Как найти производную от функции распределения

Плотность распределения вероятностей непрерывной случайной величины

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ

Краткая теория


Ранее
непрерывная случайная величина задавалась с помощью функции распределения. Этот
способ задания не является единственным. Непрерывную случайную величину можно
также задать, используя другую функцию, которую называют плотностью
распределения или плотностью вероятности (иногда ее называют дифференциальной
функцией).

Плотностью распределения вероятностей непрерывной случайной величины

 называют функцию

 – первую производную от функции распределения

:

Из этого определения следует, что
функция распределения является первообразной для плотности распределения.

Заметим, что для описания
распределения вероятностей дискретной случайной величины плотность
распределения неприменима.

Зная плотность распределения, можно
вычислить вероятность того, что непрерывная случайная величина примет значение,
принадлежащее заданному интервалу.

Вероятность того, что непрерывная
случайная величина

 примет
значение, принадлежащее интервалу

 равна
определенному интегралу от плотности распределения, взятому в пределах от

 до

:

Геометрически полученный результат
можно истолковать так: вероятность того, что непрерывная случайная величина
примет значение, принадлежащее интервалу

, равна площади криволинейной трапеции, ограниченной
осью

, кривой распределения

 и прямыми

 и

.

В частности, если

 – четная
функция и концы интервала симметричны относительно начала координат, то:

Зная плотность распределения

 можно найти
функцию распределения

 по формуле:

Свойства плотности распределения

Свойство 1.

Плотность
распределения – неотрицательная функция:

Свойство 2.

Несобственный
интеграл от плотности распределения в пределах от

 до

 равен единице:

Смежные темы решебника:

  • Дискретная случайная величина
  • Непрерывная случайная величина
  • Интегральная функция распределения вероятностей

Примеры решения задач


Пример 1

Задана
плотность распределения вероятностей f(x) непрерывной случайной
величины X. Требуется:

1)
определить коэффициент A;

2) найти
функцию распределения F(x);

3)
схематично построить графики F(x) и f(x);

4) найти
математическое ожидание и дисперсию X;

5) найти
вероятность того, что X примет значение из
интервала (α,β):

α=1;  β=1.7

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

1)
Постоянный параметр

 найдем из
свойства плотности вероятности:

В
нашем случае эта формула имеет вид:

Получаем:

2)
Функцию распределения

 найдем из
формулы:

Учитывая
свойства

,  сразу можем
отметить, что:

Остается
найти выражение для

, когда

 принадлежит
интервалу

.

Получаем:

3) Построим графики

 и

:

График плотности распределения

График функции распределения

4)
Математическое ожидание находим по формуле:

Для
нашего примера:

Дисперсию
можно найти по формуле:

5)
Вероятность того, что случайная величина примет значение из интервала

:


Пример 2

Плотность
распределения вероятности непрерывной случайной величины равна

, x∈(0,∞). Найти нормировочный множитель C,
математическое ожидание M(X) и дисперсию D(X).

Решение

Нормировочный множитель

 найдем из
свойства плотности вероятности:

В
нашем случае эта формула имеет вид:

Плотность
вероятности:

Математическое
ожидание находим по формуле:

Для
нашего примера:

Дисперсию
можно найти по формуле: 


Пример 3

Непрерывная
случайная величина

 имеет плотность распределения:

Найти
величину a, вероятность P(X<0) и математическое
ожидание X.

Решение

На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Постоянный
параметр

 найдем из
свойства плотности вероятности:

В
нашем случае эта формула имеет вид:

Плотность
вероятности имеет вид:

Вероятность:

Математическое
ожидание находим по формуле:

Для
нашего примера:

Задачи контрольных и самостоятельных работ


Задача 1

Плотность
распределения непрерывной случайной величины X имеет вид:

Найти:

а)
параметр a;

б)
функцию распределения F(x);

в)
вероятность попадания случайной величины X в интервал (6.5;  11);

г)
математическое ожидание M(X) и дисперсию D(X);

Построить
график функций f(x) и F(x).


Задача 2

Задана
функция распределения непрерывной случайной величины:

Найти и
построить график функции плотности распределения вероятностей.


Задача 3

Случайная
величина X задана функцией распределения F(x).
Найти плотность распределения вероятностей, математическое ожидание и дисперсию
случайной величины. Построить график функции
F(x).


Задача 4

Задана
плотность вероятности f(x) или функции распределения
непрерывной случайной величины X. Найти a, M[X], D[X], P(α<x<β).

α=1,β=2


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 5

Непрерывная
случайная величина

 задана плотностью распределения вероятностей.

Требуется
найти:

— функцию
распределения вероятностей;


математическое ожидание;


дисперсию;

— среднее
квадратическое отклонение;

— вероятность
того, что случайная величина отклонится от своего математического ожидания не
более, чем на одну четвертую длины всего интервала возможных значений этой
величины;


построить графики функции распределения и плотности распределения вероятностей.


Задача 6

Случайная
величина X равномерно распределена на интервале (2;7).
Составить f(x),F(x), построить графики. Найти
M(X),D(X).


Задача 7

Случайная
величина X~N(a,σ)

a=25;
σ=4; α=13; β=30; δ=0.1.

Требуется:


составить функцию плотности распределения и построить ее график;

— найти
вероятность того, что случайная величина в результате испытания примет
значение, принадлежащее интервалу (α; β);

— найти
вероятность того, что абсолютная величина отклонения значений случайной
величины от ее математического ожидания не превысит δ.


Задача 8

Плотность
вероятности непрерывной случайной величины ξ задана следующим выражением:

Найти
постоянную C, функцию распределения Fξ (x), математическое
ожидание и дисперсию Dξ случайной величины ξ.


На сайте можно заказать решение контрольной или самостоятельной работы, домашнего задания, отдельных задач. Для этого вам нужно только связаться со мной:

ВКонтакте
WhatsApp
Telegram

Мгновенная связь в любое время и на любом этапе заказа. Общение без посредников. Удобная и быстрая оплата переводом на карту СберБанка. Опыт работы более 25 лет.

Подробное решение в электронном виде (docx, pdf) получите точно в срок или раньше.

