Как найти производную кривой

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Определение длины дуги кривой

Рассмотрим в пространстве дугу $cup AB$ некоторой кривой. Точками $M_{0} $, $M_{1} $, $M_{2} $, …. , $M_{n-1} $, $M_{n} $ разобьем её на $n$ произвольных последовательных участков. Соединим соседние точки отрезками прямых и получим вписанную в дугу $cup AB$ ломаную, в которой $M_{0} $ совпадает с точкой $A$, а $M_{n} $ совпадает с точкой $B$. Эта ломаная состоит из звеньев $M_{0} M_{1} $, $M_{1} M_{2} $, …. , $M_{i-1} M_{i} $, …. , $M_{n-1} M_{n} $.

Длина дуги и ее производная

Обозначим длины звеньев этой ломаной следующим образом: длина $M_{0} M_{1} =Delta ; l_{1} $, длина $M_{1} M_{2} =Delta ; l_{2} $, …. , длина $M_{i-1} M_{i} =Delta ; l_{i} $, …. , длина $M_{n-1} M_{n} =Delta ; l_{n} $. Тогда периметр этой ломаной $l_{n} =Delta ; l_{1} +Delta ; l_{2} +ldots +Delta ; l_{i} +ldots +Delta ; l_{n} $ или просто $l_{n} =sum limits _{i=1}^{n}Delta ; l_{i} $.

Будем уменьшать длины всех звеньев за счет увеличения их количества. При этом форма ломаной будет приближается к форме дуги кривой.

На этом основании длина дуги кривой определяется так: длиной $l$ дуги называется предел, к которому стремится периметр вписанной в эту дугу ломаной при неограниченном увеличении числа её звеньев и при стремлении к нулю наибольшей из длин её звеньев.

Соответствующее выражение имеет вид: $l=mathop{lim }limits_{max ; Delta ; l_{i} to 0} sum limits _{i=1}^{n}Delta ; l_{i} $.

Определение

Кривые, для которых этот предел существует, называются спрямляемыми.

Формулы для длины дуги плоской кривой

Пусть кривая задана между своими точками $A$ и $B$ на отрезке $left[a,; bright]$ уравнением в явном виде $y=fleft(xright)$, где $fleft(xright)$ — непрерывная функция с непрерывной первой производной на этом отрезке. В этом случае длина дуги кривой между точками точками $A$ и $B$ вычисляется по формуле $l=int limits _{a}^{b}sqrt{1+y’^{2} } cdot dx $.

«Длина дуги и ее производная» 👇

Задача 1

Найти длину дуги цепной линии $y=frac{1}{2} cdot left(e^{x} +e^{-x} right)$ на отрезке $left[0,; 1right]$.

Находим производную:

[y’=left(frac{1}{2} cdot left(e^{x} +e^{-x} right)right)^{{‘} } =frac{1}{2} cdot left(e^{x} -e^{-x} right).]

Вычисляем:

[1+y’^{2} =1+left(frac{1}{2} cdot left(e^{x} -e^{-x} right)right)^{2} =1+frac{1}{4} cdot left(e^{2cdot x} -2cdot e^{x} cdot e^{-x} +e^{-2cdot x} right)=]

[=1+frac{1}{4} cdot left(e^{2cdot x} -2+e^{-2cdot x} right)=frac{1}{4} cdot left(e^{x} +e^{-x} right)^{2} ;]

[sqrt{1+y’^{2} } =frac{1}{2} cdot left(e^{x} +e^{-x} right).]

Находим длину дуги:

[l=int limits _{a}^{b}sqrt{1+y’^{2} } cdot dx =int limits _{0}^{1}frac{1}{2} cdot left(e^{x} +e^{-x} right)cdot dx =frac{1}{2} cdot left[e^{x} -e^{-x} right]_{0}^{1} =]

[=frac{1}{2} cdot left(left(e^{1} -e^{-1} right)-left(e^{0} -e^{-0} right)right)=frac{e-e^{-1} }{2} .]

Пусть кривая задана параметрическими уравнениями $x=xleft(tright)$ и $y=yleft(tright)$, $alpha le tle beta $. Предположим, что функции $x=xleft(tright)$ и $y=yleft(tright)$ и их производные непрерывны при $alpha le tle beta $, причем $x’left(tright)ne 0$. В этом случае длина дуги кривой вычисляется по формуле $l=int limits _{alpha }^{beta }sqrt{left(x’left(tright)right)^{2} +left(y’left(tright)right)^{2} } cdot dt $.

Задача 2

Найти длину одной арки циклоиды $x=t-sin t$, $y=1-cos t$, $0le tle 2cdot pi $.

Находим производные:

[x’=left(t-sin tright)^{{‘} } =1-cos t; y’=left(1-cos tright)^{{‘} } =sin t.]

Вычисляем:

[left(x’right)^{2} +left(y’right)^{2} =left(1-cos tright)^{2} +left(sin tright)^{2} =2cdot left(1-cos tright)=4cdot sin ^{2} frac{t}{2} .]

Находим длину дуги:

[l=int limits _{0}^{2cdot pi }sqrt{4cdot sin ^{2} frac{t}{2} } cdot dt =2cdot int limits _{0}^{2cdot pi }sin frac{t}{2} cdot dt =-4cdot left[cos frac{t}{2} right]_{0}^{2cdot pi } =]

[=-4cdot left(cos frac{2cdot pi }{2} -cos frac{0}{2} right)=-4cdot left(-1-1right)=8.]

