Как найти производную начинающим

Решать физические задачи или примеры по математике совершенно невозможно без знаний о производной и методах ее вычисления. Производная — одно из важнейших понятий математического анализа. Этой фундаментальной теме мы и решили посвятить сегодняшнюю статью. Что такое производная, каков ее физический и геометрический смысл, как посчитать производную функции? Все эти вопросы можно объединить в один: как понять производную?

Ежедневная рассылка с полезной информацией для студентов всех направлений – на нашем телеграм-канале.

Геометрический и физический смысл производной

Пусть есть функция f(x), заданная в некотором интервале (a, b). Точки х и х0 принадлежат этому интервалу. При изменении х меняется и сама функция. Изменение аргумента – разность его значений х-х0. Эта разность записывается как дельта икс и называется приращением аргумента. Изменением или приращением функции называется разность значений функции в двух точках. Определение производной:

Производная функции в точке – предел отношения приращения функции в данной точке к приращению аргумента, когда последнее стремится к нулю.

производная объяснение для чайников

Иначе это можно записать так:

высшая математика для чайников производные

Какой смысл в нахождении такого предела? А вот какой:

Геометрический смысл производной: производная от функции в точке равна тангенсу угла между осью OX и касательной к графику функции в данной точке.

Геометрический смысл производной

 

Физический смысл производной: производная пути по времени равна скорости прямолинейного движения.

Действительно, еще со школьных времен всем известно, что скорость – это частное пути x=f(t) и времени t. Средняя скорость за некоторый промежуток времени:

смысл производной

Чтобы узнать скорость движения в момент времени t0 нужно вычислить предел:

производная для чайников в практическом применении

Кстати, о том, что такое пределы и как их решать, читайте в нашей отдельной статье.

Приведем пример, иллюстрирующий практическое применение производной. Пусть тело движется то закону:

производная для чайников в практическом применении

Нам нужно найти скорость в момент времени t=2c. Вычислим производную:

производная для чайников в практическом применении

Правила нахождения производных

Сам процесс нахождения производной называется дифференцированием. Функция, которая имеет производную в данной точке, называется дифференцируемой.

Как найти производную? Согласно определению, нужно составить отношение приращения функции и аргумента, а затем вычислить предел при стремящемся к нулю приращении аргумента. Конечно, можно вычислять все производные так, но на практике это слишком долгий путь. Все уже давно посчитано до нас. Ниже приведем таблицу с производными элементарных функций, а затем рассмотрим правила вычисления производных, в том числе и производных сложных функций с подробными примерами.

Таблица производных

 

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правило первое: выносим константу

Константу можно вынести за знак производной. Более того — это нужно делать. При решении примеров по математике возьмите за правило — если можете упростить выражение, обязательно упрощайте.

Пример. Вычислим производную:

найти производную функции для чайников

Правило второе: производная суммы функций

Производная суммы двух функций равна сумме производных этих функций. То же самое справедливо и для производной разности функций.

как найти производную для чайников

Не будем приводить доказательство этой теоремы, а лучше рассмотрим практический пример.

Найти производную функции:

как найти производную для чайников

Решение:

как найти производную для чайников

Правило третье: производная произведения функций

Производная произведения двух дифференцируемых функций вычисляется по формуле:

как считать производные для чайников

Пример: найти производную функции:

как считать производные для чайников

Решение:Производная сложной функции

Здесь важно сказать о вычислении производных сложных функций. Производная сложной функции равна произведению производной этой функции по промежуточному аргументу на производную промежуточного аргумента по независимой переменной.

В вышеуказанном примере мы встречаем выражение:

производная сложной функции для чайников

В данном случае промежуточный аргумент – 8х в пятой степени. Для того, чтобы вычислить производную такого выражения сначала считаем производную внешней функции по промежуточному аргументу, а потом умножаем на производную непосредственно самого промежуточного аргумента по независимой переменной.

Правило четвертое: производная частного двух функций

Формула для определения производной от частного двух функций:

производная определение для чайников

Пример:

производная определение для чайников

Решение:

производная определение для чайников

Мы постарались рассказать о производных для чайников с нуля. Эта тема не так проста, как кажется, поэтому предупреждаем: в примерах часто встречаются ловушки, так что будьте внимательны при вычислении производных.

С любым вопросом по этой и другим темам вы можете обратиться в студенческий сервис. За короткий срок мы поможем решить самую сложную контрольную и разобраться с заданиями, даже если вы никогда раньше не занимались вычислением производных.

1. Вычисление производной функции

Правила дифференцирования

    

Дифференцирование сложной функции

    

Таблица производных

    

2. Приложение производной

Уравнение касательной к графику функции y=f(x) в точке (x0;f(x0)):

    y=f(x0)+f ‘(x0)(x-x0); f ‘(x0) – угловой коэффициент касательной (тангенс угла наклона касательной).

Достаточные признаки монотонности функции:

  • если 
    f ‘(x)>0 в каждой точке интервала (a, b), то функция f(x) возрастает на этом интервале. 
  • если 
    f ‘(x)<0 в каждой точке интервала (a, b), то функция f(x) убывает на этом интервале. 