Задача 9

Случайная
величина X задана функцией распределения вероятностей F(x).

Требуется:

1. Найти
функцию плотности распределения f(x).

2. Найти M(X).

3. Найти
вероятность P(α<X<β)

4.
Построить графики f(x) и F(x).

α=2, β=4.5


Задача 10

Найти
функцию плотности нормально распределенной случайной величины X и
постройте ее график, зная M(X) и D(X).

M(X)=-1; D(X)=8


Задача 11

Случайная
величина X задана интегральной F(x) или дифференциальной f(x)
функцией. Требуется:

а) найти
параметр C;

б) при
заданной интегральной функции F(x) найти дифференциальную функцию f(x), а при
заданной дифференциальной функции f(x) найти интегральную функцию F(x);

в)
построить графики функций F(x) и f(x);

г) найти
математическое ожидание M(X), дисперсию D(X) и
среднее квадратическое отклонение σ(x);

д)
вычислить вероятность попадания в интервал P(a≤x≤b)

е)
определить, квантилем какого порядка является точка xp;

ж)
вычислить квантиль порядка p

a=π/4; b=π/3; xp=π/2; p=0.75

 

  • Краткая теория
  • Примеры решения задач
  • Задачи контрольных и самостоятельных работ


2.4.3. Функция ПЛОТНОСТИ распределения вероятностей

или дифференциальная функция распределения. Она представляет собой производную функции распределения: .

Примечание: для дискретной случайной величины такой функции не существует

В нашем примере:

то есть, всё очень просто – берём производную от каждого куска, и порядок.

Но настоящий порядок состоит в том, что несобственный интеграл от с пределами интегрирования от «минус» до «плюс» бесконечности:

 – равен единице, и строго единице. В противном случае перед нами не функция плотности, и если эта функция была найдена как производная, то  – не является функцией распределения (несмотря на какие бы то ни было другие признаки).

Проверим «подлинность» наших функций. Если случайная величина  принимает значения из конечного промежутка, то всё дело сводится к вычислению определённого интеграла. В силу свойства аддитивности, делим интеграл на 3 части:

Совершенно понятно, что левый и правый интегралы равны нулю и нам осталось вычислить средний интеграл:
, что и требовалось проверить.

С вероятностной точки зрения это означает, что случайная величина  достоверно примет одно из значений отрезка . Геометрически же это значит, что площадь между осью  и графиком  равна единице, и в данном случае речь идёт о площади треугольника .  Сторона  является фрагментом прямой  и для её построения достаточно найти точку :

Ну вот, теперь всё наглядно – где бОльшая площадь, там и сконцентрированы более вероятные значения.

Так как функция плотности «собирает под собой» вероятности, то она неотрицательна  и её график не может располагаться ниже оси . В общем случае функция разрывна (смотрим, где «жирные» оранжевые точки!).

Теперь разберём весьма любопытный факт: поскольку действительных чисел несчётно много, то вероятность того, что случайная величина  примет какое-то конкретное значение стремится к нулю. И поэтому вероятности рассчитывают не для отдельно взятых точек, а для целых промежутков (пусть даже очень малых). Как вы правильно догадываетесь:
 (синяя площадь на чертеже)  – вероятность того, что случайная величина примет значение из отрезка ;
 (красная площадь) – вероятность того, что случайная величина примет значение из отрезка .

По той причине, что отдельно взятые значения можно не принимать во внимание, с помощью этих же интегралов рассчитываются и вероятности по интервалам и полуинтервалам, в частности:

Этим же объяснятся аналогичная «вольность» с функцией .
Возможно, кто-то спросит: а зачем считать интегралы, если есть функция ?

А дело в том, что во многих задачах непрерывная случайная величина ИЗНАЧАЛЬНО задана функцией  плотности распределения, которая ТОЖЕ однозначно определяет случайную величину. Но, как вариант, можно сначала найти функцию  (с помощью тех же интегралов), после чего использовать «лёгкий способ» бросить курить отыскания вероятностей. Впрочем, об этом чуть позже:

Задача 105
Непрерывная случайная величина  задана своей функцией распределения:

Найти значения  и функцию . Проверить, что  действительно является функцией плотности  распределения. Вычислить вероятности . Построить графики .

Тренируемся самостоятельно! Если возникнут затруднения, то внимательно перечитайте вышеизложенный материал. Краткое решение и ответ в конце книги.

Вообще, типовые задачи на непрерывную случайную величину можно разделить на 2 большие группы:

1) когда дана функция , 2) когда дана функция .

В первом случае не составляет особых трудностей отыскать функцию плотности распределения  – почти всегда производные не то что простЫ, а примитивны (в чём мы только что убедились). Но вот когда НСВ задана функцией , то нахождение функции распределения – есть более кропотливый процесс:
Задача 106
Непрерывная случайная величина  задана функцией плотности распределения:

Найти значение  и составить функцию распределения вероятностей . Вычислить .
Построить графики .

Решение: найдём константу . Это классика (в подавляющем большинстве задач вам не предложат готовую функцию плотности). Используем свойство .
В данном случае:

На практике нулевые интегралы можно опускать, а константу сразу выносить за знак интеграла:
            (*)
Пользуясь чётностью подынтегральной функции, вычислим интеграл:
 и подставим результат в уравнение (*):
, откуда выразим

Таким образом, функция плотности распределения:

Выполним проверку, а именно, вычислим тот же самый интеграл, но уже с известной константой. Для разнообразия я не буду пользоваться чётностью:
, отлично.

Обратите внимание, что только при  и только при этом значении предложенная в условии функция является функцией плотности распределения. Ну и тут не лишним будет проконтролировать, что на интервале , т.е. условие неотрицательности действительно выполнено. Доверяй условию, да проверяй ;) Не раз и не два мне встречались функции, которые в принципе не могли быть плотностью, что говорило об опечатках или о невнимательности авторов задач.

Теперь начинается самое интересное. Функции распределения вероятностей – есть интеграл:

Так как  состоит из трёх кусков, то решение разобьётся на 3 шага:

1) На промежутке , поэтому:

2) На интервале , и мы прицепляем следующий вагончик:

При подстановке верхнего предела интегрирования можно считать, что вместо «икс» мы подставляем «икс». Если же возник вопрос с пределом нижним, то вспоминаем график синуса либо его нечётность: .