Пусть кривая задана в полярных координатах $rho =rho left(phi right)$, $alpha le phi le beta $. Предположим, что функция $rho =rho left(phi right)$ и её производная непрерывны при $alpha le phi le beta $. В этом случае длина дуги кривой вычисляется по формуле $l=int limits _{alpha }^{beta }sqrt{rho ^{2} +rho ‘^{2} } cdot dphi $.

Задача 3

Найти длину кардиоиды $rho =1+cos phi $.

Так как кардиоида симметрична относительно полярной оси, то изменяя полярный угол $phi $ от $0$ до $pi $, мы получим половину длины кардиоиды.

Находим производную: $rho ‘=-sin phi $.

Вычисляем:

[rho ^{2} +rho ‘^{2} =left(1+cos phi right)^{2} +left(-sin phi right)^{2} =2cdot left(1+cos phi right).]

Находим половину длины кардиоиды:

[frac{l}{2} =int limits _{0}^{pi }sqrt{2cdot left(1+cos phi right)} cdot dphi =2cdot int limits _{0}^{pi }cos frac{phi }{2} cdot dphi =4cdot left[sin frac{phi }{2} right]_{0}^{pi } =4cdot sin frac{pi }{2} =4.]

Полная длина кардиоиды $l=8$.

Производная и дифференциал дуги

Пусть в формуле $l=int limits _{a}^{b}sqrt{1+left(f’left(xright)right)^{2} } cdot dx $ для длины дуги кривой, заданной в виде $y=fleft(xright)$, $ale xle b$, нижняя граница интеграла $a$ остается постоянной, а верхняя граница изменяется и равна $x$.

При этом длина дуги $lleft(xright)=int limits _{a}^{x}sqrt{1+left(f’left(tright)right)^{2} } cdot dt $ будет функцией верхней границы (переменная интегрирования переобозначена, чтобы не путать её с верхней границей).

В соответствии с теоремой о производной интеграла по верхней границе производная этой функции имеет вид $l’left(xright)=sqrt{1+left(f’left(xright)right)^{2} } $.

Отсюда получаем дифференциал дуги:

$dlleft(xright)=l’left(xright)cdot dx=sqrt{1+left(f’left(xright)right)^{2} } cdot dx$, откуда $dl=sqrt{1+y’^{2} } cdot dx$ или $dl=sqrt{dx^{2} +dy^{2} } $.

При параметрическом задании функции $x=xleft(tright)$ и $y=yleft(tright)$, $alpha le tle beta $ дифференциал дуги имеет вид $dl=sqrt{left(x’left(tright)right)^{2} +left(y’left(tright)right)^{2} } cdot dt$.

При задании функции в полярных координатах $rho =rho left(phi right)$, $alpha le phi le beta $ дифференциал дуги имеет вид $dl=sqrt{rho ^{2} +rho ‘^{2} } cdot dphi $.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Производная функции, заданной параметрически

4 января 2022

Сегодня мы научимся считать производную параметрической функции. Для этого разберём основную формулу, несколько примеров, но главное — одну из самых частых и глупых ошибок, которые допускают начинающие студенты.

План такой:

  1. Параметрическое задание функции — основные понятия
  2. Производная функции, заданной параметрически
  3. Типичные ошибки на примере второй производной
  4. Третья производная — разминка для мозгов

Начнём с ключевых определений и соображений.

1. Функция, заданная параметрически

Считая производные, мы привыкли работать с функциями, заданными аналитически, т.е. формулой $y=fleft( x right)$. Подставляя в эту формулу разные значения $x$, мы легко находим значение $y$.

Несколько примеров таких функций:

  • Квадратичная функция: $y={{x}^{2}}$. График — парабола.
  • Показательная функция: $y={{text{e}}^{x}}$. Она же «экспонента».
  • Тригонометрическая функция: $y=sin x$. График — синусоида.

Но что если величины $y$ и $x$ зависят не друг от друга, а от некой третьей переменной? Скажем, от параметра $t$?

Пример 1. Функция, заданная параметрически:

[left{ begin{align} & x=cos t \ & y=sin t \ end{align} right.]

Перебирая разные $tin mathbb{R}$, мы будем получать точки с координатами $left( x;y right)$, которые в итоге превратятся в график:

Тригонометрический круг — пример графика параметрической функции

Да это же тригонометрическая окружность! Она задаётся уравнением ${{x}^{2}}+{{y}^{2}}=1$.

График такого уравнения не является функцией (если забыли почему, гляньте урок про графики уравнений с двумя переменными). Но его можно «составить» из графиков двух функций:

[begin{align} & {{y}_{1}}=sqrt{1-{{x}^{2}}} \ & {{y}_{2}}=-sqrt{1-{{x}^{2}}} \ end{align}]

А вот это уже привычные нам аналитические функции, и для них можно посчитать производную!

К сожалению, далеко не всегда параметрическое уравнение вида

[left{ begin{align} & x=varphi left( t right) \ & y=psi left( t right) \ end{align} right.]

можно свести к привычными выражениям вида $y=fleft( x right)$. Но это ни в коем случае не означает, что для таких параметрических функций нельзя посчитать производную. Можно и даже нужно. И поможет нам в этом следующая формула.

2. Производная функции, заданной параметрически

Итак, основная теорема.

Теорема 1. Пусть функция $y=fleft( x right)$ задана параметрически:

[left{ begin{align} & x=varphi left( t right) \ & y=psi left( t right) \ end{align} right.]