Необходимое условие экстремума: если x0 – точка экстремума функции f(x) и производная f ’ существует в этой точке, то   f ‘(x0)=0.

    Критические точки функции – внутренние точки области определения функции, в которых ее производная равна нулю или не существует. 

Достаточные условия экстремума: 

  • если производная при переходе через точку 
    x0 меняет свой знак с плюса на минус, то 
    x0  – точка максимума. 
  • если производная при переходе через точку x0 меняет свой знак с минуса на плюс, то 
    x0  – точка минимума.

3. Первообразная функции

    Функция F(x) называется первообразной функции f(x) на интервале (a, b), если для любого  выполняется равенство F ‘(x)=f(x).

    Если F(x) – первообразная для f(x) на промежутке (a, b), то любая первообразная может быть записана в виде F(x)+C, где C – некоторое действительное число.

    Для вычисления первообразной рекомендуем пользоваться приведенной выше таблицей производных и приведенными ниже правилами.

Правила нахождения первообразных

Пример 1. Найти производную функции .

    Решение:

        .

    Ответ: .

Пример 2. Найти , если .

    Решение:

        По правилу дифференцирования дроби имеем:  .

        .

 Ответ: 

Пример 3. Чему равен тангенс угла наклона касательной к графику функции у = х2 + 2, в точке хо = – 1.

    Решение:

        Тангенс угла наклона касательной к графику функции есть значение производной данной функции в точке хо.

        .

    Ответ: – 2.

Пример 4. Найдите значение 3tg2t , если t – наименьший положительный корень уравнения .

    Решение:

        .

        Очевидно, что наименьшее положительное решение полученного уравнения . Тогда .

 Ответ: 1. 

Пример 5. Укажите промежутки возрастания и убывания функции .

    Решение:

        Область определения функции: x>0.

        На области определения найдём критические точки функции :

        

        Критические точки: 0; 1.

        На основании достаточного признака возрастания (убывания) функции имеем:

    Ответ: на интервале (0; 1) функция убывает; на интервале  возрастает.

Пример 6. Найти наибольшее и наименьшее значения функции y=ex+2-ex на промежутке [-2; 0].

    Решение:

        Функция y=ex+2-ex на отрезке [-2; 0] непрерывна.

        1) найдём критические точки, принадлежащие отрезку [-2; 0]:

        

        2) найдём значения функции в критической точке и на концах данного отрезка:

        

        3) выберем наибольшее и наименьшее из полученных значений:

        наименьшее y|x=-1=2e наибольшее y|x=0=e2.

    Ответ: 
наименьшее y|x=-1=2e наибольшее y|x=0=e2.

Пример 7. Записать уравнение касательной к графику функции f(x)=x3, параллельной прямой y=3x+1,5.

    Решение:

        Уравнение касательной к графику функции y=f(x) в точке х0 имеет вид: 

        .

        Так как касательная параллельна прямой y=3x+1,5, то f ‘(x0)=3 .

        f ‘(x)=3x2, следовательно, .

        

    Ответ: .

Пример 8. Найдите какую-либо первообразную функции .

    Решение:

        Представим функцию  в виде . Первообразная данной функции будет . Т.к. нужно найти какую-либо первообразную, то пусть это будет . Чтобы проверить правильность найденной первообразной, нужно от  взять производную: .

    Ответ: .

Пример 9. Для функции  найдите первообразную, график которой проходит через точку .

    Решение:

        Первообразная данной функции будет F(x)=-3ctgx-7cox-2sinx+C.

        Так как график первообразной проходит через точку , то координаты этой точки являются корнями уравнения. Получаем: .

    Ответ: F(x)=-3ctgx-7cox-2sinx+11.

Задания для самостоятельного решения

Базовый уровень

Производная функции

    1) Найти производную функции f(x)=2ex+3x2 .

    2) Вычислите производную функции f(x)x•sinx.

    3) Найти производную функции у = (3х – 1)(2 – х).

    4) Вычислите производную функции y=9x2-cosx.

    5) Найдите производную функции y=ex-x7

    6) Вычислить производную функции .

    7) Найти f ‘(1), если f(x)=3x2-2x+1.

     8) Найдите производную функции у = х2(3х5 – 2) в точке х0 = – 1.

    9) Вычислите , если f(x)=(2x-1)cosx.

    10) Найдите f ‘(1), если f(x)=(3-x2)(x2+6).

    11) Вычислите  f ‘(1), если f(x)=(x4-3)(x2+2).

    12) Найдите значение производной функции  в точке х0 = 0,5.

    13) Найдите f ‘(4), если .

    14) Найдите значение производной функции f(x)=3tgx+2ctgx при .

    15) Найдите значение производной функции f(x)=2sinx при .

    16) Найдите значение производной функции f(x)=1-3cosx при .

    17) Определите промежутки возрастания и убывания функции .

    18) Найдите максимум и минимум функции y=5x4-10x2+9.

    19) Найти экстремумы функции у = – х3 + 6х2 + 15х + 1. 

    20) Найдите точки экстремума функции у = – х3 – 3х2 + 24х – 4 на промежутке .

    21) Найдите наибольшее значение выражения 3х5 – 5х3 + 6 на отрезке [–2;2].

