Как найти производную функции при значении аргумента

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная — одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Геометрический и физический смысл производной

Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

производная объяснение для чайников

Иначе это можно записать так:

высшая математика для чайников производные

Какой смысл в нахождении такого предела? А вот какой:

Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.

Геометрический смысл производной

 

Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:

смысл производной

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

производная для чайников в практическом применении

Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.

Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:

производная для чайников в практическом применении

Нам нужно найти скорость в момент времени t=2c. Вычислим производную:

производная для чайников в практическом применении

Правила нахождения производных

Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.

Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.

Таблица производных

 

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того — это нужно делать. При решении примеров по математике возьмите за правило — если можете упростить выражение, обязательно упрощайте.

Пример. Вычислим производную:

найти производную функции для чайников

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

как найти производную для чайников

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

как найти производную для чайников

Решение:

как найти производную для чайников

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

как считать производные для чайников

Пример: найти производную функции:

как считать производные для чайников

Решение:Производная сложной функции

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

производная сложной функции для чайников

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

производная определение для чайников

Пример:

производная определение для чайников

Решение:

производная определение для чайников

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

1. Вычисление производной функции

Правила дифференцирования

    

Дифференцирование сложной функции

    

Таблица производных

    

2. Приложение производной

Уравнение касательной к графику функции y=f(x) в точке (x0;f(x0)):

    y=f(x0)+f ‘(x0)(x-x0); f ‘(x0) – угловой коэффициент касательной (тангенс угла наклона касательной).

Достаточные признаки монотонности функции:

  • если 
    f ‘(x)>0 в каждой точке интервала (a, b), то функция f(x) возрастает на этом интервале. 
  • если 
    f ‘(x)<0 в каждой точке интервала (a, b), то функция f(x) убывает на этом интервале. 

Необходимое условие экстремума: если x0 – точка экстремума функции f(x) и производная f ’ существует в этой точке, то   f ‘(x0)=0.

    Критические точки функции – внутренние точки области определения функции, в которых ее производная равна нулю или не существует. 

Достаточные условия экстремума: 

  • если производная при переходе через точку 
    x0 меняет свой знак с плюса на минус, то 
    x0  – точка максимума. 
  • если производная при переходе через точку x0 меняет свой знак с минуса на плюс, то 
    x0  – точка минимума.

3. Первообразная функции

    Функция F(x) называется первообразной функции f(x) на интервале (a, b), если для любого  выполняется равенство F ‘(x)=f(x).

    Если F(x) – первообразная для f(x) на промежутке (a, b), то любая первообразная может быть записана в виде F(x)+C, где C – некоторое действительное число.

    Для вычисления первообразной рекомендуем пользоваться приведенной выше таблицей производных и приведенными ниже правилами.

Правила нахождения первообразных

Пример 1. Найти производную функции .

    Решение:

        .

    Ответ: .

Пример 2. Найти , если .

    Решение:

        По правилу дифференцирования дроби имеем:  .

        .

 Ответ: 

Пример 3. Чему равен тангенс угла наклона касательной к графику функции у = х2 + 2, в точке хо = – 1.

    Решение:

        Тангенс угла наклона касательной к графику функции есть значение производной данной функции в точке хо.

        .

    Ответ: – 2.

Пример 4. Найдите значение 3tg2t , если t – наименьший положительный корень уравнения .

    Решение:

        .

        Очевидно, что наименьшее положительное решение полученного уравнения . Тогда .

 Ответ: 1. 

Пример 5. Укажите промежутки возрастания и убывания функции .

    Решение:

        Область определения функции: x>0.

        На области определения найдём критические точки функции :

        

        Критические точки: 0; 1.

        На основании достаточного признака возрастания (убывания) функции имеем:

    Ответ: на интервале (0; 1) функция убывает; на интервале  возрастает.

Пример 6. Найти наибольшее и наименьшее значения функции y=ex+2-ex на промежутке [-2; 0].

    Решение:

        Функция y=ex+2-ex на отрезке [-2; 0] непрерывна.

        1) найдём критические точки, принадлежащие отрезку [-2; 0]:

        

        2) найдём значения функции в критической точке и на концах данного отрезка:

        

        3) выберем наибольшее и наименьшее из полученных значений:

        наименьшее y|x=-1=2e наибольшее y|x=0=e2.

    Ответ: 
наименьшее y|x=-1=2e наибольшее y|x=0=e2.