Тогда производная этой функции считается по формуле

[{{{y}’}_{x}}left( x right)=frac{{{{{y}’}}_{t}}left( t right)}{{{{{x}’}}_{t}}left( t right)}]

Эту теорему очень легко доказать. В самом деле, если функция $x=varphi left( t right)$ рассматривается на интервале $tin left( a;b right)$ таком, что существует обратная функция $t={{varphi }^{-1}}left( x right)$, то можно определить сложную функцию

[yleft( x right)=psi left( {{varphi }^{-1}}left( x right) right)]

По теореме о производной сложной функции:

[{{{y}’}_{x}}left( x right)={{{psi }’}_{x}}left( {{varphi }^{-1}}left( x right) right)={{{psi }’}_{x}}left( t right)={{{psi }’}_{t}}left( t right)cdot {{{t}’}_{x}}left( x right)]

[begin{align} {{{{y}’}}_{x}}left( x right) & ={{{{psi }’}}_{x}}left( {{varphi }^{-1}}left( x right) right)= \ & ={{{{psi }’}}_{x}}left( t right)= \ & ={{{{psi }’}}_{t}}left( t right)cdot {{{{t}’}}_{x}}left( x right) end{align}]

Но по теореме об обратной функции ${{{t}’}_{x}}={1}/{{{{{x}’}}_{t}}};$, поэтому

[{{{y}’}_{x}}left( x right)=frac{{{{{psi }’}}_{t}}left( t right)}{{{{{x}’}}_{t}}left( t right)}]

Что и требовалось доказать.

Замечание. Когда выражение дифференцируется по разным переменным, целесообразно указывать в нижним индексе ту переменную, по которой выполняется дифференцирование: ${{{y}’}_{x}}$, ${{{y}’}_{t}}$, ${{{x}’}_{t}}$ и т.д.

Это поможет избежать недоразумений и глупых вычислительных ошибок. Кроме того, подобные обозначения активно используются в дифференциальном исчислении функций нескольких переменных.

Детальное руководство по работе с нижними индексами и переменными дифференцирования — см. урок «Производная сложной функции». Сейчас просто отметим, что мы привыкли считать производную по переменной $x$. Но с тем же успехом можно считать производную и по $t$, и по какому-нибудь $varphi $, и вообще по любой переменной, которую мы увидим в функции.

2.1. Примеры

Приведённые выше формулы могут показаться сложными и страшными. Но на деле это одна из самых лёгких тем в производных. Взгляните:

Пример 1. Найдите ${{{y}’}_{x}}$, если

[left{ begin{align} & x=2t \ & y=3{{t}^{2}}-5t \ end{align} right.]

Считаем производные ${{{x}’}_{t}}$ и ${{{y}’}_{t}}$:

[begin{align} & {{{{x}’}}_{t}}={{left( 2t right)}^{prime }}_{t}=2 \ & {{{{y}’}}_{t}}={{left( 3{{t}^{2}}-5t right)}^{prime }}_{t}=6t-5 end{align}]

Теперь считаем ${{{y}’}_{x}}$ по формуле производной параметрической функции:

[{{{y}’}_{x}}=frac{{{{{y}’}}_{t}}}{{{{{x}’}}_{t}}}=frac{6t-5}{2}]

Вот и всё! Готовое выражение можно разбить на две дроби, а можно оставить и так.

Пример 2. Найдите ${{{y}’}_{x}}$, если

[left{ begin{align} & x={{2}^{-t}} \ & y={{2}^{2t}} \ end{align} right.]

Вместо многочленов видим показательные функции. Это ничего не меняет, снова считаем ${{{x}’}_{t}}$ и ${{{y}’}_{t}}$:

[begin{align} & {{{{x}’}}_{t}}={{left( {{2}^{-t}} right)}^{prime }}_{t}={{2}^{-t}}cdot left( -ln 2 right) \ & {{{{y}’}}_{t}}={{left( {{2}^{2t}} right)}^{prime }}_{t}={{2}^{2t}}cdot 2ln 2 end{align}]

Теперь находим ${{{y}’}_{x}}$ по формуле:

[{{{y}’}_{x}}=frac{{{{{y}’}}_{t}}}{{{{{x}’}}_{t}}}=frac{{{2}^{2t}}cdot 2ln 2}{{{2}^{-t}}cdot left( -ln 2 right)}=-{{2}^{3t+1}}]

Для решения этого задания пришлось вспомнить производную показательной функции и некоторые свойства степеней.:)

Пример 3. Найдите ${{{y}’}_{x}}$, если

[left{ begin{align} & x=acos varphi \ & y=bsin varphi \ end{align} right.]

Здесь переменной-параметром является $varphi $, а буквы $a$ и $b$ — просто числа, которые будут частью ответа. Считаем ${{{x}’}_{varphi }}$ и ${{{y}’}_{varphi }}$ — производные тригонометрических функций:

[begin{align} & {{{{x}’}}_{varphi }}={{left( acos varphi right)}^{prime }}_{varphi }=-asin varphi\ & {{{{y}’}}_{varphi }}={{left( bsin varphi right)}^{prime }}_{varphi }=bcos varphiend{align}]

Находим ${{{y}’}_{x}}$:

[{{{y}’}_{x}}=frac{{{{{y}’}}_{varphi }}}{{{{{x}’}}_{varphi }}}=frac{bcos varphi }{-asin varphi }=-frac{b}{a}operatorname{ctg}varphi ]

2.2. Производная в точке

Понятно, что это были совсем простые задачи. Буквально через минуту мы рассмотрим примеры посерьёзнее, но сначала важное дополнение.

Часто нам требуется посчитать не производную функции вообще, а лишь в конкретной точке. Например, чтобы провести касательную или нормаль к кривой, заданной параметрически, в некой точке ${{M}_{0}}left( {{x}_{0}};{{y}_{0}} right)$, лежащей на этой кривой.

В этом случае задача ещё более упрощается.