    22) Написать уравнение касательной к параболе у = х2 – 6х + 5 в точке пересечения её с осью ординат.

    23) Найдите максимум функции .

    24) Найдите экстремальные значения функции .

    25) Исследуйте на максимум и минимум функцию у = 3х4 – 3х2 + 2.

    26) Найдите тангенс угла наклона касательной, проведённой к графику функции  в его точке с абсциссой          х0 = – 2.

    27) Составьте уравнение касательной к графику функции у = х – 3х2 в точке с абсциссой х0 = 2.

    28) Найдите угловой коэффициент касательной к графику функции y=7x-5sinx в точке с абсциссой .

Найдите первообразные функций:

    29) .

    30) f(x)=-7sinx.

    31) .

    32) f(x)=1,2cosx.

    33) f(x)=-7cosx.

    34) f(x)=sinx-cosx.

    35) .

    36) .

    37) .

Вычислите площадь фигур, ограниченных линиями:

    38) .

    39) .

    40) .

    41) .

Повышенный уровень

Производная функции 

    42) Найдите значение , если .

    43) Найдите значение , если f(x)=sin4x-cos4x.

    44) Найдите значение , если f(x)=cos23x .

    45) Найдите значение , если f(x)=sin4xcos4x.

    46) Найдите значение , если .

    47) Найдите значение , если .

    48) Найдите значение , если f(x)=(1+sinx)2.

    49) При каком значении параметра а функция  имеет минимум в точке x0=1?

    50) Решите уравнение f ‘(x)=0, если .

    51) Найдите наименьшее целое значение функции у = 4х – 5∙2х + 3,25.

    52) При каких значениях а функция  убывает на всей числовой прямой?

    53) На кривой у = 4х2 – 6х + 3 найдите точку, в которой касательная параллельна прямой у = 2х + 3. 

    54) Найти значение выражения tg2t, где t – наибольший отрицательный корень уравнения f ‘(x)=0, 

Первообразная

    55) Найдите значение первообразной функции , график которой проходит через данную точку .

    56) Найдите значение первообразной функции , график которой проходит через данную точку .

    57) Найдите значение первообразной функции  при , график которой проходит через данную точку .

Задача о площади криволинейной трапеции

    58) Найдите площадь фигуры, ограниченной линиями .

    59) Найдите площадь фигуры, ограниченной линиями .

    60) Найдите площадь фигуры, ограниченной линиями .


Загрузить PDF


Загрузить PDF

Производную функции можно использовать для того, чтобы получить полезную информацию о графике, например, узнать положение максимумов, минимумов, пиков, впадин и характер наклона. Вы даже можете использовать их для построения на графике сложных уравнений без применения графического калькулятора! К сожалению, нахождение производной может быть утомительной задачей, но эта статья поможет вам узнать некоторые приемы и ловкости.

Шаги

  1. Изображение с названием Take Derivatives in Calculus Step 1

    1

    Ознакомьтесь с формой обозначения производной. Следующие две формы обозначения являются наиболее распространенными, однако на Википедии можно найти огромное количество других here.

    • Обозначение Лейбница. Это обозначение является наиболее распространенным в случаях, когда функция включает y и x. dy/dx буквально означает «производная y по отношению к x.» Удобно представить производную в виде отношения бесконечно малых разностей Δy/Δx. Это объяснение является следствием определения производной через предел: limh->0 (f(x+h)-f(x))/h. Используя данное обозначение для второй производной, вы должны написать: d2y/dx2.
    • Обозначение Лагранжа. Производную функции можно также записать как f'(x). Это обозначение читается как «f штрих от x». Это обозначение короче обозначения Лейбница, оно полезно при рассмотрении производной как функции. Чтобы образовать производные высших порядков, просто добавляйте к «f» новые » ‘ «. Так, вторая производная будет иметь вид f»(x).
  2. Изображение с названием Take Derivatives in Calculus Step 2

    2

    Выясните, что такое производная и зачем она нужна. Во-первых, для нахождения наклона прямой зависимости, берутся две точки на прямой, и их координаты подставляются в уравнение (y2 — y1)/(x2 — x1). Тем не менее, это может быть использовано только для линейных зависимостей. Для квадратичных зависимостей и выше линия будет кривой, поэтому определение «разности» двух точек не может быть точным. Чтобы найти наклон касательной к криволинейному графику, берутся две точки, которые подставляются в стандартное уравнение определения наклона касательной к кривой: [f(x + dx) — f(x)]/dx. Dx означает «delta x,» являющуюся разностью между двумя x-координатами графика. Обратите внимание, что это выражение аналогично (y2 — y1)/(x2 — x1), просто в другой форме. Поскольку уже известно, что результат не будет точным, применяется косвенный подход. Чтобы найти наклон касательной в точке (x, f(x)), dx должно стремиться к 0, так что две выбранные точки сольются в одну. Впрочем, мы не можем делить на 0, поэтому, подставив оба значения координат точки, вы должны будете разложить выражение на множители и использовать другие методы для сокращения dx в нижней части выражения. Сделав это, примите dx = 0 и решите уравнение. Это и будет углом наклона в точке (x, f(x)). Производная выражения — это общее выражение для нахождения наклона любой касательной к графику. Это может казаться чрезвычайно сложным, но несколько примеров, приведенных ниже, помогут вам понять процесс нахождения производной.