Пример 7. Записать уравнение касательной к графику функции f(x)=x3, параллельной прямой y=3x+1,5.

    Решение:

        Уравнение касательной к графику функции y=f(x) в точке х0 имеет вид: 

        .

        Так как касательная параллельна прямой y=3x+1,5, то f ‘(x0)=3 .

        f ‘(x)=3x2, следовательно, .

        

    Ответ: .

Пример 8. Найдите какую-либо первообразную функции .

    Решение:

        Представим функцию  в виде . Первообразная данной функции будет . Т.к. нужно найти какую-либо первообразную, то пусть это будет . Чтобы проверить правильность найденной первообразной, нужно от  взять производную: .

    Ответ: .

Пример 9. Для функции  найдите первообразную, график которой проходит через точку .

    Решение:

        Первообразная данной функции будет F(x)=-3ctgx-7cox-2sinx+C.

        Так как график первообразной проходит через точку , то координаты этой точки являются корнями уравнения. Получаем: .

    Ответ: F(x)=-3ctgx-7cox-2sinx+11.

Задания для самостоятельного решения

Базовый уровень

Производная функции

    1) Найти производную функции f(x)=2ex+3x2 .

    2) Вычислите производную функции f(x)x•sinx.

    3) Найти производную функции у = (3х – 1)(2 – х).

    4) Вычислите производную функции y=9x2-cosx.

    5) Найдите производную функции y=ex-x7

    6) Вычислить производную функции .

    7) Найти f ‘(1), если f(x)=3x2-2x+1.

     8) Найдите производную функции у = х2(3х5 – 2) в точке х0 = – 1.

    9) Вычислите , если f(x)=(2x-1)cosx.

    10) Найдите f ‘(1), если f(x)=(3-x2)(x2+6).

    11) Вычислите  f ‘(1), если f(x)=(x4-3)(x2+2).

    12) Найдите значение производной функции  в точке х0 = 0,5.

    13) Найдите f ‘(4), если .

    14) Найдите значение производной функции f(x)=3tgx+2ctgx при .

    15) Найдите значение производной функции f(x)=2sinx при .

    16) Найдите значение производной функции f(x)=1-3cosx при .

    17) Определите промежутки возрастания и убывания функции .

    18) Найдите максимум и минимум функции y=5x4-10x2+9.

    19) Найти экстремумы функции у = – х3 + 6х2 + 15х + 1. 

    20) Найдите точки экстремума функции у = – х3 – 3х2 + 24х – 4 на промежутке .

    21) Найдите наибольшее значение выражения 3х5 – 5х3 + 6 на отрезке [–2;2].

    22) Написать уравнение касательной к параболе у = х2 – 6х + 5 в точке пересечения её с осью ординат.

    23) Найдите максимум функции .

    24) Найдите экстремальные значения функции .

    25) Исследуйте на максимум и минимум функцию у = 3х4 – 3х2 + 2.

    26) Найдите тангенс угла наклона касательной, проведённой к графику функции  в его точке с абсциссой          х0 = – 2.

    27) Составьте уравнение касательной к графику функции у = х – 3х2 в точке с абсциссой х0 = 2.

    28) Найдите угловой коэффициент касательной к графику функции y=7x-5sinx в точке с абсциссой .

Найдите первообразные функций:

    29) .

    30) f(x)=-7sinx.

    31) .

    32) f(x)=1,2cosx.

    33) f(x)=-7cosx.

    34) f(x)=sinx-cosx.

    35) .

    36) .

    37) .

Вычислите площадь фигур, ограниченных линиями:

    38) .

    39) .

    40) .

    41) .

Повышенный уровень

Производная функции 

    42) Найдите значение , если .

    43) Найдите значение , если f(x)=sin4x-cos4x.

    44) Найдите значение , если f(x)=cos23x .

    45) Найдите значение , если f(x)=sin4xcos4x.

    46) Найдите значение , если .

    47) Найдите значение , если .

    48) Найдите значение , если f(x)=(1+sinx)2.

    49) При каком значении параметра а функция  имеет минимум в точке x0=1?

    50) Решите уравнение f ‘(x)=0, если .

    51) Найдите наименьшее целое значение функции у = 4х – 5∙2х + 3,25.

    52) При каких значениях а функция  убывает на всей числовой прямой?

