Как найти произведение векторов по координатам точек

Векторное произведение векторов

Определение

Определение

Векторным произведением векторов $ overline{a} $ и $ overline{b} $ является вектор $ overline{c} $, который расположен перпендикулярно к плоскости, образуемой векторами $ overline{a} $ и $ overline{b} $. Само произведение обозначается как $ [overline{a},overline{b}] $, либо $ overline{a} times overline{b} $.

векторное произведение векторов

Векторное произведение векторов, формула которого зависит от исходных данных задачи, можно найти двумя способами.

Формула

Формула 1

Если известен синус угла между векторами $ overline{a} $ и $ overline{b} $, то найти векторное произведение векторов можно по формуле:

$$ [overline{a},overline{b}] = |overline{a}| cdot |overline{b}| cdot sin (overline{a},overline{b}) $$

Формула 2

В случае когда векторы $ overline{a} $ и $ overline{b} $ заданы в координатной форме, то их произведение определяется по формуле:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 end{vmatrix} $$

где векторы $ overline{i},overline{j},overline{k} $ называются единичными векторами соответствующих осей $ Ox, Oy, Oz $.

Определитель во второй формуле можно раскрыть по первой строке:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ a_1 & a_2 & a_3 \ b_1 & b_2 & b_3 end{vmatrix} = overline{i} (a_2 b_3 — a_3 b_2) — overline{j} (a_1 b_3 — a_3 b_1) + overline{k} (a_1 b_2 — a_2 b_1) $$

Итого вторая формула приобретает окончательный короткий вид:

$$ overline{a} times overline{b} = (a_2 b_3 — a_3 b_2; a_3 b_1 — a_1 b_3; a_1 b_2 — a_2 b_1) $$

Свойства

  1. При изменении порядка множителей меняется знак на противоположный: $$ [overline{a},overline{b}] = -[overline{b},overline{a}] $$
  2. Вынос константы за знак произведения: $$ lambda [overline{a},overline{b}] = [lambda overline{a}, overline{b}] = [overline{a}, lambda overline{b}] $$
  3. $$ [overline{a}+overline{b}, overline{c}] = [overline{a},overline{c}] + [overline{b}, overline{c}] $$

Примеры решений

Пример 1

Найти векторное произведение векторов, заданных координатами

$$ overline{a} = (2,1,-3) $$ $$ overline{b} = (1,2,-1) $$

Решение

Составляем определитель, первая строка которого состоит из единичных векторов, а вторая и третья из координат векторов $ overline{a} $ и $ overline{b} $:

$$ overline{a} times overline{b} = begin{vmatrix} overline{i} & overline{j} & overline{k} \ 2&1&-3\1&2&-1 end{vmatrix} = overline{i} (-1+6) — overline{j}(-2+3) + overline{k}(4-1) = 5overline{i} — overline{j} + 3overline{k} $$

Полученный ответ можно записать в удобном виде:

$$ overline{a} times overline{b} = (5, -1, 3) $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ overline{a} times overline{b} = (5, -1, 3) $$

Геометрический смысл

  • Модуль векторного произведения векторов $ overline{a} $ и $ overline{b} $ в геометрическом смысле равен площади параллелограмма, построенного на этих векторах: $$ S_{parall} = |overline{a} times overline{b}| $$
  • Половина этого модуля это площадь треугольника: $$ S_Delta = frac{1}{2} |overline{a} times overline{b} | $$
  • Если векторное произведение равно нулю $ overline{a} times overline{b} = 0 $, то векторы коллинеарны.

 

    Пример 2
    Найти площадь треугольника по заданным векторам $$ overline{a} = (2,1,3) $$ $$ overline{b} = (-1,2,1) $$
    Решение

    Используя геометрический смысл, в частности вторую формулу находим половину модуля векторного произведения векторов.

