Как найти производную сложной функции с корнями


Загрузить PDF


Загрузить PDF

На курсах дифференциального исчисления вы наверняка учили правила дифференцирования основных функций, в том числе правило дифференцирования степенной функции. Однако если функция содержит квадратный или другой корень, например {sqrt  {x}}, может показаться, что данное правило не подходит. Тем не менее достаточно переписать ее в степенном виде, чтобы получить очевидный ответ. Если функция содержит несколько корней, такую подстановку можно делать сколько угодно раз и использовать правило дифференцирования сложной функции.

  1. Изображение с названием Differentiate the Square Root of X Step 1

    1

    Вспомните правило дифференцирования степенной функции. Обычно это правило учат в самом начале курса дифференциального исчисления. Оно гласит, что производная переменной x, возведенной в степень a, равна:[1]

  2. Изображение с названием Differentiate the Square Root of X Step 2

    2

    Запишите квадратный корень в виде степенной функции. Чтобы найти производную квадратного корня, вспомните, что его можно переписать в виде степенной функции. При этом стоящая под корнем величина записывается в виде основания, которое возводится в степень 1/2. Рассмотрим следующие примеры:[2]

  3. Изображение с названием Differentiate the Square Root of X Step 3

    3

    Примените правило дифференцирования степенной функции. Если под корнем стоит переменная x, f(x)={sqrt  {x}}, производная берется следующим образом:[3]

  4. Изображение с названием Differentiate the Square Root of X Step 4

    4

    Упростите результат. На этом этапе необходимо вспомнить, что при отрицательной степени следует найти число, обратное данному числу в той же положительной степени. Степень -{frac  {1}{2}} означает, что квадратный корень следует поставить в знаменателе дроби.[4]

    • Продолжим приведенный выше пример для квадратного корня x и упростим производную:

    Реклама

  1. Изображение с названием Differentiate the Square Root of X Step 5

    1

    Вспомните правило дифференцирования сложных функций. Это правило применяется в тех случаях, когда необходимо продифференцировать функцию, аргументом которой выступает другая функция. Согласно данному правилу, комбинация двух функций, f(x) и g(x), дифференцируется следующим образом:[5]

  2. Изображение с названием Differentiate the Square Root of X Step 6

    2

  3. Изображение с названием Differentiate the Square Root of X Step 7

    3

    Найдите производные обеих функций. Чтобы применить правило дифференцирования сложных функций к квадратному корню, сначала следует найти производную квадратного корня:[7]

    • f(g)={sqrt  {g}}=g^{{{frac  {1}{2}}}};

    • После этого находим производную второй функции:
  4. Изображение с названием Differentiate the Square Root of X Step 8

    4

    Комбинируем найденные производные согласно правилу дифференцирования сложных функций. Вспоминаем это правило (y^{{prime }}=f^{{prime }}(g)*g^{{prime }}(x)) и в результате получаем:[8]

    Реклама

  1. Изображение с названием Differentiate the Square Root of X Step 9

    1

    Запомните простое правило дифференцирования любых квадратных корней. Если необходимо найти производную квадратного корня, под которым стоит переменная или функция, используйте следующее правило. Результат всегда будет представлять собой производную подкоренного выражения, поделенную на удвоенный первоначальный квадратный корень. Это можно записать следующим образом:[9]

  2. Изображение с названием Differentiate the Square Root of X Step 10

    2

    Найдите производную подкоренного выражения. Как следует из названия, подкоренное выражение стоит под знаком квадратного корня. Чтобы применить данное правило, найдем производную этого выражения. Рассмотрим следующие примеры:[10]

  3. Изображение с названием Differentiate the Square Root of X Step 11

    3

    Запишите производную подкоренного выражения в числителе дроби. Производная корня представляет собой дробь, в числителе которой стоит производная подкоренного выражения. Для приведенных выше функций получаем следующие выражения:[11]

  4. Изображение с названием Differentiate the Square Root of X Step 12

    4

    Запишите знаменатель в виде удвоенного первоначального квадратного корня. Согласно данному правилу, в знаменателе следует написать удвоенный квадратный корень. Для приведенных выше функций получаем следующие знаменатели:[12]

  5. Изображение с названием Differentiate the Square Root of X Step 13

    5

    Скомбинируем числитель и знаменатель и получим искомую производную. Запишите полную дробь, и у вас получится производная первоначальной функции:[13]

    Реклама

Об этой статье

Эту страницу просматривали 52 535 раз.

Была ли эта статья полезной?

урок 3. Математика ЕГЭ

Как найти производную от функции

Как считать производные?

Никто не использует определение производной, чтобы ее вычислить. Как же тогда ее посчитать?

Оказывается, существуют специальные формулы, с помощью которых производная от функции вычисляется достаточно просто.