3) И, наконец, на , и детский паровозик отправляется в путь:

Внимание! А вот в этом задании нулевые интегралы пропускать НЕ НАДО. Чтобы показать своё понимание функции распределения ;) К тому же, они могут оказаться вовсе не нулевыми, и тогда придётся иметь дело с интегралами несобственными. И такой пример я обязательно разберу ниже.

Записываем наши достижения под единую скобку:

С высокой вероятностью всё правильно, но, тем не менее, устно возьмём производную: , а также «прозвоним» точки «стыка»:

Правильность решения можно проконтролировать и в ходе построения графика, но, во-первых, он не всегда требуется, а во-вторых, до сего момента можно успеть «наломать дров». Ибо вероятности попадания чаще находят с помощью функции распределения:

 – вероятность того, что случайная величина  примет значение из промежутка

Второй способ состоит в вычислении интеграла:
что, кстати, не труднее. И проверочка заодно получилась.

Выполним чертежи. График  представляет собой косинусоиду, сжатую вдоль ординат в 2 раза. Тот редкий случай, когда функция плотности непрерывна:

Значение  численно равно заштрихованной площади – это я специально нарисовал, чтобы напомнить вероятностный смысл плотности функции распределения. И вся площадь под «дугой» равна единице, то есть, достоверным является тот факт, что случайная величина примет значение из интервала . Заметьте, что значения  по условию, невозможны.
Осталось изобразить функцию распределения. График  представляет собой синусоиду, сжатую в 2 раза вдоль оси ординат и сдвинутую на  вверх:

В принципе, тут можно было не заморачиваться преобразованием графиков, а найти несколько опорных точек и догадаться, как выглядит кривая (тригонометрическая таблица в помощь). Но «любительский» подход чреват тем, что график получится принципиально не точным. Так, в нашем примере в точке  существует перегиб графика функции , и велик риск неверно отобразить его выпуклость / вогнутость.

Чертежи желательно расположить так, чтобы оси ординат (вертикальные оси) лежали ровненько одна под другой. Это будет хорошим тоном.

И я так чувствую, вам уже не терпится проверить свои силы. Как водится, пример попроще:

Задача 107
Задана плотность распределения вероятностей непрерывной случайной величины :

Требуется:

1) определить коэффициент ;
2) найти функцию распределения ;
3) построить графики ;
4) найти вероятность того, что  примет значение из промежутка

и задачка поинтереснее:

Задача 108
Непрерывная случайная величина  задана плотностью распределения вероятностей:

Найти значение  и построить график плотности распределения. Найти функцию распределения вероятностей  и построить её график. Вычислить вероятность .

Дерзайте! Свериться с решением можно внизу книги.

Следует отметить, что все эти задачи реально предлагают студентам-заочникам, и поэтому я не предлагаю вам ничего необычного.

И в заключение параграфа обещанные случаи с несобственными интегралами:

Задача 109
Непрерывная случайная величина  задана своей плотностью распределения:

Найти коэффициент  и функцию распределения . Построить графики.

Решение: по свойству функции плотности распределения:

В данной задаче  состоит из 2 частей, поэтому:

Правый интеграл равен нулю, а вот левый – есть «живой» несобственный интеграл с бесконечным нижним пределом:

Таким образом, наше уравнение превратилось в готовый результат:

и функция плотности:

Функция , как нетрудно понять, отыскивается в 2 шага:

1) На промежутке , следовательно:
 – вот такая вот у нас замечательная экспонента. Как птица Феникс.

2) На интервале   и:
, что и должно получиться.

Для построения графиков найдём пару опорных точек:  и аккуратно прочертим кусочки экспонент с причитающимися дополнениями:

Заметьте, что теоретически случайная величина  может принять сколь угодно большое по модулю отрицательное значение, и ось абсцисс является горизонтальной асимптотой для обоих графиков при .

В соответствующей статье сайта я рассмотрел ещё более интересный пример с функцией , где случайная величина теоретически принимает вообще ВСЕ действительные значения. Но это уже несколько повышенный уровень сложности.

2.4.4. Как вычислить математическое ожидание и дисперсию НСВ?

2.4.2. Вероятность попадания в промежуток

| Оглавление |



Полную и свежую версию этой книги в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Непрерывная
случайная величина может быть задана
не только с помощью функции распределения.
Введем понятие плотности
вероятности
непрерывной случайной величины.

Рассмотрим
вероятность попадания непрерывной
случайной величины на интервал [х,
х
+ Δх].
Вероятность такого события

P(х
X
х
+ Δх)
= F(х+
Δх)
F(х),

т.е.
равна приращению функции распределения
F(х)
на этом участке. Тогда вероятность,
приходящаяся на единицу длины, т.е.
средняя плотность вероятности на участке
от х
до х+
Δх,
равна

.

Переходя к пределу
Δх
→ 0, получим плотность вероятности в
точке х:

,

представляющую
производную функции распределения
F(х).
Напомним, что для непрерывной случайной
величины F(х)
– дифференцируемая функция.

Определение.
Плотностью
вероятности

(плотностью
распределения
)
f(x)
непрерывной
случайной величины Х называется
производная ее функции распределения

f(x)
= F′(x).

(4.8)

Про случайную
величину Х
говорят, что она имеет распределение с
плотностью f(x)
на определенном участке оси абсцисс.

Плотность вероятности
f(x),
как и функция распределения F(x)
является одной из форм закона распределения.
Но в отличие от функции распределения
она существует только для непрерывных
случайных величин.

Плотность вероятности
иногда называют дифференциальной
функцией

или дифференциальным
законом распределения
.
График плотности вероятности называется
кривой
распределения
.

Пример 4.4.
По данным примера 4.3 найти плотность
вероятности случайной величины Х.

Решение.
Будем находить плотность вероятности
случайной величины как производную от
ее функции распределения f(x)
= F‘(x).

Отметим свойства
плотности вероятности непрерывной
случайной величины.

