Как найти производительность вентилятора

Вентиляционные системы — неотъемлемая часть любого помещения. И, конечно, в них используется такой прибор, как вытяжной вентилятор. Без него просто не обойтись. Чтобы приобрести систему нужной мощности, обязательно надо сделать расчет производительности вытяжного вентилятора.

Расчет производительности вытяжного вентилятора

Содержание статьи

  • 1 Нормы и требования к вентиляции помещений
  • 2 Расчет производительности вытяжного вентилятора в жилых помещениях
    • 2.1 Определение объема помещения
    • 2.2 Пример расчета производительности для ванной с площадью 9 кв.м
  • 3 Подбор вентилятора по минимально необходимой производительности
    • 3.1 Что влияет на производительность устройства?
  • 4 Расчет производительности вентилятора для особых промышленных условий
    • 4.1 Учет количества людей, находящихся в помещении
    • 4.2 Повышенное количество влаги

Нормы и требования к вентиляции помещений

По нормам, установленным СНиП, при расчете производительности вентиляторов, кратность воздухообмена должна быть не менее 0,5 м3 в час для бытовых помещений.

Также есть определенные нормы для каждого типа жилых помещений.

  • Ванная комната, совмещенная с туалетом — 50 м3/час.
  • Ванная комната без туалета — 25 м3/час.
  • Туалет — 25 м3/час.
  • Кухня — от 60 до 90 м3/час (в зависимости от типа и мощности плиты).
  • Другие помещения — 3 м3/час на 1 м3.

Учитывая указанную кратность воздухообмена и объем помещения, рассчитывается общий расход и производительность вытяжного вентилятора.

Расчет производительности вытяжного вентилятора в жилых помещениях

Чтобы узнать, какой должна быть производительность вашей вытяжной системы, необходимо предпринять следующее:

  1. Узнать объем помещения.
  2. Умножаем объем на необходимую норму воздухообмена.
  3. Получившаяся цифра и есть необходимая нам производительность.
  4. Еще необходимо учесть сечение воздуховодов, изгибы, сопротивление фильтров, если они есть в системе вентиляции.

Формула для расчетов будет выглядеть так:

L = n*V,

где

  • L — требующаяся производительность, м3/час,
  • n — необходимая норма воздухообмена, м3/час,
  • V — объем помещения.

Например, рассчитаем производительность вытяжного вентилятора для трехкомнатной квартиры общей площадью 59 м2, с ванной, туалетом, кухней и мебелью. 59 м2 умножим на 3м (это высота), найдем объем. Он будет равен 177 м3.

Необходимая норма смены воздуха в час по СНиП — 10-12 раз в час. Умножим 177 на 12, получим 354 м3. Это и есть необходимая производительность. Но сюда нужно еще прибавить такие же расчеты по кухне, ванной и туалету. Это будет соответственно 108 м3, 144 м3 и 72 м3. Сложив все цифры, получим мощность нашей вытяжной системы — 678 м3/час.

Нужно будет учитывать, что каждый изгиб воздуховода снижает мощность, также и сопротивление фильтров.

Диаметр воздуховода влияет на его пропускную способность. Существует три наиболее распространенных размера:

  • 100 мм — для вентилятора небольшой мощности, который постоянно работает;
  • 125 мм — для эпизодического проветривания помещения вентиляцией малой и средней мощности;
  • 150 мм — быстрое нерегулярное проветривание помещений с малым количеством людей.

Определение объема помещения

Объем помещения найти несложно. Для этого нужно перемножить длину комнаты на ширину и высоту.

V = a*b*c

Пример расчета производительности для ванной с площадью 9 кв.м

Рассчитаем мощность и осуществим подбор вентилятора по производительности для ванной комнаты. Площадь 9 м2 умножим на высоту потолка 2,5, получим 22,5 м3. Это объем помещения.

Полностью воздух должен меняться каждые 5 минут, это 1/12 часа. Пропускная способность вентилятора будет равна — 22,5*12 = 270 м3.

Подбор вентилятора по минимально необходимой производительности

Нормы, которые требуются по расчетам, обычно завышены, и на практике не реализуются. На кухне или в ванной комнате во время приготовления пищи или принятия душа есть функция усиленной вытяжки. А для обеспечения минимальной установленной нормы достаточно хорошего притока воздуха и тяги в вентиляционном канале.

Чтобы рассчитать мощность вытяжного вентилятора, необходимо знать объем комнаты и необходимую норму воздухообмена.

Производительность равна произведению объема на кратность воздухообмена. Узнав, чему она равна, сравниваем ее с нормой по требованиям СНиП, и берем максимальное значение.

Если же нужно подобрать вентилятор по минимальной производительности, то берем минимальное требуемое значение.

Снизить расходы и подобрать вентилятор меньшей производительности можно, используя современные VAV-системы. Это вентиляционные системы, в которых возможна экономия энергии и воздухообмена путем полного или частичного отключения вентиляции некоторых помещений. Например, ночью в гостиной никого нет, поэтому можно временно отключить там вентиляцию.

Что влияет на производительность устройства?

Если смотреть на формулу расчета производительности, то она выглядит довольно простой. Но только расчеты по формуле не дают полного представления о том, какой именно вытяжной вентилятор подойдет в каком-то конкретном случае.

Есть еще некоторые факторы, влияющие на производительность устройства.

  1. Принцип работы. Вентиляция может работать в режиме отвода воздуха и в режиме рециркуляции. Рециркуляционные вытяжки имеют меньшую производительность, им требуется больше мощности.
  2. Расположение. От места, где находится вентилятор, также зависит его производительность. Например, на кухне вытяжка должна располагаться прямо над плитой на определенном расстоянии, иначе ее производительность будет снижена.
  3. Потребляемая мощность. Чем меньше вентилятор потребляет мощности, тем меньше расход электроэнергии.

    Самыми выгодными с этой точки зрения являются осевые вентиляторы.

Расчет производительности вентилятора для особых промышленных условий

Чтобы рассчитать необходимую производительность вентилятора для промышленных условий, нужно разработать техническое задание и определиться с некоторыми важными моментами.

  1. Место расположения объекта.
  2. Назначение помещения.
  3. Планировка и расположение внутри здания.
  4. Материал, из которого построено помещение.
  5. Количество людей, работающих на производстве.
  6. Режим работы и технология процессов.

После этого производятся необходимые расчеты. Причем необходимо учесть еще такие факторы, как скорость потока воздуха, уровень шума, длину и диаметр воздуховодов и их изгибы, давление системы. Скорость потока воздуха считается стандартной, когда она равна 2,5 — 4 м/с.

Учет количества людей, находящихся в помещении

Рассчитать необходимую мощность вентилятора можно и по другой формуле:

L = N*LH.