Формулы производной

Выпишем теперь все формулы производной функции и порешаем примеры.

Производная от константы
Производная от любого числа всегда равна (0):
$$(const)^{/}=0;$$

Пример 1
$$(5)^{/}=0;$$

Производная от (x)
Производная просто от (x) равна (1):
$$x^{/}=1;$$

Производная от степени
$$(x^n)^{/}=n*x^{n-1};$$
Пример 2
$$(x^4)^{/}=4*x^{4-1}=4*x^{3};$$
$$(x^{10})^{/}=10*x^{10-1}=10*x^{9};$$
$$(x^{-3})^{/}=-3*x^{-3-1}=-3*x^{-4};$$
$$(x^{frac{1}{3}})^{/}=frac{1}{3}*x^{1-frac{1}{3}}=frac{1}{3}*x^{frac{2}{3}};$$

Производная от квадратного корня
$$(sqrt{x})^{/}=frac{1}{2sqrt{x}};$$
Тут полезно заметить, что формулу производной от квадратного корня можно не учить. Она сводится к формуле производной от степени:
$$(sqrt{x})^{/}=(x^{frac{1}{2}})^{/}=frac{1}{2}*x^{frac{1}{2}-1}=frac{1}{2}*x^{-frac{1}{2}}=frac{1}{2sqrt{x}};$$

Производная от синуса
$$sin(x)^{/}=cos(x);$$

Производная от косинуса
$$cos(x)^{/}=-sin(x);$$

Производная от тангенса
$$tg(x)^{/}=frac{1}{cos^{2}(x)};$$

Производная от котангенса
$$tg(x)^{/}=frac{-1}{sin^{2}(x)};$$

Производная от экспоненты
$$(e^x)^{/}=e^x;$$

Производная от показательной функции
$$(a^x)^{/}=a^x*ln(a);$$
Пример 3
$$(2^x)^{/}=2^{x}*ln(2);$$

Производная от натурального логарифма
$$(ln(x))^{/}=frac{1}{x};$$

Производная от логарифма
$$(log_{a}(x))^{/}=frac{1}{x*ln(a)};$$

Свойства производной

Помимо формул по вычислению производной еще есть свойства производной, их тоже надо выучить.

Вынесение константы за знак производной
$$(alpha*f(x))^{/}=alpha*(f(x))^{/};$$

Пример 4
$$(3*x^5)^{/}=3*(x^5)^{/}=3*5x^4=15x^4;$$
$$(10sin(x))^{/}==10*(sin(x))^{/}=10*cos(x);$$

Производная от суммы и разности двух функций
$$(f(x) pm g(x))^{/}=(f(x))^{/} pm (g(x))^{/};$$

Пример 5
$$(2x^4+x^3)^{/}=?$$
Тут (f(x)=2x^4), а (g(x)=x^3). Тогда по формуле производной от суммы:
$$(2x^4+x^3)^{/}=(2x^4)^{/}+(x^3)^{/}=2*(x^4)^{/}+(x^3)^{/}=2*4x^3+3x^2=8x^3+3x^2;$$

Пример 6
$$(ln(x)+cos(x))^{/}=(ln(x))^{/}+(cos(x))^{/}=frac{1}{x}-sin(x);$$

Пример 7
$$(x^6-e^x)^{/}=(x^6)^{/}-(e^x)^{/}=6x^5-e^x;$$

Производная от произведения двух функций
$$(f(x)*g(x))^{/}=(f(x))^{/}*g(x)+f(x)*(g(x))^{/};$$

Пример 8
$$(x^2*sin(x))^{/}=?$$
$$(x^2*sin(x))^{/}=(x^2)^{/}*sin(x)+x^2*(sin(x))^{/}=2x*sin(x)+x^2*cos(x);$$

Пример 9
$$(ln(x)*e^x)^{/}=(ln(x))^{/}*e^x+ln(x)*(e^x)^{/}=frac{1}{x}*e^x+ln(x)*e^x;$$

Производная от частного двух функций
$$left(frac{f(x)}{g(x)}right)^{/}=frac{(f(x))^{/}*g(x)-f(x)*(g(x))^{/}}{(g(x))^2};$$

Пример 10
$$left(frac{x^3}{sin(x)}right)^{/}=frac{(x^3)^{/}*sin(x)-x^3*(sin(x))^{/}}{(sin(x))^2}=frac{3x^2*sin(x)-x^3*cos(x)}{(sin(x))^2};$$

Примеры нахождения производной

Рассмотрим несколько примеров нахождения производной, чтобы разобраться, как применяются свойства и формулы производной на практике.