1.
Плотность
вероятности – неотрицательная функция
,
т.е.

f(x)
≥ 0,

(4.9)

как
производная монотонно неубывающей
функции F(x).

2.
Вероятность
попадания непрерывной случайной величины
Х в интервал
[α,
β,]
равна
определенному интегралу от ее плотности
вероятности в пределах от
α
до
β,
т.е.

(4.10)

Геометрически
вероятность попадания в интервал [α,
β,]
равна площади фигуры, ограниченной
сверху кривой распределения и опирающейся
на отрезок [α,
β,]
(рис.4.4).

Рис. 4.4 Рис.
4.5

3.
Функция
распределения непрерывной случайной
величины может быть выражен через
плотность вероятности по формуле
:

.

(4.11)

Геометрически
функция распределения равна площади
фигуры, ограниченной сверху кривой
распределения и лежащей левее точки х
(рис. 4.5).

4.
Несобственный
интеграл в бесконечных пределах от
плотности вероятности непрерывной
случайной величины равен единице
:

.

(4.12)

Геометрически
свойства 1
и 4
плотности вероятности означают, что ее
график – кривая распределения – лежит
не ниже оси абсцисс, а полная площадь
фигуры, ограниченной кривой распределения
и осью абсцисс, равна единице.

Пример 4.5.
Функция f(x)
задана в виде:

Найти: а) значение
А;
б) выражение функции распределения
F(х);
в) вероятность того, что случайная
величина Х
примет значение на отрезке [0; 1].

Решение.
а) Для того, чтобы f(x)
была плотностью вероятности некоторой
случайной величины Х,
она должна быть неотрицательна,
следовательно, неотрицательным должно
быть и значение А.
С учетом свойства 4
находим:

,
откуда А
=
.

б) Функцию
распределения находим, используя
свойство 3:

Если x
≤ 0, то f(x)
= 0 и, следовательно, F(x)
= 0.

Если 0 < x
≤ 2, то f(x)
= х/2
и, следовательно,

.

Если х
> 2, то f(x)
= 0 и, следовательно

.

в) Вероятность
того, что случайная величина Х
примет значение на отрезке [0; 1] находим,
используя свойство 2:

=
0,25. ◄

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Для непрерывных случайных величин наряду с законом распределения вероятностей рассматривают плотность вероятностей, которую обозначают так .

Плотностью вероятностей случайной величины называют первую производную от интегральной функции распределения вероятностей

откуда дифференциал

Поскольку прирост определяют зависимости

куплена плотности вероятностей на прирост случайной величины соответствует вероятность того, что случайная величина содержаться в промежутке где .

Геометрически на графике плотности вероятностей соответствует площадь прямоугольника с основанием и высотой

Свойства плотности вероятностей

1. Плотность вероятностей принимает положительные значения . Это свойство следует из определения первой производной от функции распределения , которая в свою очередь является неубывающей функцией.

2. Условие нормирования случайной величины

3.Вероятность попадания случайной величины в промежуток определяется зависимостью

4. Функция распределения вероятностей непрерывной случайной величины определяется через плотность распределения вероятностей интегрированием

—————————————

Рассмотрим задачи для закрепления материала на практике.

Пример 1. Закон распределения случайной величины заданы функцией

Найти плотность распределения вероятностей и построить графики обеих функций . Вычислить вероятность того, что случайная величина принадлежит промежутку

Решение. Вычисляем функцию плотности вероятностей

Графики функций изображены на рисунках

Вероятность события вычислим по формуле

Согласно приведенной выше формулы получим

На этом задача решена.

———————————————

Пример 2. По заданной функцией плотности распределения вероятностей

установить параметры и функцию распределения вероятностей . Построить графики функций.

Решение. Значение постоянной определяем из условия нормировки

При найденном значении плотность вероятностей будет иметь вид

Функция распределения вероятностей определяется интегрированием:

Записываем общий вид функции ,

Графики функций распределения вероятностей и ее плотности показаны на рисунках ниже

—————————————

Пример 3. Случайная величина имеет закон распределения вероятностей в виде треугольника

Записать выражения для плотности вероятностей и функции распределения вероятностей, построить график и вычислить .

Решение. На промежутках и плотность вероятностей меняется по линейному закону вида

для первого и второго участки соответственно. Для нахождения неизвестных констант установим ординаты вершины треугольника . Используем условие нормирования, согласно которому площадь треугольника равна единице:

При известных координатах всех вершин находим уравнение прямых

Есть другой способ нахождения уравнения прямых, предусматривающий отыскания по одной константе на уравнение. Если известна точка пересечения прямой с осью ординат , то уравнение прямой которая через эту точку проходит следующее

где – ордината пересечения с осью . Подстановкой второй точки прямой находят неизвестную константу . Для заданных точек получим

Со временем второй метод для Вас станет проще и практичнее в использовании. Плотность вероятностей примет значение

а ее функция примет вид

Функцию распределения вероятностей находим интегрированием:

а) на промежутке :

2) на промежутке

Следовательно, функция распределения вероятностей такая

Ее график приведен ниже

Вычисляем вероятность события согласно формуле

или

Следовательно, вероятность равна

————————-

Хорошо проанализируйте приведенные примеры — это поможет научиться быстро находить плотность распределения вероятностей и выполнять построение графика. Будьте внимательны при интегрировании и выбирайте удобную для вычислений методику.

Содержание:

Непрерывные случайные величины: функция распределения случайной величины:

Если вычислить вероятность появления непрерывной случайной величины не составляет особого труда, то решение основной задачи теории вероятностей для непрерывной случайной величины несёт большие трудности. Поэтому в материалах сегодняшней лекции мы рассмотрим методы определения вероятности попадания непрерывной случайной величины на интервал с помощью функции распределения.

Функция распределения непрерывной случайной величины

Зная функцию распределения непрерывной случайной величины, задача определения вероятности её попадания на интервал (а; b) может быть решена следующим образом.

По известной функции распределения вероятность попадания непрерывной случайной величины на интервал (а; b) равна приращению функции распределения на этом участке (рис. 1).
Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Во всех рассмотренных выше случаях случайная величина определялась путём задания значений самой величины и вероятностей этих значений.