    53) На кривой у = 4х2 – 6х + 3 найдите точку, в которой касательная параллельна прямой у = 2х + 3. 

    54) Найти значение выражения tg2t, где t – наибольший отрицательный корень уравнения f ‘(x)=0, 

Первообразная

    55) Найдите значение первообразной функции , график которой проходит через данную точку .

    56) Найдите значение первообразной функции , график которой проходит через данную точку .

    57) Найдите значение первообразной функции  при , график которой проходит через данную точку .

Задача о площади криволинейной трапеции

    58) Найдите площадь фигуры, ограниченной линиями .

    59) Найдите площадь фигуры, ограниченной линиями .

    60) Найдите площадь фигуры, ограниченной линиями .

Формулы дифференцирования

Выгодно иметь такие правила, которые позволяли бы находить производные проще, с минимальной затратой времени. Действительно, такие правила имеются, причем они выводятся из основного правила дифференцирования.

Производная постоянной

Пусть С — постоянная величина; тогда равенство

у = С

можно рассматривать как выражение функции, не меняющей своего значения с изменением аргумента. В справедливости этого можно убедиться, представив это равенство графически, т. е. в виде прямой линии АВ, параллельной оси Ох (рис. 85).

Формулы дифференцирования

Действительно, с изменением абсциссы точек этой прямой ординаты их остаются постоянными.

Для нахождения производной функции у = С применим основное правило дифференцирования:

Формулы дифференцирования

т. е. производная постоянной равна нулю.

Не следует производную постоянной смешивать с пределом постоянной, который, как известно, равен самой постоянной.

Производная функции у = х

Применяя основное правило дифференцирования, получим:

Формулы дифференцирования

т. е. производная функции у = х равна единице, или: производная независимой переменной равна единице.

Производная алгебраической суммы функций

Возьмем функцию

Формулы дифференцирования

где Формулы дифференцирования— функции от х и имеющие производные по х. Если аргументу х дать приращение Формулы дифференцирования то и функции и, v и w получат приращения, соответственно равные Формулы дифференцирования,Формулы дифференцирования и Формулы дифференцирования, а потому у также получит приращение Формулы дифференцирования. По основному правилу находим:

Формулы дифференцирования

Формулы дифференцирования

Слагаемые правой части последнего равенства являются производными функций Формулы дифференцирования. Указанное равенство можно переписать:

Формулы дифференцирования

или

Формулы дифференцирования

т. e. производная алгебраической суммы конечного числа функций равна алгебраической сумме производных каждой из них.

Производная произведения двух функций

Пусть дана функция

Формулы дифференцирования

где и и v — функции от х имеющие производные по x. Дадим аргументу х приращение Формулы дифференцирования тогда согласно основному правилу будем иметь:

Формулы дифференцирования

Но и и v не зависят от Формулы дифференцирования, а потому их нужно считать постоянными *)

*) Это можно иллюстрировать на рис. 86. Здесь

при Формулы дифференцирования; согласно следствию 1 теоремы IV можем написать:

Формулы дифференцирования

Приращение же функции Формулы дифференцирования и меняется с изменением Формулы дифференцирования , поэтому согласно теореме IV имеем:

Формулы дифференцирования

Таким образом,

Формулы дифференцирования

Но

Формулы дифференцирования

Далее, так как и дифференцируема, то она непрерывна, следовательно.

Формулы дифференцирования

Формулы дифференцирования

Формулы дифференцирования

Если Формулы дифференцирования то Формулы дифференцирования не меняется.

Поэтому

Формулы дифференцирования

Итак,

Формулы дифференцирования

т. е. производная произведения двух функций равна сумме произведений первой функции на производную второй и второй функции на производную первой.

Производная произведения постоянной на функцию

Возьмем функцию

Формулы дифференцирования

где

Формулы дифференцирования

причем функция и имеет производную по х. Применяя правило (IV), получим:

Формулы дифференцирования

т. е. производная произведения постоянной на функцию равна произведению постоянной на производную функции.

Производная степени с целым положительным показателем

Возьмем сначала функцию

Формулы дифференцирования

Представив ее в виде произведения и применяя правило (IV), получим:

Формулы дифференцирования

Найдем производную новой функции:

Формулы дифференцирования

Заменив ее произведением Формулы дифференцирования и опять применяя то же правило (IV), найдем:

Формулы дифференцирования

Поступив точно так же с функцией

Формулы дифференцирования

найдем:

Формулы дифференцирования

Если продолжать дифференцирование функций Формулы дифференцирования и т. д. этим способом, то получим результаты, подчиняющиеся одной и той же формуле:

Формулы дифференцирования

Таким образом, производная степени Формулы дифференцирования, где т— целое положительное число, равна произведению показателя степени на основание х в степени, на единицу меньшей чем данная.