Пример 11
$$(5x^3+2cos(x))^{/}=(5x^3)^{/}+(2cos(x))^{/}=$$
$$=5*(x^3)^{/}+2*(cos(x))^{/}=5*3*x^2+2*(-sin(x))=15x^2-2sin(x);$$

Пример 12
$$left(-frac{3x^2}{2x^4+5x}right)^{/}=-frac{(3x^2)^{/}*(2x^4+5x)-3x^2*(2x^4+5x)^{/}}{(2x^4+5x)^2}=$$
$$=-frac{6x*(2x^4+5x)-3x^2*(8x+5)}{(2x^4+5x)^2}=-frac{12x^5-24x^3+15x^2}{(2x^4+5x)^2};$$

Пример 13
$$(2xsqrt{x})^{/}=(2x)^{/}*sqrt{x}+2x*(sqrt{x})^{/}=$$
$$=2*sqrt{x}+2x*frac{1}{2sqrt{x}}=2*sqrt{x}+frac{2x}{2sqrt{x}}=2*sqrt{x}+sqrt{x}=3sqrt{x};$$

Производная сложной функции

Сложная функция — это функция не от аргумента (x), а от какой-то другой функции: (f(g(x))). Например, функция (sin(x^2)) будет сложной функцией: «внешняя» функция синуса берется от «внутренней» функции степени ((x^2)). Так как под синусом стоит аргумент не (x), а (x^2), то такая функция будет называться сложной.
Еще примеры сложных функций:

  • $$ln(3x^4);$$
    Внешняя функция: натуральный логарифм; Внутренняя функция: ((3x^4)).
  • $$cos(ln(x));$$
    Внешняя функция: косинус; Внутренняя функция: ((ln(x))).
  • $$e^{2x^2+3};$$
    Внешняя функция: экспонента; Внутренняя функция: ((2x^2+3)).
  • $$(sin(x))^3;$$
    Внешняя функция: возведение в третью степень; Внутренняя функция: (sin(x)).
  • Чтобы посчитать производную от такой функции, нужно сначала найти производную внешней функции, а затем умножить результат на производную внутренней функции. В общем виде формула выглядит так:
    $$f(g(x))^{/}=f^{/}(g(x))*g^{/}(x);$$
    Скорее всего, выглядит непонятно, поэтому давайте разберем на примерах.

    Пример 14
    $$((cos(x))^4)^{/}=?$$
    Внешней функцией тут будет возведение в четвертую степень, поэтому сначала считаем производную от степени по формуле ((x^n)^{/}=n*x^{n-1}). А потом умножаем результат на производную внутренней функции, у нас это функция косинуса, по формуле (cos(x)^{/}=-sin(x)):
    $$((cos(x))^4)^{/}=underset{text{внешняя производная}}{underbrace{4*(cos(x))^3}}*underset{text{внутренняя производная}}{underbrace{(cos(x))^{/}}}=$$
    $$=4*(cos(x))^3*(-sin(x))=-4*(cos(x))^3*sin(x);$$

    Пример 15
    $$(e^{2x^3+5})^{/}=?$$
    Внешняя функция — это экспонента ((e^x)^{/}=e^x), а внутренняя функция — квадратный многочлен ((2x^3+5)):
    $$(e^{2x^3+5})^{/}=e^{2x^3+5}*(2x^3+5)^{/}=e^{2x^3+5}*((2x^3)^{/}+5^{/})=e^{2x^3+5}*6x^2.$$

    Пример 16
    $$(ln((2x^2+3)^6))^{/}=?$$
    Внешняя функция — это натуральной логарифм, берем производную от него по формуле ((ln(x))^{/}=frac{1}{x}), и умножаем на производную внутренней функции, у нас это шестая степень: ((x^n)^{/}=n*x^{n-1}). Но и на этом еще не все: под шестой степенью стоит не просто (x), а квадратный многочлен, значит еще нужно умножить на производную от этого квадратного многочлена:
    $$ln((2x^2+3)^6)=frac{1}{(2x^2+3)^6}*((2x^2+3)^6)^{/}*(2x^2+3)^{/}=$$
    $$=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*(4x+0)=frac{1}{(2x^2+3)^6}*6*(2x^2+3)^5*4x=$$
    $$=frac{6*(2x^2+3)^5*4x}{(2x^2+3)^6}=frac{24x*(2x^2+3)^5}{(2x^2+3)^6}=frac{24x}{(2x^2+3)^6}.$$

Вывод формул производной функции

Выведем некоторые из этих формул, чтобы было понимание, откуда они берутся. Но перед этим познакомимся с новыми обозначениями. Запись (f(x)) означает, что функция берется от аргумента (x). Например:
$$f(x)=x^3+sin(x);$$
На месте аргумента (x) может стоять все что угодно, например выражение (2x+3). Обозначение такой функции будет (f(2x+3)), а сама функция примет вид:
$$f(2x+3)=(2x+3)^3+sin(2x+3);$$
То есть, везде вместо аргумента (x) мы пишем (2x+3).