Пример 4. Найдите ${{{y}’}_{x}}$ при $t={pi }/{4};$, если

[begin{align} & xleft( t right)=tcdot left( tcos t-2sin t right) \ & yleft( t right)=tcdot left( tsin t+2cos t right) \ end{align}]

Задача явно серьёзнее, чем все предыдущие. Считаем ${{{x}’}_{t}}$ и ${{{y}’}_{t}}$:

[begin{align} & {{{{x}’}}_{t}}={{left( tcdot left( tcos t-2sin t right) right)}^{prime }}_{t}=-left( {{t}^{2}}+2 right)cdot sin t \ & {{{{y}’}}_{t}}={{left( tcdot left( tsin t+2cos t right) right)}^{prime }}_{t}=left( {{t}^{2}}+2 right)cdot cos t end{align}]

[begin{align} {{{{x}’}}_{t}} & ={{left( tcdot left( tcos t-2sin t right) right)}^{prime }}_{t}= \ & =-left( {{t}^{2}}+2 right)cdot sin t \ {{{{y}’}}_{t}} & ={{left( tcdot left( tsin t+2cos t right) right)}^{prime }}_{t}= \ & =left( {{t}^{2}}+2 right)cdot cos tend{align}]

И сразу подставляем $t={pi }/{4};$:

[begin{align} & {{{{x}’}}_{t}}left( frac{pi }{4} right)=-left( frac{{{pi }^{2}}}{16}+2 right)cdot frac{sqrt{2}}{2} \ & {{{{y}’}}_{t}}left( frac{pi }{4} right)=left( frac{{{pi }^{2}}}{16}+2 right)cdot frac{sqrt{2}}{2} end{align}]

Осталось найти ${{{y}’}_{x}}$:

[{{{y}’}_{x}}=frac{{{{{y}’}}_{t}}}{{{{{x}’}}_{t}}}=-frac{32+{{pi }^{2}}}{32+{{pi }^{2}}}=-1]

Разумеется, можно было сначала найти общую формулу для ${{{y}’}_{x}}$, а уже затем подставить в неё $t={pi }/{4};$ — результат получится точно такой же.

3. Типичные ошибки при вычислении производных

А теперь, пожалуй, ключевой момент, связанный с дифференцированием параметрических функций. Ошибка, которую я сам допустил много лет назад.

Давайте ещё раз взглянем на функцию, заданную параметрически:

[left{ begin{align} & x=varphi left( t right) \ & y=psi left( t right) \ end{align} right.]

И на производную этой функции:

[{{{y}’}_{x}}left( x right)=frac{{{{{y}’}}_{t}}left( t right)}{{{{{x}’}}_{t}}left( t right)}]

А теперь представьте, что надо посчитать вторую производную: ${{{y}»}_{xx}}$. И тут у многих проскакивает мысль: а что если взять формулу для первой производной и просто увеличить в ней количество «штрихов»?

Получится что-то типа вот этого:

[{{{y}»}_{xx}}left( x right)=frac{{{{{y}»}}_{tt}}left( t right)}{{{{{x}»}}_{tt}}left( t right)}]

Так вот: эта формула не верна!

Чтобы правильно найти вторую производную функции, заданной параметрически, достаточно вспомнить, что вторая производная — это просто производная от производной:

[{{{y}»}_{xx}}={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}]

Проще говоря, сначала мы находим ${{{y}’}_{x}}$ — это будет какая-то функция от $t$. Затем уже от этой функции вновь считаем производную — всё по той же формуле, которую мы сегодня уже много раз использовали. Получится так:

[{{{y}»}_{xx}}={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}]

Тут нас ждёт две новости:

  • Хорошая: мы уже знаем ${{{x}’}_{t}}$. Это значит, что каждая последующая производная будет считаться чуть проще и быстрее;
  • Плохая: можно легко запутаться во всех этих штрихах и переменных.

Чтобы разобраться с плохой новостью, достаточно просто небольшой практики. Поэтому сейчас мы разберём три примера. А точнее, три задачи из контрольных работ МГТУ им. Баумана. А там знают толк в производных.:)

Пример 5. Найдите ${{{y}»}_{xx}}$, если

[left{ begin{align} & x=cos 2t \ & y=sin t \ end{align} right.]

1. Сначала находим первую производную. Для этого считаем ${{{x}’}_{t}}$ и ${{{y}’}_{t}}$:

[begin{align} & {{{{x}’}}_{t}}=-2sin 2t=-4sin tcos t \ & {{{{y}’}}_{t}}=cos t end{align}]

Откуда находим саму производную ${{{y}’}_{x}}$:

[{{{y}’}_{x}}=frac{{{{{y}’}}_{t}}}{{{{{x}’}}_{t}}}=frac{cos t}{-4sin tcos t}=-frac{1}{4sin t}]

2. Теперь находим вторую производную. Для этого считаем ${{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}$:

[{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}={{left( -frac{1}{4sin t} right)}^{prime }}_{t}=frac{cos t}{4{{sin }^{2}}t}]

Кроме того, мы уже знаем ${{{x}’}_{t}}$. Поэтому находим вторую производную ${{{y}»}_{xx}}$:

[{{{y}»}_{xx}}={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}=frac{cos t}{4{{sin }^{2}}t}cdot frac{1}{-4sin tcos t}=-frac{1}{16}cdot frac{1}{{{sin }^{3}}t}]

[begin{align} {{{{y}»}}_{xx}} & ={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}= \ & =frac{cos t}{4{{sin }^{2}}t}cdot frac{1}{-4sin tcos t}= \ & =-frac{1}{16}cdot frac{1}{{{sin }^{3}}t} end{align}]

Вторая производная найдена.