Этот расчет производится, учитывая количество людей в помещении.

  • L — необходимая мощность,
  • N — количество людей в помещении,
  • LH — норма воздуха на одного человека.

Норма воздуха в состоянии покоя составляет 30 м3/час, при физической активности — 60 м3/час.

Для жилых помещений используется показатель 60 м3/час, там, где человек отдыхает, например, спальня, допускается принять за норму 30 м3/час, так как во сне необходимо меньше кислорода.

За количество людей принимаются те люди, которые находятся в помещении постоянно. Если к вам пришли гости, не нужно из-за этого увеличивать мощность вентилятора.

Повышенное количество влаги

Оборудование ванной комнаты может отличаться от других видов вентиляции, так как там всегда повышенная влажность. Чтобы избежать короткого замыкания, необходимо использовать специальный брызгозащищенный вариант вентилятора. Он не позволит влаге попадать в воздуховод.

Современный рынок предлагает множество вариантов вытяжных вентиляторов. Они отличаются по производительности, потребляемой мощности, уровню шума, размерам и назначению. Выбрав необходимую вам модель, вы сможете обеспечить себя и близких вам людей свежим воздухом.

Апр 7, 2018

—> Аспирация и вентиляция. —>

Вентиляторы общего назначения применяют для работы на чистом воздухе, температура которого меньше 80 градусов. Для перемещения более горячего воздуха предназначены специальные термостойкие вентиляторы. Для работы в агрессивных и взрывоопасных средах выпускают специальные антикоррозионные и взрывобезопасные вентиляторы. Кожух и детали антикоррозионного вентилятора выполнены из материалов, не вступающих в химическую реакцию с коррозионными веществами перемещаемого газа. Взрывобезопасное исполнение исключает вероятность искрообразования внутри корпуса (кожуха) вентилятора и повышенного нагревания его частей во время работы. Для перемещения запылённого воздуха применяют специальные пылевые вентиляторы. Размеры вентиляторов характеризуются номером, который обозначает диаметр рабочего колеса вентилятора, выраженный в дециметрах.

По принципу действия вентиляторы подразделяются на центробежные (радиальные) и осевые. Центробежные вентиляторы низкого давления создают полное давление до 1000 Па; вентиляторы среднего давления – до 3000 Па; и вентиляторы высокого давления развивают давление от 3000 Па до 15000 Па.

Центробежные вентиляторы изготавливают с дисковым и бездисковым рабочим колесом:

Лопатки рабочего колеса крепятся между двумя дисками. Передний диск — в виде кольца, задний — сплошной. Лопасти-лопатки бездискового колеса крепятся к ступице. Спиральный кожух центробежного вентилятора устанавливают на самостоятельных опорах, или на станине, общей с электродвигателем.

Осевые вентиляторы характеризуются большой производительностью, но низким давлением, поэтому широко применяются в общеобменной вентиляции для перемещения больших объёмов воздуха при невысоком давлении. Если рабочее колесо осевого вентилятора состоит из симметричных лопаток, то вентилятор является реверсивным.

Схема осевого вентилятора:

Крышные вентиляторы изготавливаются осевые и радиальные; устанавливаются на крышах, на бесчердачном перекрытии зданий. Рабочее колесо и осевого, и радиального крышного вентилятора вращается в горизонтальной плоскости. Схемы работы осевого и радиального (центробежного) крышных вентиляторо в:

Осевые крышные вентиляторы применяют для общеобменной вытяжной вентиляции без сети воздуховодов. Радиальные крышные вентиляторы развивают более высокие давления, поэтому могут работать как без сети, так и с сетью подключенных к ним воздуховодов.

Подбор вентилятора по аэродинамическим характеристикам.

Для каждой вентиляционной системы, аспирационной или пневмотранспортной установки вентилятор подбирают индивидуально, используя графики аэродинамических характеристик нескольких вентиляторов. По давлению и расходу воздуха на каждом графике находят рабочую точку, которая определяет коэффициент полезного действия и частоту вращения рабочего колеса вентилятора. Сравнивая положение рабочей точки на разных характеристиках, выбирают тот вентилятор, который даёт наибольший кпд при заданных значениях давления и расхода воздуха.

Пример. Расчёт вентиляционной установки показал общие потери давления в системе Нс=2000 Па при требуемом расходе воздуха Q с=6000 м³/час. Подобрать вентилятор, способный преодолеть это сопротивление сети и обеспечить необходимую производительность.

Для подбора вентилятора его расчётное давление принимается с коэффициентом запаса k =1,1:

Нв= kHc ; Нв=1,1·2000=2200 (Па).

Расход воздуха рассчитан с учётом всех непродуктивных подсосов. Q в= Q с=6000 (м³/час). Рассмотрим аэродинамические характеристики двух близких номеров вентиляторов, в диапазон рабочих значений которых попадают значения расчётного давления и расхода воздуха проектируемой вентиляционной установки:

Аэродинамическая характеристика вентилятора 1 и вентилятора 2.

На пересечении величин Р v =2200 Па и Q =6000 м³/час указываем рабочую точку. Наибольший коэффициент полезного действия определяется на характеристике вентилятора 2: кпд=0,54; частота вращения рабочего колеса n =2280 об/мин; окружная скорость края колеса u

Окружная скорость рабочего колеса 1-го вентилятора ( u

38 м/сек) значительно меньше, значит, будут меньше создаваемые этим вентилятором шум и вибрация, выше эксплуатационная надёжность установки. Иногда предпочтение отдаётся более тихоходному вентилятору. Но рабочий коэффициент полезного действия вентилятора должен быть не ниже 0,9 его максимального кпд. Сравним ещё две аэродинамические характеристики, которые подходят для выбора вентилятора к той же вентиляционной установке:

Аэродинамические характеристики вентилятора 3 и вентилятора 4.

Коэффициент полезного действия вентилятора 4 близок к максимальному (0,59). Частота вращения его рабочего колеса n =2250 об/мин. Кпд 3-его вентилятора несколько ниже (0,575), но и частота вращения рабочего колеса существенно меньше: n =1700 об/мин. При небольшой разнице коэффициентов полезного действия 3-й вентилятор предпочтительнее. Если расчёт мощности привода и электродвигателя покажет близкие результаты для обоих вентиляторов, следует выбрать вентилятор 3.

Расчёт мощности, требуемой для привода вентилятора.

Мощность, которая требуется для привода вентилятора, зависит от создаваемого им давления H в (Па), перемещаемого объёма воздуха Q в (м³/сек) и коэффициента полезного действия кпд:

N в= H в ·Q в/1000·кпд (кВт); Нв=2200 Па; Q в=6000/3600=1,67 м³/сек.