    Находим определитель:

    $$ begin{vmatrix} overline{i}&overline{j}&overline{k}\2&1&3\-1&2&1 end{vmatrix} = overline{i}(1-6) — overline{j}(2+3) + overline{k}(4+1) = -5overline{i} — 5overline{j} + 5overline{k} $$

    Вычисляем модуль полученного вектора как корень квадратный из суммы квадратов координат этого вектора:

    $$ |overline{a} times overline{b}| = sqrt{(-5)^2 + (-5)^2 + 5^2} = sqrt{25 + 25 + 25} = sqrt{75} $$

    По формуле нахождения площади треугольника имеем:

    $$ S_Delta = frac{1}{2} |overline{a} times overline{b}| = frac{1}{2} sqrt{75} = 4.33 $$

    Ответ
    $$ S_Delta = 4.33 $$
    Автор статьи

    Любовь Петровна Гаврилюк

    Эксперт по предмету «Геометрия»

    Задать вопрос автору статьи

    Угол между векторами

    Для того чтобы мы могли ввести понятие векторного произведения двух векторов, нужно сначала разобраться с таким понятие, как угол между этими векторами.

    Пусть нам даны два вектора $overline{α}$ и $overline{β}$. Возьмем в пространстве какую-либо точку $O$ и отложим от нее векторы $overline{α}=overline{OA}$ и $overline{β}=overline{OB}$, тогда угол $AOB$ будет называться углом между этими векторами (рис. 1).

    Угол между векторами. Автор24 — интернет-биржа студенческих работ

    Рисунок 1. Угол между векторами. Автор24 — интернет-биржа студенческих работ

    Причем мы будем считать, что если векторы $overline{α}$ и $overline{β}$ будут сонаправленными, или один или оба из них нулевой, то угол между этими векторами будет равен $0^circ$.

    Обозначение: $∠(overline{α},overline{β})$

    Понятие векторного произведения векторов и формула нахождения

    Определение 1

    Векторным произведением двух векторов называется вектор, перпендикулярный обоим данным векторам, и его длина будет равняться произведению длин этих векторов с синусом угла между данными векторами, а также этот вектор с двумя начальными имеют туже ориентацию, как и декартова система координат.

    Обозначение: $overline{α}хoverline{β}$.

    Математически это выглядит следующим образом:

    1. $|overline{α}хoverline{β}|=|overline{α}||overline{β}|sin⁡∠(overline{α},overline{β})$
    2. $overline{α}хoverline{β}⊥overline{α}$, $overline{α}хoverline{β}⊥overline{β}$
    3. $(overline{α}хoverline{β},overline{α},overline{β})$ и $(overline{i},overline{j},overline{k})$ одинаково ориентированы (рис. 2)

    «Как найти векторное произведение векторов» 👇

    Произведение векторов. Автор24 — интернет-биржа студенческих работ

    Рисунок 2. Произведение векторов. Автор24 — интернет-биржа студенческих работ

    Очевидно, что внешнее произведение векторов будет равняться нулевому вектору в двух случаях:

    1. Если длина одного или обоих векторов равняется нулю.
    2. Если угол между этими векторами будет равняться $180^circ$ или $0^circ$ (так как в этом случае синус равняется нулю).

    Чтобы наглядно увидеть, как находится векторное произведение векторов, рассмотрим следующие примеры решения.

    Пример 1

    Найти длину вектора $overline{δ}$, который будет являться результатом векторного произведения векторов, с координатами $overline{α}=(0,4,0)$ и $overline{β}=(3,0,0)$.

    Решение.

    Изобразим эти векторы в декартовом координатном пространстве (рис. 3):

    Векторы в декартовом координатном пространстве.  Автор24 — интернет-биржа студенческих работ

    Рисунок 3. Векторы в декартовом координатном пространстве. Автор24 — интернет-биржа студенческих работ

    Видим, что эти векторы лежат на осях $Ox$ и $Oy$, соответственно. Следовательно, угол между ними будет равняться $90^circ$. Найдем длины этих векторов:

    $|overline{α}|=sqrt{0+16+0}=4$

    $|overline{β}|=sqrt{9+0+0}=3$

    Тогда, по определению 1, получим модуль $|overline{δ}|$

    $|overline{δ}|=|overline{α}||overline{β}|sin90^circ=4cdot 3cdot 1=12$

    Ответ: $12$.

    Вычисление векторного произведения по координатам векторов

    Из определения 1 сразу же вытекает и способ нахождения векторного произведения для двух векторов. Поскольку вектор кроме значения имеет еще и направление, находить его только при помощи скалярной величины невозможно. Но помимо него существует еще способ нахождения с помощью координат данных нам векторов.