Для сравнения посчитаем «производную» по неправильной формуле:

[frac{{{{{y}»}}_{tt}}}{{{{{x}»}}_{tt}}}=frac{{{left( {{{{y}’}}_{t}} right)}^{prime }}_{t}}{{{left( {{{{x}’}}_{t}} right)}^{prime }}_{t}}=frac{{{left( cos t right)}^{prime }}_{t}}{{{left( -2sin 2t right)}^{prime }}_{t}}=frac{-sin t}{-4cos 2t}=frac{1}{4}cdot frac{sin t}{cos 2t}]

[begin{align} frac{{{{{y}»}}_{tt}}}{{{{{x}»}}_{tt}}} & =frac{{{left( {{{{y}’}}_{t}} right)}^{prime }}_{t}}{{{left( {{{{x}’}}_{t}} right)}^{prime }}_{t}}=frac{{{left( cos t right)}^{prime }}_{t}}{{{left( -2sin 2t right)}^{prime }}_{t}}= \ & =frac{-sin t}{-4cos 2t}=frac{1}{4}cdot frac{sin t}{cos 2t} end{align}]

Получили совершенно другое выражение, которое не является второй производной.

Итак, вторая производная считается из первой ровно по той же формуле, по какой первая производная считается из исходной функции.

Пример 6. Найдите ${{{y}»}_{xx}}$, если

[left{ begin{align} & x={{text{e}}^{t}}+1 \ & y=left( {{t}^{2}}-2t+2 right)cdot {{text{e}}^{t}} \ end{align} right.]

Первая производная ${{{y}’}_{x}}$ через ${{{x}’}_{t}}$ и ${{{y}’}_{t}}$:

[begin{align} & {{{{x}’}}_{t}}={{text{e}}^{t}} \ & {{{{y}’}}_{t}}={{t}^{2}}cdot {{text{e}}^{t}} \ & {{{{y}’}}_{x}}=frac{{{{{y}’}}_{t}}}{{{{{x}’}}_{t}}}=frac{{{t}^{2}}cdot {{text{e}}^{t}}}{{{text{e}}^{t}}}={{t}^{2}} \ end{align}]

Вторая производная ${{{y}»}_{xx}}$ через ${{{x}’}_{t}}$ и ${{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}$:

[begin{align} & {{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}=2t \ & {{{{y}»}}_{xx}}={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}=frac{2t}{{{text{e}}^{t}}} \ end{align}]

Замечание. Когда освоитесь с основной формулой, выкладки можно сократить буквально до двух строк:

[begin{align} & {{{{y}’}}_{x}}=frac{{{{{y}’}}_{t}}}{{{{{x}’}}_{t}}}=frac{{{t}^{2}}cdot {{text{e}}^{t}}}{{{text{e}}^{t}}}={{t}^{2}} \ & {{{{y}»}}_{xx}}={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}=frac{2t}{{{text{e}}^{t}}} \ end{align}]

Впрочем, не стоит увлекаться сокращением выкладок, если у вас есть хоть малейшее сомнение или недопонимание на любом этапе вычислений.

Пара дополнительных минут — сомнительная экономия по сравнению с парой баллов на контрольной. И уж тем более по сравнению с недопониманием материала.

Пример 7. Найдите ${{{y}»}_{xx}}$, если

[left{ begin{align} & x={1}/{left( 1+{{t}^{2}} right)}; \ & y=2operatorname{arctg}t \ end{align} right.]

Дифференцирование арктангенса дробно-рациональной функции — довольно громоздкие действия. Тут в пару строк не уложиться.

1. Считаем ${{{x}’}_{t}}$ и ${{{y}’}_{t}}$:

[begin{align} & {{{{x}’}}_{t}}={{left( frac{1}{1+{{t}^{2}}} right)}^{prime }}_{t}=frac{-2t}{{{left( 1+{{t}^{2}} right)}^{2}}} \ & {{{{y}’}}_{t}}={{left( 2operatorname{arctg}t right)}^{prime }}_{t}=frac{2}{1+{{t}^{2}}} \ end{align}]

Первая производная ${{{y}’}_{x}}$:

[{{{y}’}_{x}}=frac{{{{{y}’}}_{t}}}{{{{{x}’}}_{t}}}=frac{2}{1+{{t}^{2}}}cdot frac{{{left( 1+{{t}^{2}} right)}^{2}}}{-2t}=-frac{1+{{t}^{2}}}{t}]

2. Считаем ${{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}$:

[{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}=-frac{2tcdot t-left( 1+{{t}^{2}} right)}{{{t}^{2}}}=frac{1-{{t}^{2}}}{{{t}^{2}}}]

Вторая производная ${{{y}»}_{xx}}$:

[{{{y}»}_{xx}}={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}=frac{1-{{t}^{2}}}{{{t}^{2}}}cdot frac{{{left( 1+{{t}^{2}} right)}^{2}}}{-2t}=frac{{{left( 1+{{t}^{2}} right)}^{2}}left( {{t}^{2}}-1 right)}{2{{t}^{3}}}]

[begin{align} {{{{y}»}}_{xx}} & ={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}= \ & =frac{1-{{t}^{2}}}{{{t}^{2}}}cdot frac{{{left( 1+{{t}^{2}} right)}^{2}}}{-2t}= \ & =frac{{{left( 1+{{t}^{2}} right)}^{2}}left( {{t}^{2}}-1 right)}{2{{t}^{3}}} end{align}]

Замечание. При делении дробных выражений полезно заменять их умножением на обратное:

[frac{Aleft( x right)}{Bleft( x right)}:frac{Pleft( x right)}{Qleft( x right)}=frac{Aleft( x right)}{Bleft( x right)}cdot frac{Qleft( x right)}{Pleft( x right)}]

Именно так мы и поступили при вычислении ${{{y}’}_{x}}$ и ${{{y}»}_{xx}}$ в последнем примере. И не только в последнем.:)

4. Третья производная

Пример 8. Найдите производную третьего порядка ${{{y}»’}_{xxx}}$ для функции, заданной параметрически:

[left{ begin{align} & xleft( t right)={{text{e}}^{t}}left( cos t+sin t right) \ & yleft( t right)={{text{e}}^{t}}left( cos t-sin t right) \ end{align} right.]