Коэффициенты полезного действия предварительно подобранных по аэродинамическим характеристикам вентиляторов 1, 2, 3 и 4 соответственно: 0,49; 0,54; 0,575; 0,59.

Подставляя величину давления, расхода и кпд в формулу расчёта, получим следующие значения мощности для привода каждого вентилятора: 7,48 кВт, 6,8 кВт, 6,37 кВт, 6,22 кВт.

Расчёт мощности электродвигателя для привода вентилятора.

Мощность электродвигателя зависит от вида её передачи с вала двигателя на вал вентилятора, и учитывается в расчёте соответствующим коэффициентом ( k пер). Нет потерь мощности при непосредственной посадке рабочего колеса вентилятора на вал электродвигателя, т. е. кпд такой передачи равен 1. Кпд соединения валов вентилятора и электродвигателя с помощью муфты 0,98. Для достижения необходимой частоты вращения рабочего колеса вентилятора применяем клиноремённую передачу, коэффициент полезного действия которой 0,95. Потери в подшипниках учитываются коэффициентом k п=0,98. По формуле расчёта мощности электродвигателя:

N эл= N в / k пер· k п

получим следующие мощности: 8,0 кВт; 7,3 кВт; 6,8 кВт; 6,7 кВт.

Установочную мощность электродвигателя принимают с коэффициентом запаса k з=1,15 для двигателей мощностью менее 5 кВт; для двигателей более 5 кВт k з=1,1:

Конструкция

Простота сборки и доступность конструкционных элементов стали причиной того, что радиальные вентиляторы собираются не только в заводских условиях, но и в домашних. Ведь промышленная сборка, хотя и имеет гарантию качества, не всегда доступна по ценовому диапазону и в необходимой конфигурации для небольших жилых или подсобных помещений.

Конструкция стандартного центробежного вентилятора предусматривает обязательное наличие:

  1. Всасывающего патрубка, в который поступают отработанные газо-воздушные массы.
  2. Рабочего (турбинного) колеса, оснащенного радиальными лопастями. В зависимости от предназначения они могут быть загнуты вперед или назад от угла вращения. В последнем варианте бонусом будет экономия расходуемой электроэнергии до 20%. Они обеспечивают ускорение, а также задают направление движению воздуха.
  3. Спиральной коллекторной трубы или спирального кожуха, из-за которого конструкция и получила название улитки. Она призвана снизить скорость движения прогоняемого через устройство воздуха.
  4. Вытяжного канала. Из-за разной скорости, с которой воздушные массы двигаются во всасывающем патрубке и в спиральном кожухе, здесь создается достаточно сильное давление, которое может доходить до 30кПа в промышленных условиях.
  5. Электродвигателя.

Размеры улитки, мощность двигателя, угол вращения и форма лопастей и другие особенности зависят от сферы и конкретных условий применения.

Производительность вентилятора — как узнать и увеличить

В наше время нельзя представить свою жизнь без вентиляционных систем. Они установлены в производственных зданиях, в офисах, в учебных заведениях, в магазинах, в квартирах. Работа этих систем немыслима без применения вытяжных вентиляторов различной мощности. Широко распространенным элементом квартирной вентиляции является кухонная вытяжка. Она может иметь различные формы, размеры, дизайн.

От расчета мощности вентилятора кухонной вытяжки будет зависеть количество очищенного воздуха в помещении.

Вытяжная вентиляция на кухне

Но внешняя красота – это не самое главное. Основная задача этого прибора – избавить помещение кухни от запахов, гари, копоти и жира, которые появляются во время приготовления пищи. Вытяжная вентиляция удаляет испарения, исходящие от разного рода нагревательных приборов. Она предотвращает появление грязного налета на потолке и на поверхности стен. Это позволяет выполнять косметический ремонт гораздо реже, что сэкономит значительную сумму денег. Меньше времени понадобится и на проведение генеральной уборки.

Справиться с задачей очистки атмосферы в помещении может устройство, способное пропустить через свои фильтры определенное количество воздуха. А для этого надо подобрать прибор с вентилятором нужной мощности. Как рассчитать мощность устройства?

О РАСХОДЕ ЭЛЕКТРОЭНЕРГИИ

Расход электроэнергии напрямую зависит от длительности времени работы электронагревателя, а время – функция от температуры окружающего воздуха. Обыкновенно, воздух необходимо подогревать в холодное время года, иногда летом в прохладные ночи. Для расчёта используется формула:

S = (T1 х L х d х c х 16 + Т2 х L х c х n х х N/1000

В этой формуле:

S – количество электроэнергии.

Т1 – максимальная дневная температура.

Т2 – минимальная ночная температура.

L – производительность куб.м./час.

с – объёмная теплоёмкость воздуха – 0, 336 вт х час/ кб.м./ град.ц. Параметр зависит от давления, влажности и температуры воздуха.

d – цена электроэнергии днём.

n – цена электроэнергии ночью.

N – количество дней в месяце.

Таким образом, если придерживаться санитарных норм, стоимость вентиляции существенно повышается, зато комфортность проживающих улучшается. Поэтому при устройстве вентиляционной системы целесообразно найти компромисс между ценой и качеством.

Вытяжной бытовой вентилятор – самый продающийся агрегат среди вентиляционного рынка. Но много ли покупателей выбрали это изделие правильно для своего помещения? Много ли вентиляторов работают с недостаточной мощностью в данный момент? Чтобы купить правильный агрегат для своей ванной или кухни, достаточно задать один из самых важных вопросов: как выбрать бытовой вентилятор для установки в определенном месте? Мы расскажем Вам все уловки и правила, чтобы Вы точно не прогадали.

Расчет мощности вентилятора

Чтобы рассчитать мощность вентилятора, нужно выполнить следующие действия:

Пример расчета производительности вентилятора вытяжки для кухни.

  1. С помощью рулетки измерить размеры кухни и определить ее объем в метрах. Для этого длину нужно умножить на ширину и высоту. В документах БТИ указана площадь помещений. Пример: площадь кухонного помещения равна 10 м². Высота от пола до потолка – 3 м. Умножаем площадь на высоту и получаем 30 м³. Таков объем кухни.
  2. Далее рассчитывается величина, характеризующая воздухообмен. Для этого нужно умножить объем кухни на количество полных обновлений воздуха за час. Строительные нормы и правила (СНиП) предусматривают кратность воздухообмена, равную 10-12. Таким образом, чтобы рассчитать мощность вытяжной системы нужно 30 м³ умножить на 12. В итоге получается цифра 360 м³/час. Столько воздуха должно обновляться каждый час.
  3. Для осуществления обмена в таком объеме нужен вентилятор с мощностью 400-800 м³/час. Но стандартные вентиляционные каналы способны пропустить только около 180 м³. Поэтому вентилятор тут не очень поможет.
  4. В этом случае поможет рециркуляционная система вытяжки, которая пропускает воздух через фильтры и отправляет его обратно в помещение. На преодоление сопротивления фильтров тоже требуется мощность. Поэтому к расчетной цифре следует добавить 40%. Получится 560-1120 м³. Такова должна быть мощность вентилятора вытяжки на кухне размером 30 м³.
  5. В некоторых случаях можно обойтись и без вентиляционного канала. Для этого вытяжной вентилятор устанавливается в специально оборудованном проеме в стене, в потолке или на стыке потолка и стены. Такой монтаж допускает применение менее мощного вентилятора.