    Пусть нам даны векторы $overline{α}$ и $overline{β}$, которые будут иметь координаты $(α_1,α_2,α_3)$ и $(β_1,β_2,β_3)$, соответственно. Тогда вектор векторного произведения (а именно его координаты) можно найти по следующей формуле:

    $overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}$

    Иначе, раскрывая определитель, получим следующие координаты

    $overline{α}хoverline{β}=(α_2 β_3-α_3 β_2,α_3 β_1-α_1 β_3,α_1 β_2-α_2 β_1)$

    Пример 2

    Найти вектор векторного произведения коллинеарных векторов $overline{α}$ и $overline{β}$ с координатами $(0,3,3)$ и $(-1,2,6)$.

    Решение.

    Воспользуемся формулой, приведенной выше. Получим

    $overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\0&3&3\-1&2&6end{vmatrix}=(18-6)overline{i}-(0+3)overline{j}+(0+3)overline{k}=12overline{i}-3overline{j}+3overline{k}=(12,-3,3)$

    Ответ: $(12,-3,3)$.

    Свойства векторного произведения векторов

    Для произвольных смешанных трех векторов $overline{α}$, $overline{β}$ и $overline{γ}$, а также $r∈R$ справедливы следующие свойства:

    1. $overline{α}хoverline{β}=-(overline{β}хoverline{α})$

      Верность этого свойства будет следовать из третьего пункта определения 1.

    2. $(roverline{α})хoverline{β}=r(overline{α}хoverline{β})$ и $overline{α}х(roverline{β})=r(overline{α}хoverline{β})$

      Из формулы для нахождения векторного произведения будем получать:

      $(roverline{α})overline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\rα_1&rα_2&rα_3\β_1&β_2&β_3end{vmatrix}=rbegin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}=r(overline{α}хoverline{β})$

      $overline{α}х(roverline{β})=begin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\rβ_1&rβ_2&rβ_3end{vmatrix}=rbegin{vmatrix}overline{i}&overline{j}&overline{k}\α_1&α_2&α_3\β_1&β_2&β_3end{vmatrix}=r(overline{α}хoverline{β})$

    3. $overline{α}х(overline{β}+overline{γ})=overline{α}overline{β}+overline{α}overline{γ}$ и $(overline{α}+overline{β})overline{γ}=overline{α}overline{γ}+overline{β}overline{γ}$.

      Данное свойство векторного произведения векторов также можно проверить с помощью формулы.

      Следующее свойство называют геометрическим смыслом векторного произведения:

    4. Длина вектора векторного произведения равняется площади параллелограмма, который нужно было построить между ними (рис. 4)

      Длина вектора векторного произведения. Автор24 — интернет-биржа студенческих работ

      Рисунок 4. Длина вектора векторного произведения. Автор24 — интернет-биржа студенческих работ

    Пример 3

    Найдите площадь параллелограмма, вершины которого имеют координаты $(3,0,0)$, $(0,0,0)$, $(0,8,0)$ и $(3,8,0)$.

    Решение.

    Вначале изобразим данный параллелограмм в координатном пространстве (рис.5):

    Параллелограмм в координатном пространстве. Автор24 — интернет-биржа студенческих работ

    Рисунок 5. Параллелограмм в координатном пространстве. Автор24 — интернет-биржа студенческих работ

    Видим, что две стороны этого параллелограмма построены с помощью коллинеарных векторов с координатами $overline{α}=(3,0,0)$ и $overline{β}=(0,8,0)$. Используя четвертое свойство, получим:

    $S=|overline{α}хoverline{β}|$

    Найдем вектор $overline{α}хoverline{β}$:

    $overline{α}хoverline{β}=begin{vmatrix}overline{i}&overline{j}&overline{k}\3&0&0\0&8&0end{vmatrix}=0overline{i}-0overline{j}+24overline{k}=(0,0,24)$

    Следовательно

    $S=|overline{α}хoverline{β}|=sqrt{0+0+24^2}=24$

    Ответ: $24$.