Однако такой метод применим далеко не всегда. Например, в случае непрерывной случайной величины, её значения могут заполнять некоторый произвольный интервал. Очевидно, что в этом случае задать все значения случайной величины просто нереально.

Даже в случае, когда это сделать можно, зачастую задача решается чрезвычайно сложно. Рассмотренный только что пример даже при относительно простом условии (приборов только четыре) приводит к достаточно неудобным вычислениям, а если в задаче будет несколько сотен приборов?

Поэтому встает задача по возможности отказаться от индивидуального подхода к каждой задаче и найти по возможности наиболее общий способ задания любых типов случайных величин.

Пусть х — действительное число. Вероятность события, состоящего в том, что X примет значение, меньшее х, т.е. X

Определение. Функцией распределения называют функцию F(x), определяющую вероятность того, что случайная величина X в результате испытания примет значение, меньшее х.

F(x) = Р(Х < х)

Функцию распределения также называют интегральной функцией. Функция распределения существует как для непрерывных, так и для дискретных случайных величин. Она полностью характеризует случайную величину и является одной из форм закона распределения.

Для дискретной случайной величины функция распределения имеет
Непрерывные случайные величины - определение и вычисление с примерами решения

Знак неравенства под знаком суммы показывает, что суммирование распространяется на те возможные значения случайной величины, которые меньше аргумента х.

Функция распределения дискретной случайной величины X разрывна и возрастает скачками при переходе через каждое значение Непрерывные случайные величины - определение и вычисление с примерами решения

Так для примера, который мы будем рассматривать на следующемНепрерывные случайные величины - определение и вычисление с примерами решения

Свойства функции распределения

1)    значения функции распределения принадлежат отрезку [0, 1].

Непрерывные случайные величины - определение и вычисление с примерами решения

2)    F(x) — неубывающая функция.

Непрерывные случайные величины - определение и вычисление с примерами решения

3)    Вероятность того, что случайная величина примет значение, заключенное в интервале (а, b) , равна приращению функции распределения на этом интервале.
Непрерывные случайные величины - определение и вычисление с примерами решения

4)    На минус бесконечности функция распределения равна нулю, на плюс бесконечности функция распределения равна единице.

5)    Вероятность того, что непрерывная случайная величина X примет одно определенное значение, равна нулю.

Таким образом, не имеет смысла говорить о каком — либо конкретном значении случайной величины. Интерес представляет только вероятность попадания случайной величины в какой — либо интервал, что соответствует большинству практических задач.

Заключение по лекции:

В лекции мы рассмотрели методы решения основной задачи теории вероятностей — определения вероятности попадания непрерывной случайной величины на интервал с помощью функции распределения.

Плотность вероятности. Числовые характеристики. Моменты случайных величин

Если вычислить вероятность появления непрерывной случайной величины не составляет особого труда, то решение основной задачи теории вероятностей для непрерывной случайной величины несёт большие трудности. Поэтому в материалах сегодняшней лекции мы рассмотрим методы определения вероятности попадания непрерывной случайной величины на интервал с помощью плотности
распределения.

Плотность распределения

Функция распределения полностью характеризует случайную величину, однако, имеет один недостаток. По функции распределения трудно судить о характере распределения случайной величины в небольшой окрестности той или иной точки числовой оси.

Определение. Плотностью распределения вероятностей непрерывной случайной величины X называется функция f(x) — первая производная от функции распределения F(x).

Непрерывные случайные величины - определение и вычисление с примерами решения

Плотность распределения также называют дифференциальной функцией. Для описания дискретной случайной величины плотность распределения неприемлема.

Смысл плотности распределения состоит в том, что она показывает как часто появляется случайная величина X в некоторой окрестности точки х при повторении опытов.

После введения функций распределения и плотности распределения можно дать следующее определение непрерывной случайной величины.

Определение. Случайная величина X называется непрерывной, если её функция распределения F(x) непрерывна на всей оси ОХ, а плотность распределения f(x) существует везде, за исключением (может быть, конечного числа точек).

Зная плотность распределения, можно вычислить вероятность того, что некоторая случайная величина X примет значение, принадлежащее заданному интервалу.

Теорема. Вероятность того, что непрерывная случайная величина X примет значение, принадлежащее интервалу (а, b), равна определенному интегралу от плотности распределения, взятому в пределах от а до b.

Непрерывные случайные величины - определение и вычисление с примерами решения

Доказательство этой теоремы основано на определении плотности распределения и третьем свойстве функции распределения (см. лекцию тема № 10).

Геометрически это означает, что вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу (а, b), равна площади криволинейной трапеции, ограниченной осью ОХ, кривой распределения f(x) и прямыми х=а и х=b.

Геометрически вероятность Р(а < X < b) представляется в виде заштрихованной области, ограниченной кривой распределения и осью Ох на интервале(а; b) (рис 1).

Непрерывные случайные величины - определение и вычисление с примерами решения

Функция распределения может быть легко найдена, если известна плотность распределения, по формуле:

Непрерывные случайные величины - определение и вычисление с примерами решения

Свойства плотности распределения

1) Плотность распределения — неотрицательная функция.

Непрерывные случайные величины - определение и вычисление с примерами решения
2) Несобственный интеграл от плотности распределения в пределах от —
Непрерывные случайные величины - определение и вычисление с примерами решения равен единице.Непрерывные случайные величины - определение и вычисление с примерами решения

Плотность распределения Непрерывные случайные величины - определение и вычисление с примерами решения
можно представить как:

Непрерывные случайные величины - определение и вычисление с примерами решения

тогдаНепрерывные случайные величины - определение и вычисление с примерами решения
Поэтому иногда функцию плотности распределения f(x) называют также дифференциальной функцией распределения или дифференциальным законом распределения величины X, а функцию распределения F(x) -интегральной функцией распределения или интегральным законом распределения.