И несколько важных замечаний про (Delta f(x)) и (Delta x). Напомню, что значок (Delta) означает изменение некоторой величины. (Delta x) — изменения координаты (x) при переходе от одной точки на графике функции к другой; (Delta f(x)) — разница координат (y) между двумя точками на графике. Подробнее про это можно почитать в главе, где мы вводим понятие производной. Распишем (Delta x) для двух близких точек на графике функции (O) и (B):
$$Delta x=x_B-x_O;$$
Отсюда можно выразить (x_B):
$$x_B=x_O+Delta x;$$
Абсцисса (координата точки по оси (x)) точки (B) получается путем сложения абсциссы точки (O) и (Delta x).

Кстати, функцию (f(x)=x^3+sin(x)) от аргумента (x_B=x_O+Delta x) можно расписать:

$$f(x_B)=f(x_O+Delta x)=(x_O+Delta x)^3+sin(x_O+Delta x);$$

Определение производной

Рис.1. График произвольной функции

И распишем (Delta f):
$$Delta f(x)=f(x_B)-f(x_O)=f(x_O+Delta x)-f(x_O);$$
Тогда определение производной можно записать в виде:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x_O+Delta x)-f(x_O)}{Delta x} quad при quad Delta x to 0;$$

За (x_O) обычно обозначают точку, в окрестности которой берут производную. То есть, получается (x_O) — это абсцисса начальной точки, а (x_O+Delta x) — абсцисса конечной точки.

Нам это пригодится при выводе формул производной.

Производная квадратичной функции

Выведем теперь формулу производной от (f(x)=x^2), воспользовавшись определением производной:
$$f^{/}(x)=frac{Delta f(x)}{Delta x}=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
Распишем числитель (f(x+Delta x)-f(x)) с учетом, что (f(x)=x^2):
$$f(x+Delta x)-f(x)=(x+Delta x)^2-x^2=x^2+2xDelta x+(Delta x)^2-x^2=2xDelta x+(Delta x)^2;$$
Подставим в определение производной:
$$f^{/}(x)=frac{2xDelta x+(Delta x)^2}{Delta x}=frac{Delta x*(2x+Delta x)}{Delta x}=2x+Delta x;$$
Напоминаю, что (Delta x) это бесконечно малая величина:
$$(Delta x)^2 ll 0;$$
Поэтому этим слагаемым можно пренебречь. Вот мы и получили формулу для производной от квадратной функции:
$$f^{/}(x)=(x^2)^{/}=2x;$$

Производная от третьей степени

Аналогичные рассуждения можно провести для функции третьей степени:
$$f(x)=x^3;$$
Воспользуемся определением производной:
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x} quad при quad Delta x to 0;$$
$$f(x+Delta x)-f(x)=(x+Delta x)^3-x^3=(x+Delta x-x)((x+Delta x)^2+(x+Delta x)*x+x^2)=$$
$$=Delta x*(x^2+2x*Delta x+(Delta x)^2+x^2+x*Delta x+x^2)=Delta x*(3x^2+3xDelta x);$$
$$f^{/}(x)=frac{f(x+Delta x)-f(x)}{Delta x}=frac{Delta x*(3x^2+3xDelta x)}{Delta x}=3x^2+3xDelta x;$$
Так как при умножении на бесконечно малую величину получается бесконечно малая величина, то слагаемым (3xDelta x) можно пренебречь:
$$f^{/}(x)=(x^3)^{/}=3x^2;$$
Точно таким же способом можно вывести формулы производных для любых степеней:
$$(x^4)^{/}=4x^3;$$
$$(x^5)^{/}=5x^4;$$
$$…$$
$$(x^n)^{/}=n*x^{n-1};$$
Кстати, эта формула справедлива и для дробных степеней.

Вывод остальных формул делается похожим образом, только там может понадобиться знание пределов. Вывод всех формул разбирается в университетском курсе математического анализа.


Что такое производная функции простыми словами? Для чего нужна производная? Определение производной


Как решать задания №7 из ЕГЭ по математике. Анализ графиков при помощи производной. Графики производной и графики функции


Исследуем функцию с помощью производной. Находим точки минимума и максимума, наибольшее и наименьшее значение функции. Точки экстремума. Промежутки возрастания и убывания.


Связь коэффициента наклона и тангенса угла наклона касательной к функции и производной функции в точке касания. Задание №7 в ЕГЭ по математике.


Содержание:

  • Формула
  • Примеры вычисления производной корня

Формула

$$(sqrt{x})^{prime}=frac{1}{2 sqrt{x}}$$

Производная от корня равна единице, деленной на два таких же корня.