Однако выведенное правило справедливо для любого показателя т, что мы и докажем.

Производная функции Формулы дифференцирования. Представив функцию Формулы дифференцирования в виде степени с дробным показателем и применяя правило (VI), получим:

Формулы дифференцирования

Таким образом,

Формулы дифференцирования

т. е. производная функции Формулы дифференцирования равна единице, деленной на удвоенную функцию.

Производная функции Формулы дифференцирования.

Заменив Формулы дифференцирования на Формулы дифференцирования и дифференцируя по правилу (VI), получим:

Формулы дифференцирования

т. е. производная дроби Формулы дифференцирования равна отрицательной дроби, равной единице, деленной на квадрат знаменателя.

Производная частного

Возьмем функцию

Формулы дифференцирования

где и и v — функции от х, имеющие производные по x, причем Формулы дифференцированияпри значении х, при котором находится производная. Применим основное правило дифференцирования.

Формулы дифференцирования

4-й шаг: применяя теоремы V, III, II и следствие 1 теоремы IV , находим:

Формулы дифференцирования

Здесь, как и при выводе формулы (IV), нужно считать и и v не зависящими от Формулы дифференцирования, а Формулы дифференцирования.

Итак,

Формулы дифференцирования

т. е. производная частного равна дроби, знаменатель которой есть квадрат делителя, л числитель есть разность между произведением делителя на производную делимого и произведением делимого на производную делителя.

Применение формул дифференцирования

Рассмотрим несколько примеров на применение выведенных правил.

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

По правилу (III) имеем:

Формулы дифференцирования

Применяя к первым трем слагаемым правило (V), а к последнему— правило (I), получим:

Формулы дифференцирования

Согласно правилам (VI) и (II) будем иметь:

Формулы дифференцирования

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

По правилу (IV) имеем:

Формулы дифференцирования

По правилу (III):

Формулы дифференцирования

По правилам (V), (II). (I) и (VI):

Формулы дифференцирования

Этот пример можно решить иначе: сначала перемножить выражения в скобках, а затем продифференцировать полученную сумму:

Формулы дифференцирования

Пример:

Продифференцировать функцию Формулы дифференцирования

Решение:

Преобразуем данную функцию следующим образом:

Формулы дифференцирования

Применяя правила (V) и (VI), будем иметь:

Формулы дифференцирования

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

Представим данную функцию в следующем виде:

Применяя правила (III) и (V), получим:

Формулы дифференцирования

По правилам (VIII), (VII) и (VI) имеем:

Формулы дифференцирования

По правилам (VIII), (VII) и (VI) имеем:

Формулы дифференцирования

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

По правилу (IX) имеем:

Формулы дифференцирования

Дифференцируя сумму по правилу (III), получим:

Формулы дифференцирования

Наконец, по правилам (VI), (II), (I) и (V) найдем:

Формулы дифференцирования

Можно иначе продифференцировать данную функцию, разделив в правой части данного уравнения почленно числитель на знаменатель, получим:

Формулы дифференцирования

или

Формулы дифференцирования

отсюда

Формулы дифференцирования

Функция от функции (сложная функция)

Пусть нам даны две функции:

Формулы дифференцирования

и

Формулы дифференцирования

Если в (1) заменить и его выражением из (2), то получим:

Формулы дифференцирования

Из уравнений (1) и (2) видно, что у есть функция от и, но и в свою очередь функция от х таким образом, функция у зависит от функции

Формулы дифференцирования

Функцию (3) называют функцией от функции или слоэюной функцией.

Всякую сложную функцию можно представить в виде нескольких простых. Разберем примеры.

Пример:

Представить функцию

Формулы дифференцирования

в виде двух простых.

Решение:

Положим

Формулы дифференцирования

тогда

Формулы дифференцирования

Мы получили две функции и и у более простого вида, чем данная.