Следует заметить, что интеграл Непрерывные случайные величины - определение и вычисление с примерами решения возможно трактовать как сумму бесконечно большого числа несовместных элементарных событий, каждое из которых заключается в попадании случайной величины в бесконечно малый участок (х, х + dx) и имеет вероятность:

Р(х < X < х + dx) = dF(x) = f(x)dx

Величину f(x)dx называют элементом вероятности.

По своему содержанию элемент вероятности есть вероятность попадания случайной величины X на элементарный участок dx, прилежащий к точке X.

Функция распределения случайной величины X по известной плотности распределения может быть найдена, как интеграл от плотности распределения в интервале от Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения
В схеме непрерывных случайных величин можно вывести аналогии формулы полной вероятности и формулы Бейеса, рассмотренные при изучении темы 4.

Обозначим Р(А /х) условную вероятность события А при условии Х= х. Заменяя в формуле полной вероятности вероятность гипотезы элементом вероятности f(x)dx, а сумму — интегралом, получим полную вероятность события А.

Непрерывные случайные величины - определение и вычисление с примерами решения
Данная формула называется интегральной формулой полной вероятности.

Соответствующий аналог в схеме непрерывных случайных величин имеет и формула Бейеса. Обозначив условную плотность распределения случайной величины X при условии, что в результате опыта появилось событие A через Непрерывные случайные величины - определение и вычисление с примерами решения, получим:

Непрерывные случайные величины - определение и вычисление с примерами решения

Данная формула называется интегральной формулой Бейеса.

Числовые характеристики непрерывных случайных величин

Пусть непрерывная случайная величина X задана функцией распределения f(x). Допустим, что все возможные значения случайной величины принадлежат отрезку [а,b].

Математическое ожидание

Определение. Математическим ожиданием непрерывной случайной величины X, возможные значения которой принадлежат отрезку [а,b], называется определенный интеграл

Непрерывные случайные величины - определение и вычисление с примерами решения
Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

Непрерывные случайные величины - определение и вычисление с примерами решения
При этом, конечно, предполагается, что несобственный интеграл сходится.

Дисперсия

Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата её отклонения.

Непрерывные случайные величины - определение и вычисление с примерами решения

По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:

Непрерывные случайные величины - определение и вычисление с примерами решения
 

Среднеквадратичное отклонение

Определение. Средним квадратичным отклонением называется квадратный корень из дисперсии.

Непрерывные случайные величины - определение и вычисление с примерами решения

Мода

Определение. Модой Непрерывные случайные величины - определение и вычисление с примерами решения дискретной случайной величины называется её наиболее вероятное значение. Для непрерывной случайной величины мода — такое значение случайной величины, при которой плотность распределения имеет максимум.

Непрерывные случайные величины - определение и вычисление с примерами решения
Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется двухмодальным или многомодальным.

Если распределение имеет минимум, но не имеет максимума, то оно
называется антимодальным.

Медиана

Определение. Медианой Непрерывные случайные величины - определение и вычисление с примерами решения случайной величины X называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

Непрерывные случайные величины - определение и вычисление с примерами решения
Геометрически медиана — абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам.

Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

Начальный момент

Определение. Начальным моментом порядка k случайной величины X называется математическое ожидание величины Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Для дискретной случайной величины:Непрерывные случайные величины - определение и вычисление с примерами решения
Для непрерывной случайной величины: Непрерывные случайные величины - определение и вычисление с примерами решения

Начальный момент первого порядка равен математическому ожиданию.

Центральный момент

Определение. Центральным моментом порядка k случайной величины X называется математическое ожидание величины Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Для дискретной случайной величины: Непрерывные случайные величины - определение и вычисление с примерами решения

Для непрерывной случайной величины: Непрерывные случайные величины - определение и вычисление с примерами решения
Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.
 

Коэффициент асимметрии

Определение. Отношение центрального момента третьего порядка к среднеквадратическому отклонению в третьей степени называется коэффициентом асимметрии.

Непрерывные случайные величины - определение и вычисление с примерами решения
 

Эксцесс

Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.

Непрерывные случайные величины - определение и вычисление с примерами решения
Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: Непрерывные случайные величины - определение и вычисление с примерами решения

Абсолютный центральный момент: Непрерывные случайные величины - определение и вычисление с примерами решения

Абсолютный центральный момент первого порядка называется средним арифметическим отклонением.

Заключение по лекции:

В лекции мы рассмотрели методы решения основной задачи теории вероятностей — определения вероятности попадания непрерывной случайной величины на интервал с помощью плотности распределения.

Законы распределения непрерывных величин: нормальное, равномерное, показательное

В материалах сегодняшней лекции мы рассмотрим законы распределения непрерывных величин.

Равномерное распределение

Определение. Непрерывная случайная величина имеет равномерное распределение на отрезке [а,b], если на этом отрезке плотность

распределения случайной величины постоянна, а вне его равна нулю.
Непрерывные случайные величины - определение и вычисление с примерами решения

Постоянная величина С может быть определена из условия равенства единице площади, ограниченной кривой распределения, представленной на рис. 1
Непрерывные случайные величины - определение и вычисление с примерами решения        

Получаем Непрерывные случайные величины - определение и вычисление с примерами решения       .

Найдём функцию распределения F(x) на отрезке [а,b] (рис. 2).
Непрерывные случайные величины - определение и вычисление с примерами решения
Непрерывные случайные величины - определение и вычисление с примерами решения

Для того, чтобы случайная величина подчинялась закону равномерного распределения необходимо, чтобы её значения лежали внутри некоторого определенного интервала, и внутри этого интервала значения этой случайной величины были бы равновероятны.

Определим математическое ожидание и дисперсию случайной величины, подчиненной равномерному закону распределения.
Непрерывные случайные величины - определение и вычисление с примерами решения

Вероятность попадания случайной величины в заданный интервал:
Непрерывные случайные величины - определение и вычисление с примерами решения
 

Показательное распределение

Определение. Показательным (экспоненциальным) называется распределение вероятностей непрерывной случайной величины X, которое описывается плотностью    

Непрерывные случайные величины - определение и вычисление с примерами решения

где Непрерывные случайные величины - определение и вычисление с примерами решения— положительное число.