Пусковой ток электродвигателя

Зная тип и номинальную мощность электродвигателя, можно рассчитать номинальный ток.

Номинальный ток электродвигателей постоянного тока

Номинальный ток трехфазных электродвигателей переменного тока

где: PH – номинальная мощность электродвигателя; UH — номинальное напряжение электродвигателя, ηH — КПД электродвигателя; cosfH — коэффициент мощности электродвигателя.

Номинальные значения мощности, напряжения и КПД можно найти в технической документации на конкретную модель электродвигателя.

Зная значение номинального тока, можно рассчитать пусковой ток.

Формула расчета пускового тока электродвигателей

где: IH – номинальное значение тока; Кп – кратность постоянного тока к номинальному значению.

Пусковой ток необходимо рассчитывать для каждого двигателя в цепи. Зная эту величину, легче подобрать тип автоматического выключателя для защиты всей цепи.

Расчет вентиляции

Мощность калорифера

Калорифер используется в приточной системе вентиляции для подогрева наружного воздуха в холодное время года. Мощность калорифера рассчитывается исходя из производительности системы вентиляции, требуемой температурой воздуха на выходе системы и минимальной температурой наружного воздуха. Два последних параметра определяются СНиП. Температура воздуха, поступающего в жилое помещение, должна быть не ниже +18°С. Минимальная температура наружного воздуха зависит от климатической зоной и для Москвы равна -26°С (рассчитывается как средняя температура самой холодной пятидневки самого холодного месяца в 13 часов). Таким образом, при включении калорифера на полную мощность он должен нагревать поток воздуха на 44°С. Поскольку сильные морозы в Москве непродолжительны, в приточных системах можно устанавливать калориферы, имеющие мощность меньше расчетной. При этом приточная система должна иметь регулятор производительности для уменьшения скорости вентилятора в холодное время года. При расчете мощности калорифера необходимо учитывать следующие ограничения: Возможность использования однофазного (220 В) или трехфазного (380 В) напряжения питания. При мощности калорифера свыше 5 кВт необходимо 3-х фазное подключение, но в любом случае 3-х фазное питание предпочтительней, так как рабочий ток в этом случае меньше.

Максимально допустимый ток потребления. Ток, потребляемый калорифером, можно найти по формуле:

I = P / U, где I — максимальный потребляемый ток, А; Р — мощность калорифера, Вт; U — напряжение питание:

  • 220 В — для однофазного питания; 660 В (3 × 220В) — для трехфазного питания

. В случае если допустимая нагрузка электрической сети меньше чем требуемая, можно установить калорифер меньшей мощности. Температуру, на которую калорифер сможет нагреть приточный воздух, можно рассчитать по формуле: ΔT = 2,98 * P / L, где ΔT — разность температур воздуха на входе и выходе системы приточной вентиляции,°С;Р — мощность калорифера, Вт; L — производительность вентиляции, м3/ч.

Типичные значения расчетной мощности калорифера — от 1 до 5 кВт

для квартир, от 5 до 50 кВт для офисов.

Если использовать электрический калорифер с расчетной мощностью не представляется возможным, следует установить калорифер, использующий в качестве источника тепла воду из системы центрального или автономного отопления (водяной калорифер).

Рабочеее давление, скорость движения воздуха в воздуховодах, уровень шума

После расчета производительности по воздуху и мощности калорифера приступают к проектированию воздухораспределительной сети, которая состоит из воздуховодов, фасонных изделий (переходников, разветвителей, поворотов) и распределителей воздуха (решеток или диффузоров). Расчет воздухораспределительной сети начинают с составления схемы воздуховодов. Далее по этой схеме рассчитывают три взаимосвязанных параметра — рабочее давление, создаваемое вентилятором, скорость потока воздуха и уровень шума.

Требуемое рабочее давление определяется техническими характеристиками вентилятора и рассчитывается исходя из диаметра и типа воздуховодов, числа поворотов и переходов с одного диаметра на другой, типа распределителей воздуха. Чем длиннее трасса и чем больше на ней поворотов и переходов, тем больше должно быть давление, создаваемое вентилятором. От диаметра воздуховодов зависит скорость потока воздуха. Обычно эту скорость ограничивают значением от 2,5 до 4 м/с. При больших скоростях возрастают потери давления и увеличивается уровень шума. В тоже время, использовать «тихие» воздуховоды большого диаметра не всегда возможно, поскольку их трудно разместить в межпотолочном пространстве. Поэтому при проектировании вентиляции часто приходится искать компромисс между уровнем шума, требуемой производительностью вентилятора и диаметром воздуховодов. Для бытовых систем приточной вентиляции обычно используются гибкие воздуховоды сечением 160—250 мм и распределительные решетки размером 200×200 мм — 200×300 мм.

Для точного расчета схемы вентиляции и воздухораспределительной сети, а также для разработки проекта вентиляции Вы можете обратиться в наш Проектный отдел

Синхронные электродвигатели

Синхронные двигатели – оптимальное решение для оборудования с постоянной скоростью работы: генераторов постоянного тока, компрессоров, насосов и др.

Технические характеристики синхронных электродвигателей разных моделей отличаются. Скорость вращения колеблется в диапазоне от 125 до 1000 оборотов/мин, мощность может достигать 10 тысяч кВт.

В конструкции приводов предусмотрена короткозамкнутая обмотка на роторе. Ее наличие позволяет осуществлять асинхронный пуск двигателя. К преимуществам оборудования данного типа относятся высокий КПД и небольшие габариты. Эксплуатация синхронных электродвигателей позволяет сократить потери электричества в сети до минимума.

Кратность смены воздуха

Кратность для помещений разного типа определяется так:

Тип помещения Кратность
Пекарня 20-30
Оранжерея 25-50
Офис 6-8
Ванная комната, душевая 3-8
Парикмахерская 10-15
Ресторан, бар 6-10
Спальня 2-4
Вестибюль 3-5
Классная комната в школе 2-3
Кафетерий 10-12
Палата в больнице 4-6
Магазин 8-10
Подвальное помещение 8-12
Кухня в доме или в квартире 10-15
Спортивный зал 6-8
Чердачное помещение 3-10
Кухня в общепите 15-20
Кладовка 3-6
Раздевалка с душем 15-20
Прачечная 10-15
Туалет в доме, в квартире 3-10
Конференц-зал 8-12
Жилая комната 3-6
Бильярдная 6-8
Общественный туалет 10-15
Гараж 6-8
Комната переговоров 4-8
Подсобное помещение 15-20
Библиотека 3-4
Столовая 8-12

Таблица для расчета минимальной производительности вытяжки относительно объема кухни.