Пример:

То же для функции Формулы дифференцирования

Решение:

Положим

Формулы дифференцирования

тогда

Формулы дифференцирования

Производная сложной функции

Возьмем функцию

Формулы дифференцирования

причем

Формулы дифференцирования

Пусть функция (2) имеет производную при данном х; тогда при Формулы дифференцированияи Формулы дифференцирования , Пусть также и функция (1) имеет производную при значении и, соответствующем тому же значению х. Напишем тождество

Формулы дифференцирования

Применяя к правой части тождества (3) теорему о пределе произведения, получим:

Формулы дифференцирования

Но, как известно,

Формулы дифференцирования

Поэтому равенство (4) можно переписать:

Формулы дифференцирования

Формула (5) служит для дифференцирования сложной функции, составленной из двух простых.

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

Представим данную функцию в виде следующих двух:

Формулы дифференцирования

Найдем сначала Формулы дифференцирования(т. е. производную функции у по аргументу и), а затем и Формулы дифференцирования (т. е. производную функции и по аргументу х):

Формулы дифференцирования

Искомая производная будет:

Формулы дифференцирования

или, заменяя и его значением,

Формулы дифференцирования

Как видно из формулы (5), производная сложной функции выражается произведением производных простых функций и, конечно, перестановка сомножителей не изменит результата. Однако удобней находить эти сомножители в одной определенно выбранной последовательности, которую полезно запомнить как правило. Так, например, для разобранного случая степенной функции это правило можно высказать следующим образом:

для дифференцирования сложной степенной функции*) нужно взять производную сначала от степени по основанию (принимая основание за аргумент), а потом от выражения, стоящего в основании, по независимой переменной и результаты перемножить.

*) Под сложной степенной функцией будем разуметь степень, основание которой есть функция от х.

Если Формулы дифференцирования — сложная степенная функция, то ее производная согласно этому правилу запишется так:

Формулы дифференцирования

Пусть, например, требуется найти производную функции

Формулы дифференцирования

Положив

Формулы дифференцирования

и, применяя правило (6), будем иметь:

Формулы дифференцирования

В дальнейшем для каждого особого случая будут даваться аналогичные правила, устанавливающие свою последовательность дифференцирования.

Разберем еще пример. Пусть требуется найти производную функции

Формулы дифференцирования

Разбив ее на две простые функции, получим:

Формулы дифференцирования

отсюда

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

И здесь можно установить последовательность в нахождении производной, которая выразится следующим правилом: для дифференцирования сложной функции Формулы дифференцированиянужно сначала взять производную от этой функции по подкоренному выражению и (считая и аргументом), а потом от подкоренного выражения по независимой переменной и результаты перемножить; таким образом, считая и функцией от x получаем:

Формулы дифференцирования

Так, например, производная функции

Формулы дифференцирования

но вышеуказанному правилу найдется так:

Формулы дифференцирования

Если дан корень другой степени, то его нужно предварительно преобразовать в степень с дробным показателем и применить правило для дифференцирования сложной степенной функции. Например,

Формулы дифференцирования

Производные тригонометрических функций

  1. Формулы дифференцирования

По общему правилу дифференцирования находим:

1-й шаг:

Формулы дифференцирования

2-й шаг:

Формулы дифференцирования

Преобразуя разность синусов, будем иметь:

Формулы дифференцирования

3-й шаг:

Формулы дифференцирования

После деления числителя и знаменателя дроби на 2 получим:

Формулы дифференцирования

4-й шаг:

Формулы дифференцирования

Но

Формулы дифференцирования

поэтому

Формулы дифференцирования

Следовательно

Формулы дифференцирования

2. Формулы дифференцирования

По формуле приведения можно написать:

Формулы дифференцирования

отсюда

Формулы дифференцирования

Для дифференцирования сложной функции Формулы дифференцированияпредставим ее в виде двух простых:

Формулы дифференцирования

Согласно формуле (5) имеем:

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

3. Формулы дифференцирования

Заменив tg x отношением Формулы дифференцирования и применяя правило дифференцирования частного, получим:

Формулы дифференцирования

Итак, имеем:

Формулы дифференцирования

4. Формулы дифференцирования

Как и в случае 3, имеем:

Формулы дифференцирования

Таким образом,

Формулы дифференцирования

В п. 2 настоящей лекции мы дифференцировали сложную функцию Формулы дифференцирования, пользуясь формулой (5) .