Решение будет состоять из трёх шагов.

1. Найдём первую производную ${{{y}’}_{x}}$. Для этого считаем ${{{x}’}_{t}}$ и ${{{y}’}_{t}}$:

[begin{align} {{{{x}’}}_{t}} & =2cos tcdot {{text{e}}^{t}} \ {{{{y}’}}_{t}} & =-2sin tcdot {{text{e}}^{t}} \ end{align}]

Первая производная ${{{y}’}_{t}}$ равна

[{{{y}’}_{x}}=frac{{{{{y}’}}_{t}}}{{{{{x}’}}_{t}}}=frac{-2sin tcdot {{text{e}}^{t}}}{2cos tcdot {{text{e}}^{t}}}=-operatorname{tg}t]

2. Считаем вторую производную. При этом ${{{x}’}_{t}}$ уже посчитано, осталось найти ${{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}$:

[{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}={{left( -operatorname{tg}t right)}^{prime }}_{t}=-frac{1}{{{cos }^{2}}t}]

Находим вторую производную по всё той же формуле:

[{{{y}»}_{xx}}={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}=-frac{1}{{{cos }^{2}}t}cdot frac{1}{2cos tcdot {{text{e}}^{t}}}=-frac{1}{2{{text{e}}^{t}}{{cos }^{3}}t}]

[begin{align} {{{{y}»}}_{xx}} & ={{left( {{{{y}’}}_{x}} right)}^{prime }}_{x}=frac{{{left( {{{{y}’}}_{x}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}= \ & =-frac{1}{{{cos }^{2}}t}cdot frac{1}{2cos tcdot {{text{e}}^{t}}}= \ & =-frac{1}{2{{text{e}}^{t}}{{cos }^{3}}t} end{align}]

3. Считаем третью производную. Вновь нужно лишь найти ${{left( {{{{y}»}}_{xx}} right)}^{prime }}_{t}$:

[{{left( {{{{y}»}}_{xx}} right)}^{prime }}_{t}={{left( -frac{1}{2{{text{e}}^{t}}{{cos }^{3}}t} right)}^{prime }}_{t}=frac{cos t-3sin t}{2{{text{e}}^{t}}{{cos }^{4}}t}]

[begin{align} {{left( {{{{y}»}}_{xx}} right)}^{prime }}_{t} & ={{left( -frac{1}{2{{text{e}}^{t}}{{cos }^{3}}t} right)}^{prime }}_{t}= \ & =frac{cos t-3sin t}{2{{text{e}}^{t}}{{cos }^{4}}t} end{align}]

Для сокращения вычислений я сразу записал готовую формулу ${{left( {{{{y}»}}_{xx}} right)}^{prime }}_{t}$ — проверьте её самостоятельно. А дальше вновь используем формулу производной для параметрической функции:

[{{{y}»’}_{xxx}}=frac{{{left( {{{{y}»}}_{xx}} right)}^{prime }}_{t}}{{{{{x}’}}_{t}}}=frac{cos t-3sin t}{4{{text{e}}^{2t}}cdot {{cos }^{5}}t}]

Задача решена. Хотя вычислений получилось довольно много.

В любом случае помните главную формулу:

[{{{y}’}_{x}}left( x right)=frac{{{{{psi }’}}_{t}}left( t right)}{{{{{x}’}}_{t}}left( t right)}]

И помните, что вторая производная не равна частному вторых производных:

[{{{y}»}_{xx}}left( x right)ne frac{{{{{psi }»}}_{tt}}left( t right)}{{{{{x}»}}_{tt}}left( t right)}]

Попытка использовать эту формулу для нахождения производных высших порядков будет считаться грубой ошибкой.

Вот и вся теория. Теперь — за практику!:)

Смотрите также:

  1. Частные производные для функции нескольких переменных
  2. Формула полной вероятности
  3. Тест по теории вероятностей (1 вариант)
  4. Видеоурок по задачам C2: уравнение плоскости через определитель
  5. Процент: неизвестно начальное значение (метод пропорции)
  6. Производительность совместного труда

Производная функции по направлению

Как найти?

Постановка задачи

Найти производную функции $ u(x,y,z) $ в точке $ M (x_1,y_1,z_1) $ по направлению вектора $ overline{l} = (l_x,l_y,l_z) $

План решения

Если для функции $ u(x,y,z) $ существует производная в точке $ M(x_1,y_1,z_1) $, то значит в этой точке существует производная по любому направлению $ overline{l} $ и находится по формуле:

$$ frac{partial u}{partial l} = frac{partial u}{partial x} bigg |_M cdot cos alpha + frac{partial u}{partial y} bigg |_M cdot cos beta + frac{partial u}{partial z} bigg |_M cdot cos gamma $$