    Реклама

  1. Изображение с названием Take Derivatives in Calculus Step 3

    1

    Используйте дифференцирование явных функций, когда ваше выражение уже имеет y, расположенный в одной его части.

  2. Изображение с названием Take Derivatives in Calculus Step 4

    2

    Подставьте выражение в выражение [f(x + dx) — f(x)]/dx. Например, если ваше уравнение имеет вид y = x2, производная будет иметь вид [(x + dx)2 — x2]/dx.

  3. Изображение с названием Take Derivatives in Calculus Step 5

    3

    Раскройте скобки, а затем вынесите dx за скобки, получив уравнение [dx(2x + dx)]/dx. Теперь вы можете сократить два dx в верхней и нижней частях дроби. В результате вы получите 2x + dx, и когда dx стремится к 0, то производная равна 2x. Это означает, что наклон любой касательной к графику y = x2 равен 2x. Просто подставьте значение x точки, в которой вы хотите найти наклон.

  4. Изображение с названием Take Derivatives in Calculus Step 6

    4

    Изучите схемы нахождения производной функций подобного типа. Ниже приведены несколько из них.

    • Производная степенной функции равна произведению показателя степени и основания в степени на единицу меньше. Например, производная x5 равна 5x4, а производная x3.5 равна 3.5x2.5. Если перед x уже есть число, просто умножьте его на степень. Например, производная 3x4 равна 12x3.
    • Производная любого числа равна 0. Иначе говоря, производная 8 равна 0.
    • Производная суммы — это сумма отдельных производных. Например, производная x3 + 3x2 равна 3x2 + 6x.
    • Производная произведения — это произведение первого множителя на производную второго плюс произведение второго множителя на производную первого. Например, производная x3(2x + 1) равна x3(2) + (2x + 1)3x2, что равно 8x3 + 3x2.
    • Производная дроби (скажем, f/g) — это [g(производная f) — f(производная g)]/g2. Например, производная (x2 + 2x — 21)/(x — 3) равна (x2 — 6x + 15)/(x — 3)2.

    Реклама

  1. Изображение с названием Take Derivatives in Calculus Step 7

    1

    Используйте дифференцирование неявно выраженных функций, когда в вашем выражении нельзя выделить y на одной из сторон. Даже если вы смогли записать его с y в одной части, вычисление dy/dx будет громоздким. Ниже приведены примеры нахождения производной для выражений такого типа.

  2. Изображение с названием Take Derivatives in Calculus Step 8

    2

    В этом примере: x2y + 2y3 = 3x + 2y, замените y на f(x), чтобы запомнить, что y на самом деле — функция. Выражение примет вид x2f(x) + 2[f(x)]3 = 3x + 2f(x).

  3. Изображение с названием Take Derivatives in Calculus Step 9

    3

    Чтобы найти производную этого выражения, продифференцируйте (умное слово, означающее найти производную) обе стороны уравнение по x. Выражение станет x2f'(x) + 2xf(x) + 6[f(x)]2f'(x) = 3 + 2f'(x).

  4. Изображение с названием Take Derivatives in Calculus Step 10

    4

    Снова замените f(x) на y. Будьте внимательны и не сделайте того же для f'(x), отличающегося от f(x).

  5. Изображение с названием Take Derivatives in Calculus Step 11

    5

    Найдите f'(x). Ответ на этот пример принимает вид (3 — 2xy)/(x2 + 6y2 — 2).

    Реклама

  1. Изображение с названием Take Derivatives in Calculus Step 12

    1

    Взять производную высшего порядка функции означает взять производную производной (в случае порядка, равного 2). Например, если вас просят взять производную третьего порядка, просто возьмите производную производной производной. Для некоторых выражений, производные высших порядков принимают нулевое значение.

  1. Изображение с названием Take Derivatives in Calculus Step 13

    1

    Если y — это дифференцируемая функция z, а z — дифференцируемая функция x, y — это сложная функция x, а производная y по x (dy/dx) равна (dy/du)*(du/dx). Правило цепочки также относится к сложным степенным выражениям, например: (2x4 — x)3. Чтобы найти производную, просто примените правило произведения. Умножьте выражение на степень и уменьшите степень на единицу. Затем умножьте выражение на производную основания (в нашем случае оно равно 2x^4 — x). Ответ на этот пример выглядит так: 3(2x4 — x)2(8x3 — 1).

    Реклама

Советы

  • Когда вы видите, что вам нужно решить просто огромный пример — не волнуйтесь. Разбейте его на как можно больше мельчайших кусков, применяя правила произведения, дроби и т.д. После этого приступайте к дифференцированию отдельных частей.
  • Потренируйтесь использовать правила произведения, дроби, цепочек и в особенности — дифференцирования функций в неявной форме, поскольку они являются очень сложной частью матанализа.
  • Умейте пользоваться калькулятором; пробуйте использовать различные функции вашего калькулятора, чтобы узнать его возможности. Особенно полезно знать функции касательной и производной, если они есть в вашем калькуляторе.
  • Запомните производные основных тригонометрических функций и то, как с ними обращаться.