Однако эту операцию можно произвести и по следующему правилу:

для дифференцирования сложной тригонометрической функции *) нужно сначала взять производную от тригонометрической функции по выражению, стоящему под ее знаком (принимая его за аргумент), а потом от этого выражения по независимой переменной и результаты перемножить;

*) Под сложной тригонометрической функцией будем понимать тригонометрическую функцию сложного аргумента.

поэтому, считая и функцией от х, получаем:

Формулы дифференцирования

Пользуясь правилом (1), процесс дифференцирования функции sinФормулы дифференцирования можно записать таким образом:

Формулы дифференцирования

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

Согласно правилу (2) настоящей лекции найдем:

Формулы дифференцирования

Пример:

Продифференцировать функцию Формулы дифференцирования

Решение:

Переписав функцию в виде Формулы дифференцированиянайдем по правилу (6)

Формулы дифференцирования

Но Формулы дифференцирования сложная тригонометрическая функция, а потому согласно правилу (1) настоящей лекции имеем:

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

Процесс дифференцирования данной функции можно записать следующим образом:

Формулы дифференцирования

Производная логарифмической функции

Пусть дана функция

Формулы дифференцирования

Для ее дифференцирования применим общее правило.

Формулы дифференцирования

или

Формулы дифференцирования

Формулы дифференцирования

Положим

Формулы дифференцирования

отсюда

Формулы дифференцирования

Подставив значения Формулы дифференцирования и Формулы дифференцирования в равенство (1), получим:

Формулы дифференцирования

или, после потенцирования

Формулы дифференцирования

Из равенства (2) следует, чтоФормулы дифференцирования, если

Формулы дифференцирования

4-й шаг. Принимая во внимание условие (3), напишем:

Формулы дифференцирования

Множитель Формулы дифференцированияне зависит от n поэтому его можно считать постоянным при Формулы дифференцирования; следовательно,

Формулы дифференцирования

В подробных курсах анализа доказывается теорема: предел логарифма переменной величины равен логарифму предела этой же переменной величины; поэтому

Формулы дифференцирования

Но, согласно,

Формулы дифференцирования

Равенство (4) будет иметь вид

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

т. е. производная натурального логарифма равна единице, деленной на аргумент.

Если дан десятичный логарифм, то его нужно предварительно выразить через натуральный. Мы знаем, что

Формулы дифференцирования

Дифференцируя обе части последнего равенства, получим:

Формулы дифференцирования

или

Формулы дифференцирования

т. е. производная десятинного логарифма равна произведению производной натурального логарифма на постоянный множитель 0,4343.

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

Данная функция сложная; положим

Формулы дифференцирования

тогда

Формулы дифференцирования

Отсюда согласно формуле (5) имеем:

Формулы дифференцирования

Производную сложной логарифмической функции *) можно найти и по следующему правилу:

для дифференцирования сложной логарифмической функции нужно сначала взять производную от логарифма по выражению, стоящему под знаком логарифма (принимая его за аргумент), а потом от выражения, стоящего под знаком логарифма, по независимой переменной и результаты перемножить;

*) То-есть логарифмической функции сложного аргумента.

поэтому, считая и функцией х получаем:

Формулы дифференцирования

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

Согласно правилу (5) найдем:

Формулы дифференцирования

Но cos ( 1—х) — сложная тригонометрическая функция; применяя к ней правило (2) , получим:

Формулы дифференцирования

или

Формулы дифференцирования

Пример:

Продифференцировать функцию

Формулы дифференцирования

Решение:

Преобразуем сначала данную функцию, применив правила логарифмирования корня и дроби:

Формулы дифференцирования

Продифференцировав полученную функцию [ln х по правилу (XIV), а ln (1 + x) по правилу (5)], найдем:

Формулы дифференцирования

Производная степени при любом показателе

Мы вывели формулу

Формулы дифференцирования

для m целого положительного. Докажем теперь справедливость этой формулы для любого показателя. Положим, что в равенстве

Формулы дифференцирования

m имеет любое постоянное значение; логарифмируя это равенство по основанию е, получим:

Формулы дифференцирования

Приняв во внимание, что ln у — сложная функция ( ln у зависит от у, а у зависит от x), дифференцируем обе части равенства (1) по х:

Формулы дифференцирования

отсюда

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

Производная показательной функции

Дана показательная функция

Формулы дифференцирования

Прологарифмировав равенство (1) по основанию е, получим:

Формулы дифференцирования

Дифференцируем это равенство по х, считая )ln у сложной функцией:

Формулы дифференцирования

отсюда

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

т. е. производная показательной функции Формулы дифференцированияравна произведению самой функции на натуральный логарифм основания.