  1. Находим частные производные первого порядка:
    $$ frac{partial u}{partial x}; frac{partial u}{partial y}; frac{partial u}{partial z} $$
  2. Вычисляем полученные производные в точке $ M(x_1,y_1,z_1) $:
    $$ frac{partial u}{partial x} bigg |_{M(x_1,y_1,z_1)}; frac{partial u}{partial y} bigg |_{M(x_1,y_1,z_1)}; frac{partial u}{partial z} bigg |_{M(x_1,y_1,z_1)} $$
  3. Получаем направляющие косинусы по формулам:
    $$ cos alpha = frac{l_x}{|overline{l}|}; cos beta = frac{l_y}{|overline{l}|}; cos gamma = frac{l_z}{|overline{l}|} $$
  4. Подставляем все полученные данные в формулу и записываем ответ

Примеры решений

Пример 1
Найти производную функции $ u = x+ln(z^2+y^2) $ в точке $ M (2,1,1) $ по направлению вектора $ overline{l} = (-2,1,-1) $
Решение

Находим частные производные первого порядка и вычисляем их начение в точке $ M $:

$$ frac{partial u}{partial x} = 1; frac{partial u}{partial x} bigg |_{M(2,1,1)} = 1 $$

$$ frac{partial u}{partial y} = frac{2y}{z^2+y^2}; frac{partial u}{partial y} bigg |_{M(2,1,1)}=1 $$

$$ frac{partial u}{partial z} = frac{2z}{z^2+y^2}; frac{partial u}{partial z} bigg |_{M(2,1,1)} = 1 $$

Вычисляем направляющие косинусы:

$$ cos alpha = frac{-2}{sqrt{(-2)^2+1^2+(-1)^2}} = frac{-2}{sqrt{6}} $$

$$ cos beta = frac{1}{sqrt{(-2)^2+1^2+(-1)^2}} = frac{1}{sqrt{6}} $$

$$ cos gamma = frac{-1}{sqrt{(-2)^2+1^2+(-1)^2}} = — frac{1}{sqrt{6}} $$

Подставляем полученные частные производные в точке $ M $ и направляющие косинусы в формулу:

$$ frac{partial u}{partial l} = 1 cdot (-frac{2}{sqrt{6}}) + 1 cdot frac{1}{sqrt{6}} + 1 cdot (-frac{1}{sqrt{6}}) = -frac{2}{sqrt{6}} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ frac{partial u}{partial l} = -frac{2}{sqrt{6}} $$
Пример 2
Найти производную $ u = xy — frac{x}{z} $ в точке $ M(-4,3,-1) $ по направлению вектора $ overline{l} = (5,1,-1) $
Решение

Берем частные производные первого порядка от функции в точке $ M(-4,3,-1) $:

$$ frac{partial u}{partial x} = y — frac{1}{z}; frac{partial u}{partial x} bigg |_{M(-4,3,-1)} = 4 $$

$$ frac{partial u}{partial y} = x; frac{partial u}{partial y} bigg |_{M(-4,3,-1)} = -4 $$

$$ frac{partial u}{partial z} = frac{x}{z^2}; frac{partial u}{partial z} bigg |_{M(-4,3,-1)} = -4 $$

Вычисляем направляющие косинусы:

$$ cos alpha = frac{5}{sqrt{5^2+1^2+(-1)^2}} = frac{5}{sqrt{27}} $$

$$ cos beta = frac{1}{sqrt{5^2+1^2+(-1)^2}} = frac{1}{sqrt{27}} $$

$$ cos gamma = frac{-1}{sqrt{5^2+1^2+(-1)^2}} = frac{-1}{sqrt{27}} $$

По формуле производной по направлению получаем ответ:

$$ frac{partial u}{partial l} = 4 cdot frac{5}{sqrt{27}} + (-4) cdot frac{1}{sqrt{27}} + (-4) cdot frac{-1}{sqrt{27}} = frac{20}{sqrt{27}} $$

Ответ
$$ frac{partial u}{partial l} = frac{20}{sqrt{27}} $$

Уравнение
касательной и нормали к плоской кривой.
Производные

основных
элементарных функций. Таблица производных.

Определение.
Производной
функции f(x)
в точке х = х0
называется предел отношения приращения
функции в этой точке к приращению
аргумента, если он существует.

у

f(x)

f(x0
+x) P

f

f(x0)
M



x

0
x0
x0
+ x
x

Пусть
f(x)
определена на некотором промежутке (a,
b).
Тогда

тангенс угла наклона секущей МР к графику
функции.

,

где

— угол наклона касательной к графику
функции f(x)
в точке (x0,
f(x0)).

Угол
между кривыми может быть определен как
угол между касательными, проведенными
к этим кривым в какой- либо точке.

Уравнение
касательной к кривой:

Уравнение
нормали к кривой:
.

Фактически
производная функции показывает как бы
скорость изменения функции, как изменяется
функция при изменении переменной.

Физический
смысл производной функции f(t),
где t-
время, а f(t)-
закон движения (изменения координат) –
мгновенная скорость движения.

Соответственно,
вторая производная функции- скорость
изменения скорости, т.е. ускорение.

Основные
правила дифференцирования.

Обозначим
f(x)
=
u,
g(x)
=
v
функции, дифференцируемые в точке х.

1)
(
u

v)
=
u

v

2)
(uv)
=
uv
+
uv

3),
если v

0

Эти
правила могут быть легко доказаны на
основе теорем о пределах.

Производные
основных элементарных функций.

1)С
= 0; 9)

2)(xm)
= mxm-1;
10)

3)

11)

4)

12)

5)
13)

6)
14)

7) 15)

8)

16)

13.Дифференциал функции. Геометрический смысл дифференциала.

Пусть
функция y
= f(x)
имеет производную в точке х:

Тогда
можно записать:
,
где 0,
при х0.

Следовательно:

.