Реклама

Предупреждения

  • Не забудьте, что при использовании правила дроби перед f(производная g) ставится знак минус; это распространенная ошибка и забыв его, вы получите неправильный ответ.

Реклама

Об этой статье

Эту страницу просматривали 11 770 раз.

Была ли эта статья полезной?

Простое объяснение принципов решения производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения производных

Производная функции есть предел отношения приращения этой функции к приращению её аргумента при стремлении последнего к нулю, при условии существования данного предела.

Для вычисления производных вам потребуется таблица производных. Кроме того, существуют формулы для нахождения сложных производных.

Процесс нахождения производный называется дифференцированием.

Таблица простых производных

Формулы сложных производных

(a*u(x)))' = a*f'(x) pm b * g'(x) – производная суммы (разницы).

(u(x) * v(x))' = u'(x) * v(x) + u(x) * v'(x) – производная произведения.

(frac{u(x)}{v(x)})' = frac{u'(x) * v(x) - u(x) * v'(x)}{v^2(x)} – производная частного.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Примеры решений производных

Задача

Найти производную функции y = cos(3x+1)

Решение

Заданная функция является сложной и её производная равна произведению производной от косинуса на производную от его аргумента:

y' = (cos(3x+1))' = -sin(3x+1)cdot(3x+1)' = -sin(3x+1)cdot(3cdot1+0) = -3sin(3x+1)

Ответ

y' = -3sin(3x+1)

Задание

Найти производную функции y = (x^2-2x+3)^5

Решение

Обозначим y=u^5, где u = x^2-2x+3. Тогда, согласно правила вычисления производной сложной функции, получим:
y' = (u^5)'_u(x^2-2x+3)'_x = 5u^4(2x-1) = 10(x-1)(x^2-2x+3)^4

Ответ

y' = 10(x-1)(x^2-2x+3)^4

Задача

Найти производную функции y = sqrt{x} при x = 4.

Решение

y' = x^{frac{1}{2}} = frac{1}{2}x^{frac{1}{2}-1} = frac{1}{2}x^{-frac{1}{2}} = frac{1}{2sqrt{x}}.
y'(4) = frac{1}{2sqrt{4}} = frac{1}{4}.

Ответ

y'(4) = frac{1}{4}.

Задача

Найти производную функции y = x^3sin x + 3x^2cos x - 6sin x - 6cos x.

Решение

y' = 3x^2sin x + x^3cos x + 6cos x - 3x^2sin x - 6sin x - 6xcos x + 6sin x.
После приведения подобных членов получаем:
y' = x^2cos x.

Ответ

y’=x^3·cos(x)+6·x·cos(x)-6·cos(x)+6·sin(x).

Задача

Найти производную функции y = sqrt{{sin}^2 x + 3{cos}^3 4x}.

Решение

В этом примере квадратный корень извлекается из суммы {sin}^2 x + 3{cos}^3 4x. Поэтому сначала вычисляем производную от квадратного корня, а затем умножаем ее на производную от подкоренного выражения:
y' = frac{1}{2sqrt{{sin}^2 x + 3{cos}^3 4x}}[2sin xcos x + 3cdot3{cos}^2 4xcdot(-sin 4x)cdot4].

Ответ

y' = frac{1}{2sqrt{{sin}^2 x + 3{cos}^3 4x}}[2sin xcos x + 3cdot3{cos}^2 4xcdot(-sin 4x)cdot4].

Задача

Найти производную функции y = frac{3cosec x - 2sin x}{5{cos}^5 x} - frac{16}{5}ctg{2x}.

Решение

Применяя правила дифференцирования дробей, получаем:
(frac{3cosec x - 2sin x}{5{cos}^5 x})' = frac{1}{5}frac{(3cosec x - 2sin x)'{cos}^5 x - ({cos}^5 x)'(3cosec x - 2sin x)}{{cos}^{10} x} =
frac{(-3cosec xctg x - 2cos x)cdot{cos}^5 x - (-5{cos}^4 x)sin x)cdot(3cosec-2sin x)}{{cos}^{10} x}.
Применяя правила дифференцирования котангенса, получаем:
(frac{16}{5}ctg{2x})' = -frac{16}{5}(-frac{1}{{sin}^2 2x}cdot2) = frac{32}{5}frac{1}{{sin}^2 2x}.
Учитывая, что cosec x = frac{1}{sin x} и ctg x = frac{cos x}{sin x}, после упрощения получим:
y' = frac{1}{{sin}^2 xcdot{cos}^6 x}.

Ответ

y' = frac{1}{{sin}^2 xcdot{cos}^6 x}.

Задача

Найти производную функции y = frac{a^2 - x^2}{a^2 + x^2}, a = const.

Решение

Применяя правила дифференцирования дробей, получаем:
y' = frac{(a^2 - x^2)'(a^2 + x^2) - (a^2 + x^2)'(a^2 - x^2)}{(a^2 + x^2)^2} = frac{-2x(a^2 + x^2) - 2x(a^2 - x^2)}{(a^2 + x^2)^2} = -frac{4a^2x}{(a^2 + x^2)^2}.

Ответ

y' = -frac{4a^2x}{(a^2 + x^2)^2}.