    Находи статьи и создавай свой список литературы по ГОСТу

    Поиск по теме

    Содержание:

    • Формула
    • Примеры вычисления векторного произведения векторов

    Формула

    Для того чтобы найти векторное произведение
    $[bar{a}, bar{b}]$ двух векторов, заданных своими координатами
    $bar{a}=left(a_{x} ; a_{y} ; a_{z}right)$ и
    $bar{b}=left(b_{x} ; b_{y} ; b_{z}right)$ соответственно, необходимо
    вычислить следующий определитель

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z}end{array}right|$$

    Обычно такой определитель вычисляют разложением по первой строке. Отметим также, что результатом векторного произведения является вектор.

    Примеры вычисления векторного произведения векторов

    Пример

    Задание. Найти векторное произведение векторов
    $bar{a}=(1 ; 0 ; 0)$ и $bar{b}=(0 ; 1 ; 0)$

    Решение. Для вычисления векторного произведения заданных векторов воспользуемся формулой

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z}end{array}right|$$

    Подставляя координаты заданных векторов, получим:

    $$[bar{a}, bar{b}]=left|begin{array}{lll}bar{i} & bar{j} & bar{k} \ 1 & 0 & 0 \ 0 & 1 & 0end{array}right|$$

    Раскладываем определитель по первой строке:

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ 1 & 0 & 0 \ 0 & 1 & 0end{array}right|=$$
    $$=bar{i} cdotleft|begin{array}{cc}0 & 0 \ 1 & 0end{array}right|-bar{j} cdotleft|begin{array}{cc}1 & 0 \ 0 & 0end{array}right|+bar{k} cdotleft|begin{array}{cc}1 & 0 \ 0 & 1end{array}right|=$$
    $$=0 cdot bar{i}-0 cdot bar{j}+1 cdot k$$

    Первые два определителя равны нулю, так как они содержат нулевой столбец, а третий определитель вычисляем
    как определитель второго порядка: от произведения элементов главной диагонали отнимаем произведение элементов побочной.

    Итак, координаты искомого вектора равны коэффициентам при ортах, то есть

    $$[bar{a}, bar{b}]=(0 ; 0 ; 1)$$

    Ответ. $[bar{a}, bar{b}]=(0 ; 0 ; 1)$

    236

    проверенных автора готовы помочь в написании работы любой сложности

    Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

    Пример

    Задание. Даны векторы
    $bar{a}=(5 ; 3 ;-4)$ и $bar{b}=(6 ; 7 ;-8)$ . Найти координаты векторного произведения
    $[bar{a}, bar{b}]$

    Решение. Координаты векторного произведения
    $[bar{a}, bar{b}]$ вычисляются по формуле

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z}end{array}right|$$

    Подставляя координаты заданных векторов, получим:

    $$[bar{a}, bar{b}]=left|begin{array}{ccc}bar{i} & bar{j} & bar{k} \ 5 & 3 & -4 \ 6 & 7 & -8end{array}right|$$

    Раскладываем полученный определитель по первой строке:

    $$=bar{i} cdotleft|begin{array}{cc}3 & -4 \ 7 & -8end{array}right|-bar{j} cdotleft|begin{array}{cc}5 & -4 \ 6 & -8end{array}right|+bar{k} cdotleft|begin{array}{cc}5 & 3 \ 6 & 7end{array}right|=$$
    $$=[3 cdot(-8)-7 cdot(-4)] cdot bar{i}-[5 cdot(-8)-6 cdot(-4)] cdot bar{j}+$$
    $$+[5 cdot 7-6 cdot 3] cdot bar{k}=(-24+28) bar{i}-(-40+24) bar{j}+(35-18) bar{k}=$$
    $$=4 cdot bar{i}+16 cdot bar{j}+17 cdot bar{k}$$

    Тогда

    $$[bar{a}, bar{b}]=(4 ; 16 ; 17)$$

    Ответ. $[bar{a}, bar{b}]=(4 ; 16 ; 17)$

    Читать дальше: как найти смешанное произведение векторов.

    Векторное произведение двух векторов a и b  – это  вектор, который перпендикулярен плоскости этих же обоим исходным векторам.

    Что такое векторное произведение векторов

    Изображение векторного произведения

    Рис. 1

    Алгебраические свойства векторного произведения

    Давайте рассмотрим свойства векторного произведения.