Если под корнем находится сложная функция $u=u(x)$, то производная
от корня этой функции будет равна: единице, деленной на два таких же корня и умноженной на производную подкоренного выражения, то есть

$$(sqrt{u})^{prime}=frac{1}{2 sqrt{u}} cdot u^{prime}$$

Примеры вычисления производной корня

Пример

Задание. Найти производную функции $y(x)=2 sqrt{x}$

Решение. Искомая производная равна:

$$y^{prime}(x)=(2 sqrt{x})^{prime}$$

Согласно правилам дифференцирования, вынесем константу 2 за знак производной, в итоге будем иметь:

$$y^{prime}(x)=2 cdot(sqrt{x})^{prime}=2 cdot frac{1}{2 sqrt{x}}=frac{1}{sqrt{x}}$$

Ответ. $y^{prime}(x)=frac{1}{sqrt{x}}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Вычислить производную функции $y(x)=sqrt{2 x}$

Решение. Искомая производная

$$y^{prime}(x)=(sqrt{2 x})$$

Находим как производную сложной функции, то есть вначале находим как производную от корня, а затем умножаем на производную
подкоренного выражения. В результате будем иметь:

$$y^{prime}(x)=(sqrt{2 x})^{prime}=frac{1}{2 sqrt{2 x}} cdot(2 x)^{prime}$$

Константу выносим за знак производной, а
производная независимой переменной равна единице, тогда получаем:

$$y^{prime}(x)=frac{1}{2 sqrt{2 x}} cdot 2 cdot(x)^{prime}=frac{1}{sqrt{2 x}} cdot 1=frac{1}{sqrt{2 x}}$$

Ответ. $y^{prime}(x)==frac{1}{sqrt{2 x}}$

Читать дальше: производная синуса (sinx)’.

   Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу

((f(g(x)))’=f'(g(x))cdot g'(x))

и сделать вот такое лицо:

лицо когда видишь формулу производной сложной функции

Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь, старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.

Содержание:

  • Что такое сложная функция?

  • «Распаковка» сложной функции

  • Внутренняя и внешняя функция

  • Производная сложной функции. Примеры

Что такое сложная функция?

Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот «сложнейший» процесс представлен на схеме ниже:

_производная сложной функции.png

Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а (x), при этом «пакетами» и «коробками» служат разные функции.

Например, возьмем x и «запакуем» его в функцию косинуса:

упаковка косинус икс

В результате получим, ясное дело, (cos⁡x). Это наш «пакет с вещами». А теперь кладем его в «коробку» — запаковываем, например, в кубическую функцию.

упаковка косинус икс в третью степень

Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».

как получается сложная функция

Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» — «упаковка в упаковке».

В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре :

виды функций

Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию тангенс. Получим:

(x → 7^x → tg⁡(7^x))

А теперь «упакуем» икс два раза в тригонометрические функции, сначала в синус, а потом в котангенс:

(x → sin⁡x → ctg⁡ (sin⁡x ))

Просто, правда?

Напиши теперь сам функции, где икс:
   — сначала «упаковывается» в косинус, а потом в показательную функцию с основанием (3);
   — сначала в пятую степень, а затем в тангенс;
   — сначала в логарифм по основанию (4), затем в степень (-2). 


Ответы на это задание посмотри в конце статьи.

А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» (4) раза:

(y=5^{log_2⁡{sin⁡(x^4 )}})

Но такие формулы в школьной практике не встретятся (студентам повезло больше — у них может быть и посложнее☺).

«Распаковка» сложной функции

Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть — какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.

Сделал?

Теперь правильный ответ: сначала икс «упаковали» в (4)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию (2), и в конце концов всю эту конструкцию засунули в степень пятерки.

То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.

Например, вот такая функция: (y=tg⁡(log_2⁡x )). Смотрим на икс – что с ним происходит сначала? Берется логарифм от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:

(x → log_2⁡x → tg⁡(log_2⁡x ))

Еще пример: (y=cos⁡{(x^3 )}). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: (x → x^3 → cos⁡{(x^3 )}). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть (cos⁡{(x·x·x)})), а там в кубе косинус (x) (то есть, (cos⁡x·cos⁡x·cos⁡x)). Эта разница возникает из-за разных последовательностей «упаковки».

Последний пример (с важной информацией в нем): (y=sin⁡{(2x+5)}). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: (x → 2x+5 → sin⁡{(2x+5)}). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.

Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных — два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) — тоже простая функция. Например, (x^7) – простая функция и (ctg x) — тоже. Значит и все их комбинации являются простыми функциями:

(x^7+ ctg x) — простая,
(x^7· ctg x) – простая,
(frac{x^7}{ctg x}) – простая и т.д.

Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:

как получается сложная функция

Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:

   (y=cos{⁡(sin⁡x)})


   (y=5^{x^7})


   (y=arctg⁡{11^x})


   (y=log_2⁡(1+x))


Ответы опять в конце статьи.

Внутренняя и внешняя функции

Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.

И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция — это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.

Вот в этом примере: (y=tg⁡(log_2⁡x )), функция (log_2⁡x) – внутренняя, а тангенс — внешняя.

А в этом: (y=cos⁡{(x^3+2x+1)}),   (x^3+2x+1) — внутренняя,  а косинус — внешняя.

Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось — будем находить производные сложных функций:

Заполни пропуски в таблице:

задание на определение сложной функции

Производная сложной функции

Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺

((f(g(x)))’=f'(g(x))cdot g'(x))

Формула эта читается так:

Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.

И сразу смотри схему разбора «по словам» чтобы понимать, что к чему относится:

как брать производную сложной функции

Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» — мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?

Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.

Пусть у нас есть функция (y=sin⁡(x^3 )). Понятно, что внутренняя функция здесь (x^3), а внешняя синус . Найдем теперь производную внешней по неизменной внутренней.

Из таблицы производных мы знаем, что производная синуса икс есть косинус икс (табличные значения надо знать наизусть!):      (({sin⁡{x}})’=cos⁡{x}).

Тогда производная внешней функции по неизменной внутренней для нашего случая будет (cos⁡(x^3)). То есть, мы взяли ее как обычную производную синуса, а содержимое синуса (внутреннюю функцию) просто скопировали в полученную производную (косинус), ничего в ней не меняя.

Таким образом, на данный момент имеем:

пример взятия производной сложной функции по формуле

Осталась «производная внутренней функции». Ну, это совсем легко – обычная производная от внутренней функции, при этом внешняя не влияет вообще никак. В нашем примере, производная от (x^3).

((x^3 )’=3x^2)

Все, теперь можем писать ответ:

производная сложной функции синус

Вот так. Давай еще один пример разберем.

Пусть надо найти производную функции (y=(sin⁡x )^3).

Анализируем. Последовательность «заворачивания» у нас такая: (x → sin⁡x → (sin⁡x )^3). Значит, в данном примере внутренняя функция это (sin⁡x), а внешняя возведение в куб.

Производная внешней по внутренней – это производная куба (содержимое куба при этом не меняется). Так как производная от степенной функции, а в нашем случае в куб «завернут» (sin⁡x), то производная внешней будет (3(sin⁡x)^2). То есть, имеем:

синус в кубе взятие производной

Ну, а производная внутренней – это просто производная синуса икс, то есть косинус икс.

В итоге, имеем:

(y’=((sin⁡x )^3 )’=3(sin⁡x )^2·(sin⁡x )’=3(sin⁡x )^2·cos⁡x)

Понятно?
Ладно, ладно, вот еще один пример с разбором. ☺

Пример. Найти производную сложной функции (y=ln(x^2-x)).

Разбираем вложенность функций: (x → x^2-x → ln⁡(x^2-x)).
Внутренняя: (x^2-x).            Внешняя: натуральный логарифм.  
Из таблицы производных знаем:производная натурального логарифма.
То есть производная внешней по внутренней будет: (ln⁡(x^2-x)’=) (frac{1}{x^2-x}).
Производная внутренней: ((x^2-x)’= (x^2)’-(x)’=2x-1).
В итоге, согласно большой и страшной формуле имеем:

(y ‘=(ln⁡(x^2-x) )’=)(frac{1}{x^2-x})(·(2x-1))

Ну и напоследок можно немного «причесать» ответ, чтоб никто не докопался:

(y ‘=(ln⁡(x^2-x))’=)(frac{1}{x^2-x})(·(2x-1)=)(frac{2x-1}{x^2-x})

Готово.

Что, еще примеров желаешь? Легко.

Пример. Найти производную сложной функции (y=sin⁡{(cos⁡x)}).
Вложенность функций: (x → cos⁡x → sin⁡{(cos⁡x)})
Внутренняя: (cos⁡x)    Внешняя:синус
Производная внешней по внутренней: (sin{⁡(cos⁡x )}’=cos⁡{cos⁡x})
Производная внутренней: ((cos⁡x )’= -sin⁡x)
Имеем: (y’=(sin⁡{(cos⁡x)})’=cos⁡{cos⁡x}·(-sin⁡x )=-cos⁡{cos⁡x} ·sin⁡x)

Замечание: Обрати внимание, что заменить запись (cos⁡{cos⁡x}) на (cos^2⁡x) НЕЛЬЗЯ, так как (cos^2⁡x) — это комбинация простых функций (cos^ 2⁡x=cos⁡x·cos⁡x), а (cos⁡{cos⁡x}) – сложная функция: косинус от косинуса икс. Это абсолютно разные функции.