Найдём закон распределения.
Непрерывные случайные величины - определение и вычисление с примерами решения

Графики функции распределения и плотности распределения представлены на рис. 3, 4.
Непрерывные случайные величины - определение и вычисление с примерами решения

Найдём математическое ожидание случайной величины, подчинённой показательному распределению.
Непрерывные случайные величины - определение и вычисление с примерами решения
Результат получен с использованием того факта, что

Непрерывные случайные величины - определение и вычисление с примерами решения

Для нахождения дисперсии найдём величину Непрерывные случайные величины - определение и вычисление с примерами решенияНепрерывные случайные величины - определение и вычисление с примерами решения

Дважды интегрируя по частям, аналогично рассмотренному случаю, получим:

Непрерывные случайные величины - определение и вычисление с примерами решения
Тогда Непрерывные случайные величины - определение и вычисление с примерами решения
Итого:Непрерывные случайные величины - определение и вычисление с примерами решения

Видно, что в случае показательного распределения математическое ожидание и среднеквадратическое отклонение равны.

Также легко определить и вероятность попадания случайной величины, подчиненной показательному закону распределения, в заданный интервал.Непрерывные случайные величины - определение и вычисление с примерами решения

Показательное распределение широко используется в теории надёжности.

Допустим, некоторое устройство начинает работать в момент времени to=0, а через какое- то время t происходит отказ устройства.

Обозначим Т непрерывную случайную величину — длительность безотказной работы устройства.

Таким образом, функция распределения F(t) = P(T

Вероятность противоположного события (безотказная работа в течение времени t) равна R(t) = P(T>t) — l — F(t).

Функция надежности

Определение. Функцией надёжности R(t) называют функцию, определяющую вероятность безотказной работы устройства в течение времени t.

Часто на практике длительность безотказной работы подчиняется показательному закону распределению.

Вообще говоря, если рассматривать новое устройство, то вероятность отказа в начале его функционирования будет больше, затем количество отказов снизится и будет некоторое время иметь практически одно и то же значение. Затем (когда устройство выработает свой ресурс) количество отказов будет возрастать.

Другими словами, можно сказать, что функционирование устройства на протяжении всего существования (в смысле количества отказов) можно описать комбинацией двух показательных законов (в начале и конце функционирования) и равномерного закона распределения.

Функция надёжности для какого- либо устройства при показательном законе распределения равна:

Непрерывные случайные величины - определение и вычисление с примерами решения

Данное соотношение называют показательным законом надежности.

Важным свойством, позволяющим значительно упростить решение задач теории надежности, является то, что вероятность безотказной работы устройства на интервале времени t не зависит от времени предшествующей работы до начала рассматриваемого интервала, а зависит только от длительности времени t.

Таким образом, безотказная работа устройства зависит только от интенсивности отказов Непрерывные случайные величины - определение и вычисление с примерами решения и не зависит от безотказной работы устройства в
прошлом.

Так как подобным свойством обладает только показательный закон распределения, то этот факт позволяет определить, является ли закон распределения случайной величины показательным или нет.

Нормальный закон распределения

Определение. Нормальным называется распределение вероятностей непрерывной случайной величины, которое описывается плотностью вероятности

Непрерывные случайные величины - определение и вычисление с примерами решения
Нормальный закон распределения также называется законом Гаусса.

Нормальный закон распределения занимает центральное место в теории вероятностей. Это обусловлено тем, что этот закон проявляется во всех случаях, когда случайная величина является результатом действия большого числа различных факторов. К нормальному закону приближаются все остальные законы распределения.

Можно легко показать, что параметры Непрерывные случайные величины - определение и вычисление с примерами решения входящие в плотность распределения являются соответственно математическим ожиданием и среднеквадратическим отклонением случайной величины X.

Найдём функцию распределения F(x).

Непрерывные случайные величины - определение и вычисление с примерами решения

График плотности нормального распределения называется нормальной кривой или кривой Гаусса.

Нормальная кривая обладает следующими свойствами:

1)    Функция определена на всей числовой оси.

2)    При всех х функция распределения принимает только положительные значения.

3)    Ось ОХ является горизонтальной асимптотой графика плотности вероятности, т.к. при неограниченном возрастании по абсолютной величине аргумента л значение функции стремится к нулю.

4)    Найдём экстремум функции.Непрерывные случайные величины - определение и вычисление с примерами решения

Т.к. приНепрерывные случайные величины - определение и вычисление с примерами решения , то в точке х = m функция имеет максимум, равный Непрерывные случайные величины - определение и вычисление с примерами решения

5)    Функция является симметричной относительно прямой x = а, т.к. разность

(х — а) входит в функцию плотности распределения в квадрате.

6)    Для нахождения точек перегиба графика найдем вторую производную функции плотности.
Непрерывные случайные величины - определение и вычисление с примерами решения
При Непрерывные случайные величины - определение и вычисление с примерами решения вторая производная равна нулю, а при переходе через эти точки меняет знак, т.е. в этих точках функция имеет перегиб.

В этих точках значение функции равно     Непрерывные случайные величины - определение и вычисление с примерами решения
Построим график функции плотности распределения (рис. 5).
Непрерывные случайные величины - определение и вычисление с примерами решения

Построены графики при м =0 и трёх возможных значениях среднеквадратичного отклоненияНепрерывные случайные величины - определение и вычисление с примерами решения. Как видно, при увеличении значения среднего квадратичного отклонения график становится более пологим, а максимальное значение уменьшается.

Если а > 0, то график сместится в положительном направлении, если а < 0 — в отрицательном.

При а = 0 и Непрерывные случайные величины - определение и вычисление с примерами решения кривая называется нормированной. Уравнение нормированной кривой:
Непрерывные случайные величины - определение и вычисление с примерами решения

Функция Лапласа

Найдём вероятность попадания случайной величины, распределенной по нормальному закону, в заданный интервал.

Непрерывные случайные величины - определение и вычисление с примерами решения

ОбозначимНепрерывные случайные величины - определение и вычисление с примерами решения

Тогда Непрерывные случайные величины - определение и вычисление с примерами решения
Т.к. интегралНепрерывные случайные величины - определение и вычисление с примерами решения не выражается через элементарные функции, то вводится в рассмотрение функция

Непрерывные случайные величины - определение и вычисление с примерами решения
которая называется функцией Лапласа или интегралом вероятностей.