Наибольший показатель кратности выбирают для использования в помещениях со множеством людей, с высокой влажностью и температурой, с большим количеством пыли и сильными запахами. На кухне с электрической варочной поверхностью можно выбирать меньший показатель, с газовой плитой – больший. Связано это с тем, что газ при включенной плите выделяет продукты горения. Вентилятор, выбранный с учетом вышеперечисленных данных, можно смонтировать в стене, окне, потолке помещения.

Асинхронные электродвигатели

Асинхронные электродвигатели переменного тока получили наибольшее распространение в промышленном производстве. Особенностью данных приводов является более высокая частота вращения магнитного поля по сравнению со скоростью вращения ротора.

В современных двигателях для изготовления ротора используется алюминий. Легкий вес этого материала позволяет уменьшить массу электродвигателя, сократить себестоимость его производства.

КПД асинхронного двигателя падает почти вдвое при эксплуатации в режиме низких нагрузок – до 30-50 процентов от номинального показателя. Еще один недостаток таких электроприводов состоит в том, что параметры пускового тока почти втрое превышают рабочие показатели. Для уменьшения пускового тока асинхронного двигателя используются частотные преобразователи или устройства плавного пуска.

Асинхронные электродвигатели удовлетворяют требованиям разных промышленных применений:

  • Для лифтов и другого оборудования, требующего ступенчатого изменения скорости, выпускаются многоскоростные асинхронные приводы.
  • При эксплуатации лебедок и металлообрабатывающих станков используются электродвигатели с электромагнитной тормозной системой. Это обусловлено необходимостью остановки привода и фиксации вала при перебоях напряжения или его исчезновения.
  • В процессах с пульсирующей нагрузкой или при повторно-кратковременных режимах могут использоваться асинхронные электродвигатели с повышенными параметрами скольжения.

Расчет вытяжной вентиляции производственных помещений

При расчёте вытяжной вентиляции производственного помещения кратность равна 3.

Пример: гараж 6 х 4 х 2,5 = 60 куб.м. Работают 2 человека.

Высокая активность – 60 куб.м./час х 2 = 120 кб.м./ч.

V – 60 куб.м. х 3 (кратность) = 180 кб.м./ч.

Выбираем большее – 180 куб.м./час.

Как правило, унифицированные вентиляционные системы, для простоты установки разделяются на:

  • 100 – 500 куб.м./час. – квартирные.
  • 1000 – 2000 куб.м./час. – для домов и усадеб.
  • 1000 – 10000 куб.м./час. – для заводских и промышленных объектов.

Вентильные электродвигатели

Группа вентильных электродвигателей включает в себя приводы, в которых регулирование режима эксплуатации осуществляется посредством вентильных преобразователей.

К преимуществам данного оборудования относятся:

  • Высокий эксплуатационный ресурс.
  • Простота обслуживания за счет бесконтактного управления.
  • Высокая перегрузочная способность, которая в пять раз превышает пусковой момент.
  • Широкий диапазон регулирования частоты вращения, который почти вдвое выше диапазона асинхронных электродвигателей.
  • Высокий КПД при любой нагрузке – более 90 процентов.
  • Небольшие габариты.
  • Быстрая окупаемость.

Разновидности вентиляции

Выделяют 2 основных вида вентиляции: естественную и искусственную. В первом случае воздухообмен происходит за счет разницы давления в помещении и на улице. Естественную вентиляцию обеспечивают окна, форточки, двери, различные щели. Т. е. для циркуляции воздуха не используются какие-либо приспособления.

Принудительная (или искусственная) вентиляция в ванной комнате обеспечивается благодаря работе специального устройства, приводящего в движение воздушные потоки. Принцип ее действия прост: вентилятор вытягивает воздух наружу, а в комнату поступает воздух с улицы или из других помещений.

По назначению выделяют следующие виды:

  • вытяжная вентиляция, т. е. выводящая загрязненный воздух;
  • приточная, нацеленная на поступление дополнительных объемов воздуха извне;
  • смешанная, т. е. выполняющая функции обоих названных выше видов.

Ограничения в эксплуатации

Несмотря на прочность и надежность промышленных «улиток», существуют некоторые ограничения по их использованию. Итак, центробежные вентиляторы, в быту называющиеся «улитками», не рекомендуется устанавливать если:

  • В воздухе имеются взвеси липкой консистенции более 10 мг/куб.м.
  • В помещении находятся частички взрывоопасных веществ.
  • Температура в помещении выходит за рамки диапазона от -40 до +45°С.

Более того, рационально использовать вентиляцию «улитку» в больших помещениях, в быту такие приборы лучше ставить в шахтах вентиляции, куда поступает весь отработанных воздух из дома.

Выбор вентилятора

Вентилятор должен отвечать ряду требований:

  • Безопасность. Прибор будет подключаться к электричеству, а устанавливаться – в сыром помещении, поэтому должна быть предусмотрена влагозащита, также вентилятор должен быть устойчив к воздействию пара.
  • Низкий уровень шума. Этот параметр во время работы устройства не должен превышать 35 дБ. В противном случае постоянный гул будет раздражать жильцов, а в некоторых случаях – соседей. Придется тратиться на шумоизоляцию.
  • Пропускная способность вентилятора. Ее должно хватать, чтобы обеспечить смену воздуха в комнате 5–8 раз за час.

ПОЛЕЗНАЯ ИНФОРМАЦИЯ: Сифоны для раковины в ванной: устройство, виды, установка

Прочие

Существуют устройства особого класса — для поддува в твердотопливных котлах. Производятся в Польше. Специализированное оборудование для отопительных систем (частных).

Корпус — «улитка» отлит из алюминиевого сплава. Специальная заслонка с системой грузиков исключает попадание воздуха в топку, когда мотор отключен. Устанавливаться может в любом положении. Небольшой двигатель с датчиком температуры, 0,8 кВт. В продаже модели WPA-117k,WPA-120k, различающиеся размерами основания.

Вентиляция промышленных помещений – это необходимость, которая позволяет сохранить здоровье работников и обеспечить бесперебойность работы цеха. Для очистки воздуха от различных примесей, металлической и деревянной стружки, пыли и грязи, чаще всего используются мощные вентиляционные установки «улитки

». Конструкция данных установок включает в себя несколько вентиляторов разной мощности, а потому «улитка» может справиться практически с любыми загрязнениями.