Еще пример с важным замечанием в нем.

Пример. Найти производную сложной функции (y=sqrt{x^6} )
Вложенность функций: (x → x^6 → sqrt{x^6})
Внутренняя: (x^6)      Внешняя: корень
Производная внешней по внутренней: (sqrt{x^6}’=)(frac{1}{2sqrt{x^6}})
Производная внутренней: ((x^6)’= 6x^5)
Имеем: ((sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5)
И теперь упростим ответ. Вспомним свойство корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда (sqrt{x^6}=x^{frac{6}{2}}=x^3). С учетом этого получаем:

(y’=( sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5=)(frac{1}{2x^3})(·6x^5=)(frac{6x^5}{2x^3})(=3x^2)

Всё. А теперь, собственно, важное замечание:

Тот же самый ответ, но значительно меньшими усилиями мы могли бы получить, упростив исходную функцию сразу. Воспользуемся тем же свойством корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда исходная функция приобретает вид: (y=sqrt{x^6}=x^{frac{6}{2}}=x^3). А производная куба это практически табличное значение! Готов ответ: (y’=(sqrt{x^6})’=(x^3 )’=3x^2). Немножко проще предыдущего решения, правда ☺? Поэтому прежде чем искать производную, посмотрите, можно ли исходную функцию упростить, чтоб решать было проще.

Давай рассмотрим пример, где эта идея нам сильно поможет.

Пример. Найти производную сложной функции (y=ln⁡(x^3)).
Можно, конечно, рассмотреть вложенность функций: (x → x^3 → ln⁡(x^3 )), разобрать на внутреннюю и внешнюю и так далее. Но можно вспомнить свойство логарифма: (log_a⁡{b^c}=c·log_a{⁡b}). И тогда функция получается (y=ln⁡(x^3 )=3ln⁡x). Отлично! Берем производную:

(y’=(ln⁡(x^3 ) )’=(3ln⁡x )’=3(ln⁡x )’=3·)(frac{1}{x}=frac{3}{x})

Вуаля!

Теперь задачка посложнее, для продвинутых. Решим пример с тройной вложенностью!

Пример. Найти производную сложной функции (y=3^{sin⁡(x^4+1)}).
Вложенность функций: (x → x^4+1 → sin⁡(x^4+1) → 3^{sin⁡(x^4+1)})
Внутренняя: (x^4+1)    Средняя: синус     Внешняя: возведение в куб
Сначала производная внешней по средней. Вспоминаем таблицу производных: производная от показательной функции. Значит, в нашем случае будет (3^{sin⁡(x^4+1)}·ln⁡3).
Хорошо, теперь производная средней по внутренней. По таблице: производная синуса. Значит, мы получим, (sin⁡(x^4+1)’=cos⁡(x^4+1)).
И наконец, производная внутренней: ((x^4+1)’=(x^4 )’+(1)’=4x^3).
Отлично. Теперь собираем все вместе, перемножая отдельные производные:

((3^{sin⁡(x^4+1)})’=3^{sin⁡(x^4+1)} ·ln⁡3·cos⁡{(x^4+1)}·4x^3)

Готово. Да, это ответ. ☺

Ну, а что ты хотел, я сразу сказал – пример для продвинутых! А представь, что будет с четырехкратной или пятикратной вложенностью? ☺

Пример: Найти производную сложной функции (y=tg⁡(7^x)).

Разбираем вложенность функций: (x : → :7^x : → :tg⁡(7^x)).
Внутренняя: (7^x)       Внешняя: (tg⁡(7^x)).
Ищем производную самой внешней функции, внутреннюю при этом не трогаем.
Из таблицы производных знаем: производная тангенса.
То есть, в нашем случае производная внешней по внутренней будет:  (frac{1}{cos^2⁡(7^x)}).
Теперь ищем производную внутренней. Этой формулой мы уже пользовались, так что сразу пишем ответ: ((7^x)’=7^x·ln⁡7).
И перемножаем результаты:

(y’=tg⁡(7^x)’=)(frac{1}{cos^2⁡(7^x)}·7^x·ln⁡7)

И «причесываем»:   (y’=(tg⁡(7)^x))’=)(frac{1}{cos^2⁡(7^x )})( ·7^x·ln⁡7=)(frac{ln⁡7·7^x}{cos^2⁡(7^x)}).

Ну, теперь думаю всё понятно? И снова повторю – не пугайся сложных конструкций в ответах и промежуточных вычислениях. Они «на лицо ужасные», но зато добрые (в смысле простые) внутри. ☺ Пойми принцип и делай все последовательно.