Значения этой функции при различных значениях х посчитаны и приводятся в специальных таблицах.

На рис. 6 показан график функции Лапласа.

Непрерывные случайные величины - определение и вычисление с примерами решения

Функция Лапласа обладает следующими свойствами:

  • 1)    Ф(0) = 0;
  • 2)    Ф(-х) = — Ф(х);
  • 3)  Непрерывные случайные величины - определение и вычисление с примерами решения

Функцию Лапласа также называют функцией ошибок и обозначают
erf х.

Ещё используется нормированная функция Лапласа, которая связана с функцией Лапласа соотношением:

Непрерывные случайные величины - определение и вычисление с примерами решения
На рис. 7 показан график нормированной функции Лапласа.

Непрерывные случайные величины - определение и вычисление с примерами решения

Правило трёх сигм

При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм.

Запишем вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величиныНепрерывные случайные величины - определение и вычисление с примерами решения
Непрерывные случайные величины - определение и вычисление с примерами решения
Если принять Непрерывные случайные величины - определение и вычисление с примерами решения, то получаем с использованием таблиц значений функции Лапласа:

Непрерывные случайные величины - определение и вычисление с примерами решения

Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую, чем утроенное среднее квадратичное отклонение, практически равна нулю.

Это правило называется правилом трех сигм.

Не практике считается, что если для какой-либо случайной величины выполняется правило трёх сигм, то эта случайная величина имеет нормальное распределение.

Пример:

Случайная величина Х задана плотностью распределения вероятностей:

Непрерывные случайные величины - определение и вычисление с примерами решения

Найти: а) значение с; б) функцию распределения F(х) и построить ее график; в)Непрерывные случайные величины - определение и вычисление с примерами решения
 

Решение:

а) Значение с найдем из условия нормировки: Непрерывные случайные величины - определение и вычисление с примерами решения
Следовательно,

Непрерывные случайные величины - определение и вычисление с примерами решения

б) Известно, что Непрерывные случайные величины - определение и вычисление с примерами решения

Поэтому, если Непрерывные случайные величины - определение и вычисление с примерами решения

если Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

если Непрерывные случайные величины - определение и вычисление с примерами решения

Таким образом,

Непрерывные случайные величины - определение и вычисление с примерами решения

График функции F(х) изображен на рис. 5. 3.

Непрерывные случайные величины - определение и вычисление с примерами решения

в) Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Пример:

Случайная величина Х задана функцией распределения:

Непрерывные случайные величины - определение и вычисление с примерами решения

Найти дифференциальную функцию распределения  Непрерывные случайные величины - определение и вычисление с примерами решения
 

Решение:  

Так как Непрерывные случайные величины - определение и вычисление с примерами решения то

Непрерывные случайные величины - определение и вычисление с примерами решения

Пример:

Случайная величина Х задана дифференциальной функцией Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Найти Непрерывные случайные величины - определение и вычисление с примерами решения а также Непрерывные случайные величины - определение и вычисление с примерами решения

Решение:

Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Некоторые законы распределения непрерывной случайной величины 

Пример:

Случайная величина Х равномерно распределена на отрезке [3;7]. Найти:

а) плотность распределения вероятностей Непрерывные случайные величины - определение и вычисление с примерами решения и построить ее график;

б) функцию распределения Непрерывные случайные величины - определение и вычисление с примерами решения и построить ее график;

в) Непрерывные случайные величины - определение и вычисление с примерами решения
Решение: Воспользовавшись формулами, рассмотренными выше, при а = 3, b = 7, находим:

Непрерывные случайные величины - определение и вычисление с примерами решения

Построим ее график (рис. 6.3):

Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Построим ее график (рис. 6.4):

Непрерывные случайные величины - определение и вычисление с примерами решения

Непрерывные случайные величины - определение и вычисление с примерами решения

Пример:

Среднее время безотказной работы прибора равно 100 ч.
Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:

а) плотность распределения вероятностей;

б) функцию распределения;

в) вероятность того, что время безотказной работы прибора превысит 120 ч.
 

Решение.

По условию математическое ожидание Непрерывные случайные величины - определение и вычисление с примерами решения
откуда Непрерывные случайные величины - определение и вычисление с примерами решения = 1/100 = 0,01.
Следовательно,

Непрерывные случайные величины - определение и вычисление с примерами решения

в) Искомую вероятность найдем, используя функцию распределения: 

Непрерывные случайные величины - определение и вычисление с примерами решения

Пример:

Случайная величина Х распределена нормально с математическим ожиданием 32 и дисперсией 16. Найти: а) плотность распределения вероятностей Непрерывные случайные величины - определение и вычисление с примерами решения б) вероятность того, что в результате испытания Х примет значение из интервала (28;38).
 

Решение:

По условию m = 32, σ2 = 16, следовательно, σ = 4, тогда

а) Непрерывные случайные величины - определение и вычисление с примерами решения

б) Воспользуемся формулой:

Непрерывные случайные величины - определение и вычисление с примерами решения

Подставив a = 28, b = 38, m = 32, σ = 4, получим
Непрерывные случайные величины - определение и вычисление с примерами решения

По   таблице   значений   функции   Ф(х)   находим   Ф(1,5) = 0,4332, Ф(1) = 0,3413.
Итак, искомая вероятность:

Непрерывные случайные величины - определение и вычисление с примерами решения

Заключение по лекции:

В лекции мы рассмотрели законы распределения непрерывных величин.

  • Закон больших чисел
  • Генеральная и выборочная совокупности
  • Интервальные оценки параметров распределения
  • Алгебра событий — определение и вычисление
  • Правило «трех сигм» в теории вероятности
  • Производящие функции
  • Теоремы теории вероятностей
  • Основные законы распределения дискретных случайных величин

Понравилась статья? Поделить с друзьями:
  • Как найти лаки блоки без модов
  • Как составить таблицу через окна
  • Как найти мебельные заказы
  • Как составить визитку на английском языке
  • Как найти сколько треугольников на рисунке