны его стороны
  2. Как найти семью в англии
  3. Как найти векторные линии поля онлайн
  4. Как найти цвет в indesign
  5. Секрет как найти работы