Если дана показательная функция

Формулы дифференцирования

где е — основание натурального логарифма, то производная ее найдется по формуле (XVI):

Формулы дифференцирования

или

Формулы дифференцирования

т. е. производная показательной функции Формулы дифференцированияравна самой функции.

Пример:

Продифференцировать функциюФормулы дифференцирования

Решение:

Заменив данную сложную функцию двумя простыми, получим:

Формулы дифференцирования

Согласно формуле (5) имеем:

Формулы дифференцирования

Данную функцию можно дифференцировать и по следующему правилу:

для дифференцирования сложной показательной функции *) нужно сначала взять производную от показательной функции по выражению, стоящему в показателе (считая его аргументом), а потом от выражения, стоящего в показателе, по независимой переменной и результаты перемножить;

*) То-есть показательной функции сложного аргумента.

поэтому, считая и функцией от х, получаем:

Формулы дифференцирования

Пример:

Продифференцировать функцию Формулы дифференцирования

Решение:

По правилу (3) настоящей лекции

Формулы дифференцирования

Но согласно правилу (3)

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

Производные обратных тригонометрических функций

1. Формулы дифференцирования

В силу определения арксинуса получаем:

Формулы дифференцирования

Здесь sin у представляет сложную функцию (sin y зависит от у, а у зависит от х; дифференцируя обе части этого равенства по х, напишем):

Формулы дифференцирования

или

Формулы дифференцирования

откуда

Формулы дифференцирования

Приняв во внимание, что

Формулы дифференцирования

*) Здесь радикал берется с плюсом, так как значения arcsin х заключены между Формулы дифференцирования и Формулы дифференцирования, а в этом промежутке cos у имеет положительные значения.

а также равенство (1), получим:

Формулы дифференцирования

или

Формулы дифференцирования

2.Формулы дифференцирования

Согласно определению арккосинуса имеем:

Формулы дифференцирования

Дифференцируя обе части этого равенства по x, считая cos у сложной функцией, найдем:

Формулы дифференцирования

или

Формулы дифференцирования

отсюда

Формулы дифференцирования

Но

Формулы дифференцирования

**) И здесь радикал берется с плюсом, так как значения arccos х заключены между 0 и Формулы дифференцирования; в этом же промежутке sin у имеет положительные значения.

поэтому

Формулы дифференцирования

или

Формулы дифференцирования

*) Здесь радикал берется с плюсом, так как значения arcsin х

К . TZ

заключены между — у и +у,ав этом промежутке cos у имеет

положительные значения.
**) И здесь радикал берется с плюсом, так как значения arccos х заключены между 0 и я; в этом же промежутке sin у имеет положительные значения.

3.Формулы дифференцирования

Согласно определению арктангенса имеем:

Формулы дифференцирования

Дифференцируя обе части этого равенства по х, как и в предыдущих случаях, получим:

Формулы дифференцирования

или

Формулы дифференцирования

отсюда

Формулы дифференцирования

Но

Формулы дифференцирования

Приняв во внимание равенство (2), получим:

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

4. Формулы дифференцирования

Для данной функции имеем:

Формулы дифференцирования

После дифференцирования этого равенства получим:

Формулы дифференцирования

или

Формулы дифференцирования

отсюда

Формулы дифференцирования

Но

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

т. е.

Формулы дифференцирования

Пример:

Продифференцировать функцию Формулы дифференцирования

Решение:

Заменим данную сложную функцию двумя простыми:

Формулы дифференцирования

Согласно формуле (5) имеем:

Формулы дифференцирования

Для дифференцирования этой функции можно воспользоваться и следующим правилом:

для дифференцирования сложной обратной тригонометрической функции*) нужно сначала взять производную от обратной тригонометрической функции по выражению, стоящему под ее знаком (принимая его за аргумент), а потом от этого же выражения по независимой переменной и результаты перемножить;

*) То-есть обратной тригонометрической функции сложного аргумента.

таким образом, считая и функцией от х, получаем:

Формулы дифференцирования

Пример:

Продифференцировать функцию Формулы дифференцирования.