Величина
x-
бесконечно малая более высокого порядка,
чем f(x)x,
т.е. f(x)x-
главная часть приращения у.

Определение.
Дифференциалом
функции f(x)
в точке х называется главня линейная
часть приращения функции.

Обозначается
dy
или df(x).

Из
определения следует, что dy
= f(x)x
или

dy
=
f(x)dx.

Можно
также записать:

Геометрический
смысл дифференциала.

y

f(x)

K

dy

M
y

L

x
x
+ x
x

Из
треугольника MKL:
KL
= dy
=
tgx
=
yx

Таким
образом, дифференциал функции f(x)
в точке х равен приращению ординаты
касательной к графику этой функции в
рассматриваемой точке.

14.Параметрически заданные функции и их дифференцирование. Дифференцирование функции, заданной неявно.

Не
всегда функция бывает
представлена в виде .
Например, уравнение  задает
функцию y,
которую можно из этого уравнения выразить
через .

Пусть
переменные  связаны
между собой некоторым
уравнением                                                                       
                    
                  (4.2)

причем y является
функцией от x.
Тогда говорят, что функция y задана неявно уравнением
(4.2).

Не
всегда функции, заданные неявно могут
быть выражены явно через элементарные
функции. Так, из уравнения ,
которое неявно задает функцию y,
нельзя выразить y явно
через элементарные функции.

Для
того чтобы найти производную y’ для
функции, заданной неявно уравнением
(4.2) надо найти производные по x от
обеих частей этого уравнения, помня,
что y –
функция от x и
приравнять эти производные. Из полученного
уравнения найти y’.

Пример
4.2.
 Найти
производную функции, заданной неявно
уравнением .

Решение.

.

.

Отсюда .

4.3.
Дифференцирование функций, заданных
параметрически

Рассмотрим
задание линии на плоскости, при котором
переменные x,
y
 являются
функциями третьей переменной t (называемой
параметром):

                                                                        
        
                                 (4.3)

Каждому
значению t из
некоторого интервала соответствуют
определенные значения x и y,
а, следовательно, определенная
точка Mплоскости.
Когда t пробегает
все значения из заданного интервала,
то точка M описывает
некоторую линию L.
Уравнения (4.3) называютсяпараметрическими уравнениями
линии L.

Если
функция  на
некотором интервале изменения t имеет
обратную функцию ,
то подставляя это выражение в уравнение ,
получим ,
которое задает y как
функцию от x.

Пусть  имеют
производные, причем .
По правилу дифференцирования сложной
функции .
На основании правила дифференцирования
обратной функции ,
имеем:

   
                          
                                                                                     (4.4)

Полученная
формула (4.4) позволяет находить производные
для функций, заданных параметрически.

Пример
4.3.
 Пусть
функция y,
зависящая от x,
задана параметрически:

  .

Найти .

Решение.

 

Пример
4.4.
 Найти ,
если переменные  и  связаны
соотношением

.

Решение.

Явно
выразить одну из переменных через другую
невозможно, поэтому находим производные
левой и правой частей данного равенства
и приравниваем их:

.

Далее
имеем:

;

.

Перенося
слагаемые, содержащие ,
в одну часть равенства, вынося  за
скобку, а остальные слагаемые – в другую
и деля на коэффициент при ,
получаем:

.

Пример
4.5.
 Найти  и  для
функции, заданной параметрически:

.

Решение

;;


     ;

;

     

 
       .

Рассмотрим
показательно-степенную функцию ,
где u(x), v(x)
– дифференцируемые функции.

Прологарифмируем
равенство ,
получим:  (по
свойствам логарифмов). Дифференцируем
обе части полученного равенства как
неявную функцию, помня, что y –
функция от x:

откуда .

Подставляя
сюда ,
имеем:

.

Этот
прием нахождения производной
называется логарифмическим
дифференцированием
.

Пример
4.6.
 Найти .

Решение.

Вначале
прологарифмируем данное равенство

,

и
найдем производные от обеих частей
полученного равенства, приравнивая их:

 

Учитывая,
что ,
имеем:

.

Пример
4.7.
 ,
(x
> 0
).  Найти
производную функции y’.

Решение.

,

 или 

5.1.
Понятие производной высшего порядка

Пусть
функция определена
и дифференцируема на некотором
промежутке X,
тогда ее производная  также
является функцией от x на
этом промежутке. Если имеет
производную на промежутке X,
то эта производная называется производной
второго порядка
 функции y
= f
(x)
и обозначается:  или .

Итак,  

Производная
от производной второго порядка
называется производной
третьего порядка
 и
обозначается: y»’ или .

Вообще, производной
n-го порядка
 называется
производная от производной -го
порядка и обозначается: y(n) или f (n)(x).
Итак,

f (n)(x)
= (f (n-1)(x)).

Производные y»’,
… называются производными
высших порядков
.

Пример
5.1.
 .
Найти  и .

Решение.

 =  =

=
,

,

.

Пример
5.2.
 Найти
производную n-го
порядка для функции .

Решение.

,

,

.

По
аналогии находим: .

5.2.
Производные высших порядков от функций,
заданных параметрически

Пусть
функция y,
зависящая от x,
задана параметрически на интервале Т:

Найдем .
Известно, что  =  (п.
4.3), поэтому

 = .

Аналогично
будет вычисляться  и
т. д.

Пример
5.3.
 Найти  и  для
функции, заданной параметрически:

.

Решение.

;  

;

;  

;

;

 = 
      

 
      .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как составить список класса по алфавиту
  • Как найти производительность продукта
  • Как составить гороскоп у василисы володиной
  • Как найти дециметр в прямоугольнике
  • Как найти в bios вкладку advanced