Задача

Найти производную функции y = frac{1}{sqrt{1 + x^2}}.

Решение

Применяя правила дифференцирования дробей, получаем:
y' = frac{x'sqrt{1 + x^2} - (sqrt{1 + x^2})'x}{(sqrt{1 + x^2})^2} = frac{1cdotsqrt{1 + x^2} - frac{1}{2sqrt{1 + x^2}}cdot2xcdot x}{1 + x^2} = frac{1}{sqrt{(1 + x^2)^3}}.

Ответ

y' = frac{1}{sqrt{(1 + x^2)^3}}.

Задача

Найти производную функции y = arcsin^2x.

Решение

Дифференцирование можно произвести в два этапа: вначале продифференцировать степень функции арксинус, а затем произвести дифференцирование самого арксинуса, перемножив результаты:
y' = 2arcsin xcdotfrac{1}{sqrt{1 - x^2}}.

Ответ

y' = 2arcsin xcdotfrac{1}{sqrt{1 - x^2}}.

Задача

Найти производную функции y = e^{sqrt{sin x}}.

Решение

По правилам дифференцирования показательной функции с основанием e, производная этой функции равна произведению самой функции на производную функции, являющейся показателем степени:
y' = e^{sqrt{sin x}}cdotfrac{1}{2sqrt{sin x}}cdotcos x.

Ответ

y' = e^{sqrt{sin x}}cdotfrac{1}{2sqrt{sin x}}cdotcos x.

урок 3. Математика ЕГЭ

Как найти производную от функции

Как считать производные?

Никто не использует определение производной, чтобы ее вычислить. Как же тогда ее посчитать?

Оказывается, существуют специальные формулы, с помощью которых производная от функции вычисляется достаточно просто.

Формулы производной

Выпишем теперь все формулы производной функции и порешаем примеры.

Производная от константы
Производная от любого числа всегда равна (0):
$$(const)^{/}=0;$$

Пример 1
$$(5)^{/}=0;$$

Производная от (x)
Производная просто от (x) равна (1):
$$x^{/}=1;$$

Производная от степени
$$(x^n)^{/}=n*x^{n-1};$$
Пример 2
$$(x^4)^{/}=4*x^{4-1}=4*x^{3};$$
$$(x^{10})^{/}=10*x^{10-1}=10*x^{9};$$
$$(x^{-3})^{/}=-3*x^{-3-1}=-3*x^{-4};$$
$$(x^{frac{1}{3}})^{/}=frac{1}{3}*x^{1-frac{1}{3}}=frac{1}{3}*x^{frac{2}{3}};$$

Производная от квадратного корня
$$(sqrt{x})^{/}=frac{1}{2sqrt{x}};$$
Тут полезно заметить, что формулу производной от квадратного корня можно не учить. Она сводится к формуле производной от степени:
$$(sqrt{x})^{/}=(x^{frac{1}{2}})^{/}=frac{1}{2}*x^{frac{1}{2}-1}=frac{1}{2}*x^{-frac{1}{2}}=frac{1}{2sqrt{x}};$$

Производная от синуса
$$sin(x)^{/}=cos(x);$$

Производная от косинуса
$$cos(x)^{/}=-sin(x);$$

Производная от тангенса
$$tg(x)^{/}=frac{1}{cos^{2}(x)};$$

Производная от котангенса
$$tg(x)^{/}=frac{-1}{sin^{2}(x)};$$

Производная от экспоненты
$$(e^x)^{/}=e^x;$$

Производная от показательной функции
$$(a^x)^{/}=a^x*ln(a);$$
Пример 3
$$(2^x)^{/}=2^{x}*ln(2);$$

Производная от натурального логарифма
$$(ln(x))^{/}=frac{1}{x};$$

Производная от логарифма
$$(log_{a}(x))^{/}=frac{1}{x*ln(a)};$$

Свойства производной

Помимо формул по вычислению производной еще есть свойства производной, их тоже надо выучить.

Вынесение константы за знак производной
$$(alpha*f(x))^{/}=alpha*(f(x))^{/};$$

Пример 4
$$(3*x^5)^{/}=3*(x^5)^{/}=3*5x^4=15x^4;$$
$$(10sin(x))^{/}==10*(sin(x))^{/}=10*cos(x);$$

Производная от суммы и разности двух функций
$$(f(x) pm g(x))^{/}=(f(x))^{/} pm (g(x))^{/};$$

Пример 5
$$(2x^4+x^3)^{/}=?$$
Тут (f(x)=2x^4), а (g(x)=x^3). Тогда по формуле производной от суммы:
$$(2x^4+x^3)^{/}=(2x^4)^{/}+(x^3)^{/}=2*(x^4)^{/}+(x^3)^{/}=2*4x^3+3x^2=8x^3+3x^2;$$

Пример 6
$$(ln(x)+cos(x))^{/}=(ln(x))^{/}+(cos(x))^{/}=frac{1}{x}-sin(x);$$

Пример 7
$$(x^6-e^x)^{/}=(x^6)^{/}-(e^x)^{/}=6x^5-e^x;$$

Производная от произведения двух функций
$$(f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/};$$