Решение:

Данная функция — обратная тригонометрическая и притом сложная; применяя вышеуказанное правило для производной аrсsin u, найдем:

Формулы дифференцирования

Но Формулы дифференцирования тоже сложная функция; согласно правилу (7) имеем:

Формулы дифференцирования

Следовательно,

Формулы дифференцирования

Производная неявной функции

Пусть неявная функция у задана уравнением

Формулы дифференцирования

Найдем производную у’, полагая, что она существует. Для этого дифференцируем обе части уравнения (1), применяя правило для производной алгебраической суммы, получим:

Формулы дифференцирования

Так как ху — произведение переменных величин, то:

Формулы дифференцирования

Таким образом, равенство (2) примет вид

Формулы дифференцирования

или

Формулы дифференцирования

Решая последнее уравнение относительно у’, найдем

Формулы дифференцирования

Для дифференцирования данной функции можно было бы сначала выразить у через х, а потом уже найти производную от явной функции. В самом деле, из уравнения (1) имеем:

Формулы дифференцирования

откуда

Формулы дифференцирования

По внешнему виду этот результат отличается от найденного ранее, но если мы в равенстве (3) подставим значение у, то получим:

Формулы дифференцирования

Таким образом, результаты дифференцирования в обоих случаях оказались одинаковыми. Однако переход от неявной к явной функции можно делать только в простейших случаях. Встречаются неявные функции, которые обратить в явные очень трудно и даже невозможно. Например, функцию у, заданную уравнением

ху + х = sin у, явно выразить нельзя. Поэтому приходится дифференцировать такие функции как неявные.

Разберем другой пример. Пусть требуется найти производную неявной функции у, заданной уравнением

Формулы дифференцирования

Применяя правило дифференцирования алгебраической суммы, имеем:

Формулы дифференцирования

Но Формулы дифференцированиясложная функция (Формулы дифференцирования зависит от у, а у зависит от х). По правилу дифференцирования сложной степенной функции имеем:

Формулы дифференцирования

Следовательно, равенство (4) примет вид

Формулы дифференцирования

или

Формулы дифференцирования

откуда

Формулы дифференцирования

Производная второго порядка

Пусть функция у = f(x) имеет производную у’ = f'(x). Производная от f'(x) по x , если она существует, называется второй производной или производной второго порядка.

Вторую производную функции у = f(x) принято обозначать так:

Формулы дифференцирования

Пример:

Найти вторую производную функции Формулы дифференцирования

Решение:

Формулы дифференцирования

Механический смысл второй производной

Пусть тело движется прямолинейно по закону

Формулы дифференцирования

Мы установили, что скорость v движения тела в данный момент t определяется как производная пути по времени, т. е.

Формулы дифференцирования

Если тело движется неравномерно, то скорость v с течением времениФормулы дифференцирования изменяется и за промежуток времени ät получает приращение Формулы дифференцирования. В этом случае величина отношения Формулы дифференцированияпоказывающая изменение скорости в единицу времени, называется средним ускорением в промежутке времени от t до t + Формулы дифференцирования.

Положим, что Формулы дифференцирования , тогда Формулы дифференцирования среднее ускорение Формулы дифференцирования

стремится к величине, которая называется ускорением в данный момент времени t. Обозначив это ускорение через j, будем иметь:

Формулы дифференцирования

Таким образом, ускорение прямолинейного движения тела в данный момент равно второй производной пути по времени, вычисленной для данного момента.

Пример:

Точка движется прямолинейно по закону

Формулы дифференцирования

Найти скорость и ускорение точки в момент t = 5.

Решение:

Для определения скорости нужно найти первую производную данной функции при t = 5. Таким образом:

Формулы дифференцирования

и

Формулы дифференцирования

Ускорение j равно второй производной функции при t = 5, т. е.

Формулы дифференцирования

Величина ускорения оказалась постоянной для любого значения t, значит, движение точки по заданному закону происходит с постоянным ускорением.

Формулы дифференцирования

Дополнение к формулам дифференцирования

Основные формулы и правила дифференцирования

Основные формулы и правила дифференцирования

Смотрите также:

Если вам потребуется помощь по математическому анализу вы всегда можете написать мне в whatsapp.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Понравилась статья? Поделить с друзьями:
  • Скайрим как найти маску вольсунг
  • Как составить план контроля менеджера
  • Как найти номер кошелька на яндекс деньги
  • Как найти средний доход на каждого человека
  • Как составить ведомственную программу