    Если   overline{a}, overline{b}, overline{c} – произвольные векторы, а lambda – произвольные число, тогда:

    1. overline{a} x overline{b} = -overline{b} x overline{a}. (Векторное произведение антикоммутативно).
    2. (lambdaoverline{a}) x overline{b} = overline{a} x (lambdaoverline{b}) = lambda(overline{a} x overline{b}).(Векторное произведение обладает сочетательным свойством относительно скалярного множителя).
    3. (overline{a} + overline{b}) x overline{c} = overline{a} x overline{c} + overline{b} x overline{c}.
    4. overline{a} x overline{b} = 0 Longleftrightarrow(overline{a}||overline{b}), overline{a}neq{0}, overline{b}neq{0}. (Два ненулевых вектора коллинеарны только тогда, когда их векторное произведение равно нулевому вектору).

    Таблица векторного умножения ортов

    overline{i} x overline{j} = overline{k}, overline{j} x overline{i} = -overline{k};

    overline{j} x overline{k} = overline{i}, overline{k} x overline{j} = -overline{i};

    overline{k} x overline{i} = overline{j}, overline{i} x overline{k} = -overline{j}.

    overline{i} x overline{i} = overline{j} x overline{j} = overline{k} x overline{k} = overline{0}.

    Векторное произведение ортов.

    Рис. 2

    Векторное произведение одноимённых ортов равняется overline{0}. При самом коротком повороте от одного орта к другому против часовой стрелки получаем третий орт, а по часовой стрелке – третий орт со знаком ``-``.

    Формулы векторного произведения в координатной форме

    Формулы векторного произведения в координатной форме получаем с учётом таблицы векторного произведения ортов:

    overline{a} x overline{b} = (x_{1}overline{i} + y_{1}overline{j} + z_{1}overline{k}) x (x_{2}overline{i} + y_{2}overline{j} + z_{2}overline{k}) = (y_{1}z_{2} - y_{2}z_{1}) x overline{i} - (x_{1}z_{2} - x_{2}z_{1}) x overline{j} + (x_{1}y_{2} - x_2y_1) x overline{k} =

    begin{vmatrix} y_{1}&z_{1}\ y_{2}&z_{2} end{vmatrix} x overline{i}begin{vmatrix} x_{1}&z_{1}\ x_{2}&z_{2}end{vmatrix} x overline{j} + begin{vmatrix} x_{1}&y_{1}\ x_{2}&y_{2} end{vmatrix} x overline{k}Longleftrightarrowoverline{a} x overline{b} = begin{vmatrix}overline{i}&overline{j}&overline{k}\x_{1}&y_{1}&z_{1}\x_{2}&y_{2}&z_{2} end{vmatrix} right

    Примеры нахождения векторного произведения

    Чтобы закрепить материал, рассмотрим на примерах, как найти векторное произведение векторов.

    Найти площадь треугольника A, B, C, если A(1, 2, -1), B(2, 3, 1), C(0, 1, 4).

    Решение:

    Сначала находим векторы:

    overline{AB} = (1, 5, 2) и overline{AC} = (-1, 3, 5) и их векторное произведение:

    overline{AB} x overline{AC} = begin{vmatrix}  overline{i}&overline{j}&overline{k}\  1&5&2\  -1&3&5  end{vmatrix} = 19overline{i} - 7overline{j} + 8overline{k}.

    Длина полученного вектора по определению численно равняется площади параллелограмма, построенного на данных векторах и поэтому:

    Sпар = |overline{AB} x overline{BC}| = sqrt{19^2 + (-7)^2 + 8^2} = sqrt{472}approx21,77.

    А площадь треугольника A, B, C составляет половину найденной площади, то есть:

    Sтр. = 1over{2} Sпар = 1over{2} x sqrt{472}approx1over{2} x 21,77approx10,89,

    Понравилась статья? Поделить с друзьями:
  1. Как найти количество символов в блокноте
  2. Как составить сложную таблицу в экселе
  3. Как найти сходящиеся ряды онлайн
  4. Как ребята смогли найти потерянное время
  5. Как найти сведения об имуществе