Как произвести расчет мощности вытяжной техники

Показатели мощности вытяжки напрямую зависят от ее производительности. Чем больше она способна прокачать воздуха, тем мощнее в ней стоит вентилятор, которому для работы нужен электродвигатель.

Для подключенной к вентканалам техники, работающей только в вытяжном режиме, производительность рассчитывать следует на основе сечения воздуховодов. Сделать это без инженерных познаний и проекта жилища практически невозможно. А расчет мощности вытяжки по площади подходит исключительно для рециркуляционных моделей. В отличие от первого варианта на их производительности размер вентиляционных каналов не сказывается.

Простейшая формула расчета по площади

Классический расчет производительности кухонной вытяжки – умножение квадратуры кухни, ее высоты и коэффициента 12. Однако полученная цифра очень условна. Она не учитывает множество факторов.

  • готовки на электроплитке;
  • кухонной комнаты с закрытыми дверьми и окнами;
  • прямоугольной кухни без обилия декоративных изысков.

Если для приготовления еды используется газовая плита, то коэффициент 12 следует без раздумий менять на 20. В этом случае помимо испарений вытяжка должна будет удалять из кухни и продукты горения газа. Плюс при любых раскладах стоит добавить 15–20% про запас.

Расчет производительности вытяжного оборудования по кубатуре кухни

Еще 25–30% мощности необходимо добавить на угольный фильтр. Он создает дополнительное сопротивление для прохождения воздушного потока.

Важный нюанс! Расчеты производительности и мощности для вытяжки должны выполняться исходя из площади самой кухни и прилегающих к ней комнат, если они не отгорожены от первой.

Если дверь на кухню постоянно открыта или вместо нее арка, то рассчитывать параметры вытяжной техники следует исходя из общей квадратуры прилегающего помещения. То же касается коридоров, а также совмещенных гостиных или залов. Отсутствие преград увеличивает объем обрабатываемого воздуха, так как он постоянно циркулирует между кухней и смежными комнатами.

Принцип действия

Эффективность вытяжных систем с применением улиток основана на их простом принципе действия.

В процессе работы электродвигатель запускает вращение рабочего колеса.

Турбинное колесо с радиальными лопатками, благодаря центростремительному движению, засасывают через патрубок и придают газо-воздушным массам ускорение.

Их движению передается вращательный характер центробежного усилия лопаток. Это обеспечивает разный вектор входящему и выходящему потокам.

Вследствие этого выходящий поток направляется в спиральный кожух. Конфигурация спирали обеспечивает торможение и последующую подачу потока под давлением в вытяжной канал.

Из вытяжного канала газо-воздушные массы выводятся в воздуховоды для дальнейшей очистки и выброса в атмосферу.

Если в воздуховодах предусмотрены перекрывающие клапаны, то радиальный вентилятор может работать как вакуумный насос.

В промышленности и дома сегодня просто не обойтись без вентилятора. С его помощью можно перемещать газообразные среды при низких показателях давления. Важную роль играет производительность вентилятора, от которой зависит объем выполненной им работы.

Как узнать производительность вентилятора

Современный вентилятор

Приобретая вентилирующее устройство, каждому хочется узнать и проверить его производительность. Производительностью описанного прибора именуют объем воздуха перекаченный за определенную единицу времени. Поэтому всем хочется приобрести устройство с большей производительностью! Она измеряется в «CFM», что означает кубические футы за минуту либо м³ (метры кубические) за час.

Не менее важной характеристикой данного прибора является его мощность, которую измеряют в «kW» и «кВт». При этом переменным значением является скорость вращения, измеряющаяся в количестве оборотов, производимых за минуту времени.

Расчет вентилятора, а точнее его производительности также сопряжен с:

  • диаметром лопастей;
  • уровнем шума;
  • полным давлением.

Производительность вентилятора указывают на упаковке прибора либо прописывают в прилагающейся к нему инструкции. В норме такой прибор обновляет воздух в комнате через каждые 4 минуты. При этом важным показателем является и объем имеющегося помещения. Чем он больше, тем больше нагрузка на описанное устройство. Кстати, рассчитать объем комнаты, где нужно «обновить воздух» можно с помощью простой школьной формулы: умножая высоту на ширину и длину!

Необходимой нормой смены, рекомендованной СНиП, является диапазон от 10 до 12 раз за час. Умножая имеющийся объем помещения на любое значение из данного диапазона, можно получить необходимую производительность в отдельной комнате. Суммировав полученное значение с расчетами площадей по всем комнатам дома можно узнать нужную производительность для всей жилой площади.

В практике редко когда реализуются нормы, требуемые расчетами, поэтому в реальных условиях все несколько иначе, что и касается хорошего притока воздуха. Так, для минимально установленной нормы воздухообмена в помещении достаточно открыть окно либо положиться на создаваемую в вентиляционном канале тягу.

Вытяжной вентилятор для кухни

Для ванн и кухонь требуются вентиляторы с большей производительностью либо здесь они должны работать больше времени, чем в других комнатах, так как принятие душа и приготовление пищи приводит к изменению состава воздуха, насыщая его парами воды и угарным газом. Для таких комнат подходит деятельность аппарата в «усиленной вытяжке», которую необходимо устанавливать на приборе.

Большую роль играет установка осевого вентилятора, представляющего собой лопастную воздуходувную машину, передающую в виде кинетической и потенциальной энергии механическую энергию от вращения лопастей, находящихся на рабочем колесе. Расчет воздухообмена осевых вентиляторов проводят с учетом КПД (коэффициента полезного действия), аэродинамических характеристик прибора и производительности агрегата. Данное значение также может быть указано в прилагающейся к аппарату инструкции.

Как увеличить производительность вентилятора

Наличие свежего воздуха в помещениях – залог хорошей работы и отличного самочувствия всех домочадцев. Организовать это можно благодаря установке в комнате вентиляторного оборудования, способного равномерно охлаждать комнату. При этом важна его тихая работа, не создающая дискомфорта для окружающих.

Желательно создавать беспрепятственный поток воздуха от потолка к полу, который свободно бы мог распределяться по всему периметру помещения. Благодаря этому прибор будет меньше нагреваться и увеличится его производительность.

Из школьного курса физики известно, что холодный воздух занимает низ комнаты, а горячий — вверх. Поэтому рекомендуется оборудовать воздушный отток внизу помещения. Наличие активного воздушного оттока и притока нуждается в установке равных по производительности вентиляторов на выдув/вдув.