Пример 8
$$(x^2*sin(x))^{/}=?$$
$$(x^2*sin(x))^{/}=(x^2)^{/}*sin(x)+x^2*(sin(x))^{/}=2x*sin(x)+x^2*cos(x);$$

Пример 9
$$(ln(x)*e^x)^{/}=(ln(x))^{/}*e^x+ln(x)*(e^x)^{/}=frac{1}{x}*e^x+ln(x)*e^x;$$

Производная от частного двух функций
$$left(frac{f(x)}{g(x)}right)^{/}=frac{(f(x))^{/}*g(x)-f(x)*(g(x))^{/}}{(g(x))^2};$$

Пример 10
$$left(frac{x^3}{sin(x)}right)^{/}=frac{(x^3)^{/}*sin(x)-x^3*(sin(x))^{/}}{(sin(x))^2}=frac{3x^2*sin(x)-x^3*cos(x)}{(sin(x))^2};$$

Примеры нахождения производной

Рассмотрим несколько примеров нахождения производной, чтобы разобраться, как применяются свойства и формулы производной на практике.

Пример 11
$$(5x^3+2cos(x))^{/}=(5x^3)^{/}+(2cos(x))^{/}=$$
$$=5*(x^3)^{/}+2*(cos(x))^{/}=5*3*x^2+2*(-sin(x))=15x^2-2sin(x);$$

Пример 12
$$left(-frac{3x^2}{2x^4+5x}right)^{/}=-frac{(3x^2)^{/}*(2x^4+5x)-3x^2*(2x^4+5x)^{/}}{(2x^4+5x)^2}=$$
$$=-frac{6x*(2x^4+5x)-3x^2*(8x+5)}{(2x^4+5x)^2}=-frac{12x^5-24x^3+15x^2}{(2x^4+5x)^2};$$

Пример 13
$$(2xsqrt{x})^{/}=(2x)^{/}*sqrt{x}+2x*(sqrt{x})^{/}=$$
$$=2*sqrt{x}+2x*frac{1}{2sqrt{x}}=2*sqrt{x}+frac{2x}{2sqrt{x}}=2*sqrt{x}+sqrt{x}=3sqrt{x};$$

Производная сложной функции

Сложная функция — это функция не от аргумента (x), а от какой-то другой функции: (f(g(x))). Например, функция (sin(x^2)) будет сложной функцией: «внешняя» функция синуса берется от «внутренней» функции степени ((x^2)). Так как под синусом стоит аргумент не (x), а (x^2), то такая функция будет называться сложной.
Еще примеры сложных функций:

  • $$ln(3x^4);$$
    Внешняя функция: натуральный логарифм; Внутренняя функция: ((3x^4)).
  • $$cos(ln(x));$$
    Внешняя функция: косинус; Внутренняя функция: ((ln(x))).
  • $$e^{2x^2+3};$$
    Внешняя функция: экспонента; Внутренняя функция: ((2x^2+3)).
  • $$(sin(x))^3;$$
    Внешняя функция: возведение в третью степень; Внутренняя функция: (sin(x)).
  • Чтобы посчитать производную от такой функции, нужно сначала найти производную внешней функции, а затем умножить результат на производную внутренней функции. В общем виде формула выглядит так:
    $$f(g(x))^{/}=f^{/}(g(x))*g^{/}(x);$$
    Скорее всего, выглядит непонятно, поэтому давайте разберем на примерах.

    Пример 14
    $$((cos(x))^4)^{/}=?$$
    Внешней функцией тут будет возведение в четвертую степень, поэтому сначала считаем производную от степени по формуле ((x^n)^{/}=n*x^{n-1}). А потом умножаем результат на производную внутренней функции, у нас это функция косинуса, по формуле (cos(x)^{/}=-sin(x)):
    $$((cos(x))^4)^{/}=underset{text{внешняя производная}}{underbrace{4*(cos(x))^3}}*underset{text{внутренняя производная}}{underbrace{(cos(x))^{/}}}=$$
    $$=4*(cos(x))^3*(-sin(x))=-4*(cos(x))^3*sin(x);$$

    Пример 15
    $$(e^{2x^3+5})^{/}=?$$
    Внешняя функция — это экспонента ((e^x)^{/}=e^x), а внутренняя функция — квадратный многочлен ((2x^3+5)):
    $$(e^{2x^3+5})^{/}=e^{2x^3+5}*(2x^3+5)^{/}=e^{2x^3+5}*((2x^3)^{/}+5^{/})=e^{2x^3+5}*6x^2.$$

    Пример 16
    $$(ln((2x^2+3)^6))^{/}=?$$
    Внешняя функция — это натуральной логарифм, берем производную от него по формуле ((ln(x))^{/}=frac{1}{x}), и умножаем на производную внутренней функции, у нас это шестая степень: ((x^n)^{/}=n*x^{n-1}). Но и на этом еще не все: под шестой степенью стоит не просто (x), а квадратный многочлен, значит еще нужно умножить на производную от этого квадратного многочлена:
    $$ln((2x^2+3)^6)=frac{1}{(2x^2+3)^6}*((2x^2+3)^6)^{/}*(2x^2+3)^{/}=$$
    $$=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*(4x+0)=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*4x=$$
    $$=frac{6*(2x^2+3)^5*4x}{(2x^2+3)^6}=frac{24x*(2x^2+3)^5}{(2x^2+3)^6}=frac{24x}{(2x^2+3)^6}.$$

Вывод формул производной функции

Выведем некоторые из этих формул, чтобы было понимание, откуда они берутся. Но перед этим познакомимся с новыми обозначениями. Запись (f(x)) означает, что функция берется от аргумента (x). Например:
$$f(x)=x^3+sin(x);$$
На месте аргумента (x) может стоять все что угодно, например выражение (2x+3). Обозначение такой функции будет (f(2x+3)), а сама функция примет вид:
$$f(2x+3)=(2x+3)^3+sin(2x+3);$$
То есть, везде вместо аргумента (x) мы пишем (2x+3).