Вентиляционная система

Увеличить производительность вентилятора можно переведя его на режим эффективной работы. При этом эксплуатация устройства должна быть минимальной, когда домочадцев нет дома. В иной ситуации рекомендуется увеличивать подачу воздуха в той комнате, где находятся люди. Если же на кухне идет активный процесс приготовления пищи и длительно работает душ, рекомендуется в данных комнатах увеличивать локальную подачу воздуха до максимального показателя. Такая «умная» вентиляция способна быстро и эффективно производить воздухообмен в любом помещении.

Для описанной вентиляционной системы оборудуется специальный блок управления, который присоединен к процессору. Сюда же подходят датчики, способные определять:

  • степень движения;
  • количество углекислого газа;
  • относительную влажность воздуха.

Ответственным за выбранный режим работы является «блок управления», задающий режим деятельности вытяжным насосам. Эти приборы могут обслуживать одну либо несколько комнат. Количество таких устройств зависит от площади помещения. Сюда же присоединяется вытяжка с кухни.

Кухонная вытяжка

Преимуществом использования описанной «умной» вентиляционной системы является правильное регулирование производительности вытяжных вентиляторов, позволяя практически в половину снижать количество перекачиваемого за 24часа воздуха. Также при этом меньше расходуется электроэнергия, что является большим плюсом для семейных бюджетов.

Как измерить производительность вентилятора

От производительности вентиляционной системы зависит многое: и состояние дома, и его общее самочувствие. Так, постоянное проветривание жилья путем открывания окон приводит к появлению конденсата на окнах и стенах, а также стимулирует образование плесени по углам. Недостаточный приток свежего воздуха отрицательно сказывается на состоянии человеческих легких, проявляясь развитием соотвестввующих болезней и патологий. Дети, растущие без вентиляции, могут подорвать свое здоровье на всю оставшуюся жизнь.

Чтобы измерить производительность вентиляционной системы, можно воспользоваться следующими способами:

Измерение параметров комнаты

  1. Самостоятельные измерения. Рулеткой следует измерить размеры комнаты, определяя в метрах ее объем. Можно воспользоваться простой школьной формулой для вычисления площади помещения: произведение высоты, ширины и длины. Полученный результат следует выразить в метрах, что и будет являться общим объемом комнаты.
  2. Получение информации из достоверных источников. Документы БТИ содержат все необходимые сведения о площади помещений. Там дан объем всего жилья и отапливаемой площади. Также можно найти высоту от потолка до пола и вычислить объем отдельной комнаты.

Далее рассчитывают величину, характеризующую воздухообмен. При этом объем отдельной комнаты следует умножить на нужное количество воздушных обновлений, происходящих в течение часа. Количество воздушных обновлений можно найти в строительных нормах и правилах (СНиП).

При этом следует брать максимальное количество обновлений, чтобы точнее рассчитать положенную мощность вытяжного канала.

В домашних условиях по полученной площади воздухообмена подбирают и нужный вентиляционный прибор. Стандартным вентиляционным каналам свойственна незначительная пропускная способность воздухообмена. Помочь ситуации способна установка рециркуляционной вытяжной системы, способной проводить воздух сквозь фильтры, отправляя его вновь в комнату.

Схема установки естественной и принудительной вентиляции

Если в доме нет вентиляционного канала, то вытяжной вентилятор можно установить в стенном проеме либо на потолке. Также для этих целей подходит стык потолка и стены. В этом случае можно монтировать прибор с меньшим значением мощности.

Вытяжная вентиляция на кухне

Благодаря вытяжной кухонной вентиляции удается проводить воздухообмен в самых проблемных зонах комнаты. К примеру, улучшать качество воздуха на кухне в момент приготовления пищи. От применения таких конструкций зависит не только общее самочувствие проживающих здесь людей, но и состояние стен в жилом помещении. Рекомендованные по СНиП технические нормативы при организации вентиляции:

  • 60 м³ в час (электроплита);
  • 100 м³ в час (газовые варочные плиты).

Данное значение следует помножить на площадь комнаты, чтобы выяснить положенную производительность вентиляционной системы. Именно по полученному значению следует подбирать прибор, с соотвествующим электродвигателем. Установка вытяжки над варочной плитой позволяет обеспечить дополнительный воздухообмен, препятствуя распространению ароматов пищи по всему жилью. При соединении данных элементов следует правильно подбирать все комплектующие, с равными сечениями.

При правильной установке кухонной вытяжки осуществляется подключение вентиляционной шахты с присоединенным устройством. Благодаря этому осуществляется полное удаление образующихся в момент готовки вредных химических соединений из компоненты.

Опубликовано 14.08.2019 Обновлено 14.04.2021 Пользователем

Как правильно выбрать вентилятор

Установленные требования к производительности вытяжных систем для помещений различного назначения
(в соответствии со СНиП 2.08.01-89)

  • Жилые здания

    • Ванные комнаты (с/без туалета)
      Вытяжная вентиляция с ручным или автоматическим управлением и расходом воздуха не менее 50 м3/час (с туалетом) / 25 м 3/час (без туалета).
    • Ванные комнаты (с / без туалета)
      Вытяжная вентиляция с ручным или автоматическим управлением и расходом воздуха не менее 50 м3/час (с туалетом) / 25 м 3/час (без туалета).
    • Туалеты
      Вытяжная вентиляция с ручным или автоматическим управлением и расходом воздуха не менее 25 м 3/час.
    • Подсобные помещения
      Вытяжная вентиляция с ручным или автоматическим управлением и кратностью воздухообмена не менее 0,5.
    • Кухни
      Вытяжка с расходом воздуха не менее 60 м3/ час при использовании электрической или двух- конфорочной газовой плиты и не менее 90 м 3/ час при использовании четырехконфорочной газовой плиты.
  • Административные здания
    Требования к вытяжным системам кухонь, ванных комнат и туалетов административных зданий такие же, как и приведенные выше для жилых домов. Для обычных помещений мощность вытяжки должна составлять 3 м3/час на 1м3/. помещения.

Альтернативный вариант расчета производительности вытяжной системы

Выбираем источники питания MEAN WELL в открытом исполнении для промышленных устройств

При расчете производительности вытяжных вентиляторов можно руководствоваться также требованиями СНиП к механическим системам бытовой вентиляции, которые устанавливают почасовую кратность воздухообмена не менее 0,5 для бытовых помещений. С учетом этой величины и объема помещения рассчитывается общий расход вытяжного воздуха.

Расчет производительности вентилятора

Для расчета производительности вентилятора требуется знать объем помещения и кратность воздухообмена.

Объем помещения = Длина х Ширина х Высота

Производительность = Объем помещения х Кратность воздухообмена (=0,5)

Расчетная производительность сравнивается с минимальной величиной, установленной требованиями СниП и выбирается большее из двух значений.

Для многолюдных помещений, а также помещений, где окружающий воздух характеризуется высокой температурой, влажностью, запыленностью или запахами, кратность воздухообмена следует принимать равной 1.

Примечание: В некоторых случаях может потребоваться установка нескольких вентиляторов.

Тип помещения Кратность Тип помещения Кратность Тип помещения Кратность
Пекарни 20-30 Оранжереи 25-50 Офисы 6-8
Ванные и душевые 3-8 Парикмахерские 10-15 Рестораны и бары 6-10
Спальни 2-4 Вестибюли и лестничные площадки 3-5 Школьные классы 2-3
Кафетерии 10-12 Больничные палаты 4-6 Магазины 8-10
Подвальные помещения 8-12 Домашние кухни 10-15 Спортивные залы 6-8
Чердаки 3-10 Кухни предприятий общепита 15-20 Кладовые 3-6
Раздевалки с душами 15-20 Прачечные 10-15 Домашние туалеты 3-10
Конференц-залы 8-12 Жилые помещения 3-6 Общественные туалеты 10-15
Гаражи 6-8 Комнаты переговоров 4-8 Подсобные помещения 15-20

Для многолюдных помещений, а также помещений, где окружающий воздух характеризуется высокой температурой, влажностью запыленностью или запахами, следует выбирать наибольшее значение из указанного диапазона.

Выбор типа вентилятора и варианта установки

В зависимости от проектных требований вентилятор можно врезать в стену (настенный монтаж), монтировать в оконный проем (оконный монтаж), встраивать в потолочную конструкцию (потолочный монтаж), что, в свою очередь, исходя из длины воздуховода, определяет конструктивный тип вентилятора, который необходимо использовать — осевой или центробежный.

4.1. Расчет основных характеристик вентилятора

Вентилятор служит
для создания направленного воздушного
потока обеспечивающего отвод тепла от
радиатора
.

Производительность
вентилятора :
,

где

— плотность воздуха при средней его
температуре,

теплоемкость воздуха.

Тогда
.

Для подбора
вентилятора кроме его производительности
надо знать аэродинамическое сопротивление
воздушной сети. В рассматриваемой
системе оно складывается из сопротивлений,
вызываемых потерями на трение и местными
потерями. Для автомобильных и тракторных
двигателей сопротивление воздушного
тракта принимается
.
Примем
.
По заданной производительности
вентилятора и величине

находят потребляемую вентилятором
мощность и его основные размеры.

Мощность,
затрачиваемая на привод вентилятора:
,

где
(для
клепанных вентиляторов);
(для
литых вентиляторов) — КПД осевого
вентилятора. Примем
.

Тогда
.

4.2. Определение конструктивных размеров вентилятора

При определении
основных конструктивных параметров
вентилятора , коэффициент обдува КL
стремятся получить равным единице ,
т.е. выполняется условие :

.

Где Fом.
вент

площадь, сметаемая лопастями вентилятора,
2)
; Fфр.
рад

фронтовая площадь решетки радиатора,
2)
.

Для этого фронтовую
площадь решетки радиатора оформляют в
виде квадрата .

Диаметр вентилятора
:
.


– скорость воздуха
перед фронтом радиатора .

Частоту вращения
вентилятора уточняют, исходя из
предельного значения окружной скорости
u
.

Окружная скорость
зависит от напора вентилятора и его
конструкции:

,
где

коэффициент, зависящий от формы лопастей
(
— для плоских лопастей;

— для криволинейных). Примем

для плоских лопастей (см. рис. 5).

Рис.
5 – Осевой вентилятор с плоскими лопастями

Тогда
.

Частота вращения
вентилятора при известной окружной
скорости определяется:

.
Т.к.
,
вентилятор и жидкостной насос имеют
разный привод.

Список использованных источников

  1. Расчет
    элементов жидкостного охлаждения
    поршневого двигателя внутреннего
    сгорания: Метод. указ. к курсовой работе.
    Сост. Толстоногов А.П.. Самар. аэрокосм.
    ун-т, Самара, 2002. 36с.

  1. Системы
    охлаждения поршневых двигателей
    внутреннего сгорания: Учеб. пособие /
    Толстоногов А.П.. Самар. аэрокосм. ун-т,
    Самара, 2002. 208с.

  1. Курс
    лекций по СЖО за осенний(VII)
    семестр.

Таблица
№1 — Результаты расчета радиатора

Наименование

Обозначение

Размерность

Величина

1

Габариты
остова в направлении:


движении горячего теплоносителя

мм

700


перпендикулярном

мм

73


движения холодного теплоносителя

мм

583

2

Материал
трубок

Латунь
Л96

3

Число
рядов трубок по глубине

3

4

Наружные
размеры сечения трубок

мм

244.8

5

Шаг
трубок по фронту

мм

139.2

6

Число
трубок по фронту

3

7

Общее
количество трубок

10

8

Материал
оребрения пластин

Латунь
Л96

9

Шаг
гофр оребряющих пластин

мм

5.6

10

Количество
оребряющих пластин

125

11

Толщина:


стенок трубок

мм

0.15


оребряющих пластин

мм

0.20

12

Площадь
фронта остова

м

0.41

13

Поверхность
теплообмена общая

м

13.55

14

Масса:


трубок

кг

0.54


пластин

кг

0.72


остова (расчетная)

кг

1.26

Таблица
№2 — Результаты расчета жидкостного
насоса

Наименование

Обозначение

Размерность

Величина

1

Тип
насоса

Центробеж.

2

Циркуляционный
расход

0.00152

3

Объемная
производительность (расчетная)

0.0017

4

Радиус
ступицы крыльчатки

м

0.008

5

Радиус
входного отверстия крыльчатки

м

0.025

6

Радиус
выходного отверстия крыльчатки

м

0.124

7

Углы
между векторами скоростей:

10

45

8

Окружная
скорость входа жидкости

2.62

9

Окружная
скорость схода жидкости

12.94

10

Ширина
лопатки на входе

м

0.0046

11

Ширина
лопатки на выходе

м

0.002

12

Число
лопаток на крыльчатке

z

5

13

Толщина
лопатки на входе

м

0.005

14

Толщина
лопатки на выходе

м

0.003

15

Механический
КПД насоса

0.8

16

Мощность,
потребляемая насосом

кВт

0.25

17

Частота
вращения крыльчатки

1000

Таблица
№3 — Результаты расчета вентилятора

Наименование

Обозначение

Размерность

Величина

1

Тип
вентилятора

Осевой,
цельный

2

Производительность
вентилятора

1.72

3

Мощность,
затрачиваемая на привод вентилятора

кВт

1.43

4

Диаметр
вентилятора

м

0.72

5

Частота
вращения вентилятора

1870

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Залом на двери как исправить
  • Как найти репер геодезический
  • Gta 5 как найти тревора
  • Как найти длины диагоналей по трем вершинам
  • Как найти максимальную частоту тока