И несколько важных замечаний про (Delta f(x)) и (Delta x). Напомню, что значок (Delta) означает изменение некоторой величины. (Delta x) — изменения координаты (x) при переходе от одной точки на графике функции к другой; (Delta f(x)) — разница координат (y) между двумя точками на графике. Подробнее про это можно почитать в главе, где мы вводим понятие производной. Распишем (Delta x) для двух близких точек на графике функции (O) и (B):
$$Delta x=x_B-x_O;$$
Отсюда можно выразить (x_B):
$$x_B=x_O+Delta x;$$
Абсцисса (координата точки по оси (x)) точки (B) получается путем сложения абсциссы точки (O) и (Delta x).

Кстати, функцию (f(x)=x^3+sin(x)) от аргумента (x_B=x_O+Delta x) можно расписать:

$$f(x_B)=f(x_O+Delta x)=(x_O+Delta x)^3+sin(x_O+Delta x);$$

Определение производной

Рис.1. График произвольной функции

И распишем (Delta f):
$$Delta f(x)=f(x_B)-f(x_O)=f(x_O+Delta x)-f(x_O);$$
Тогда определение производной можно записать в виде:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x_O+Delta x)-f(x_O)}{Delta x} quad при quad Delta x to 0;$$

За (x_O) обычно обозначают точку, в окрестности которой берут производную. То есть, получается (x_O) — это абсцисса начальной точки, а (x_O+Delta x) — абсцисса конечной точки.

Нам это пригодится при выводе формул производной.

Производная квадратичной функции

Выведем теперь формулу производной от (f(x)=x^2), воспользовавшись определением производной:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
Распишем числитель (f(x+Delta x)-f(x)) с учетом, что (f(x)=x^2):
$$f(x+Delta x)-f(x)=(x+Delta x)^2-x^2=x^2+2xDelta x+(Delta x)^2-x^2=2xDelta x+(Delta x)^2;$$
Подставим в определение производной:
$$f^{/}(x)=frac{2xDelta x+(Delta x)^2}{Delta x}=frac{Delta x*(2x+Delta x)}{Delta x}=2x+Delta x;$$
Напоминаю, что (Delta x) это бесконечно малая величина:
$$(Delta x)^2 ll 0;$$
Поэтому этим слагаемым можно пренебречь. Вот мы и получили формулу для производной от квадратной функции:
$$f^{/}(x)=(x^2)^{/}=2x;$$

Производная от третьей степени

Аналогичные рассуждения можно провести для функции третьей степени:
$$f(x)=x^3;$$
Воспользуемся определением производной:
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
$$f(x+Delta x)-f(x)=(x+Delta x)^3-x^3=(x+Delta x-x)((x+Delta x)^2+(x+Delta x)*x+x^2)=$$
$$=Delta x*(x^2+2x*Delta x+(Delta x)^2+x^2+x*Delta x+x^2)=Delta x*(3x^2+3xDelta x);$$
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x}=frac{Delta x*(3x^2+3xDelta x)}{Delta x}=3x^2+3xDelta x;$$
Так как при умножении на бесконечно малую величину получается бесконечно малая величина, то слагаемым (3xDelta x) можно пренебречь:
$$f^{/}(x)=(x^3)^{/}=3x^2;$$
Точно таким же способом можно вывести формулы производных для любых степеней:
$$(x^4)^{/}=4x^3;$$
$$(x^5)^{/}=5x^4;$$
$$…$$
$$(x^n)^{/}=n*x^{n-1};$$
Кстати, эта формула справедлива и для дробных степеней.

Вывод остальных формул делается похожим образом, только там может понадобиться знание пределов. Вывод всех формул разбирается в университетском курсе математического анализа.


Что такое производная функции простыми словами? Для чего нужна производная? Определение производной


Как решать задания №7 из ЕГЭ по математике. Анализ графиков при помощи производной. Графики производной и графики функции


Исследуем функцию с помощью производной. Находим точки минимума и максимума, наибольшее и наименьшее значение функции. Точки экстремума. Промежутки возрастания и убывания.


Связь коэффициента наклона и тангенса угла наклона касательной к функции и производной функции в точке касания. Задание №7 в ЕГЭ по математике.


Понравилась статья? Поделить с друзьями:
  • Как найти общую энергию тела
  • Как можно найти много меди
  • Как найти совокупный продукт труда
  • Как швее найти заказчиков
  • Как исправить ошибку 4000 в twitch