Последний пример. Такие задания в разных вариациях весьма часто дают на контрольных и тестах. Он вроде как считается сложным. ☺ Хех, наивные учителя. ☺

Пример: Найти производную сложной функции (y=sqrt[3]{(x^5+2x-5)^2}).

Казалось бы, опять у нас тройная вложенность функций:

(x → x^5+2x-5 → (x^5+2x-5)^2 → sqrt[3]{(x^5+2x-5)^2}).

Но давай снова воспользуемся свойством корня (sqrt[b]{x^a} =x^{frac{a}{b}}) и преобразуем нашу функцию к виду:

(y=sqrt[3]{(x^5+2x-5)^2}=(x^5+2x-5)^{frac{2}{3}})

Вот так. И теперь у нас вложенность двойная: (x → x^5+2x-5 → (x^5+2x-5)^{frac{2}{3}})
При этом функция осталась той же! Удобное свойство, однако. Стоит его запомнить, да? ☺ Ладно, поехали дальше.
Внутренняя функция: (x^5+2x-5).    Внешняя: степенная функция.
Производная внешней по внутренней. По таблице производных общая формула производной степенной функции: производная степенной функции  . Получаем: _производная сложной функции(23).png  . Тогда в нашем случае будет: (frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}).
Производная внутренней: ((x^5+2x-5)’=5x^4+2).
Общий результат: (y ‘=(sqrt[3]{(x^5+2x-5)^2})’=((x^5+2x-5)^{frac{2}{3}} )’=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)).

В принципе, ответ найден. Но здесь можно сильно «причесать» результаты. Это может показаться сложным, но это не так, просто опять нагромождения символов большое и возникает такое ложное ощущение. На всякий случай помни: «не причесанный» ответ – тоже ответ. Поэтому если не поймешь дальнейших преобразований – не критично. Ладно, расческу в руки и вперед.
Вспоминаем свойство отрицательной степени (a^{-n}=)(frac{1}{a^n}). Получаем:

(y ‘=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)=)(frac{2}{3})(·)(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2))

А теперь применяем свойство корня (sqrt[b]{x^a} =x^{frac{a}{b}}) в обратную сторону. То есть, вот так (x^{frac{a}{b}}=sqrt[b]{x^a}). В результате имеем:

(y’=)(frac{2}{3})(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2)=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2))

Ну, и перемножаем дроби.

(y’=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2)=)(frac{2(5x^4+2)}{3sqrt[3]{x^5+2x-5}})(=)(frac{10x^4+4}{3sqrt[3]{x^5+2x-5}})

ВСЁ!!! А теперь сам.

Найти производные функций:

a. (y=ctg⁡(x^7))
b. (y=e^{x^4+5x^3})
c. (y=sqrt{cos⁡x})
d. (y=log_5⁡{5^x})
e. (y=(tg⁡x)^3)
f. (y=sin⁡(ln⁡(x^2)))

Ответы ко всем заданиям (вперемежку).

(y=tg⁡(x^5))

(y=log^{-2}_{4}{⁡x})


(y=3^{cos⁡x})

(x → 1+x → log_2⁡{(1+x)} )

(x → 11^x → arctg⁡(11^x) )


(x → x^7 → 5^{x^7})


(x → sin⁡x → cos⁡(sin⁡x))

ответы

ответы на взятие производной.png

Сошлось? Красавчик!

когда научился брать производные сложной функции

Что такое функция          и           что такое сложная функция ?   

Функция    $gleft(tright)=3cdot t-1$     — это правило отображения     $t$ — чисел в значения функции   $gleft(.right)$ по указанному правилу.

Например:   числу       $t=2$     соответствует значение        $gleft(2right)=3cdot 2-1=5$.      «2»     отображается в   «5».

Еще:     $t=0$     отображается в       $-1$,     т.е.       $gleft(0right)=-1$ ;     говорят: функция    $g$    в точке    $0$     принимает значение    $-1$.

Именно все такие пары соответствий   $left(2;5right)$ ,    $left(0;-1right)$ ,    $left(4;11right)$ … все прочие «делают» функцию.

«Я знаю кто он, если я знаю на что он способен, что и как он делает».       Функция:   аргумент —>   значение

$gleft(tright)$ переводит значения аргументов в значения функции. Имя аргумента   » $t$ » здесь не важно, важно правило: $3cdot t-1$ !

Другая функция,    $fleft(zright)=z^2$     переводит, отображает      5 —> 25,      -1 —> 1.       т.е.      $fleft(5right)=25$            $fleft(-1right)=1$

  • Ключевые термины:           функция                              имя                      аргумент               правило вычисления значения    
  • $gleft(tright)$                       $gleft(tright)=3cdot t-1$                  $g$                       $t$                            $3cdot t-1$            
  • $fleft(zright)$                      $fleft(zright)=z^2$                            $f$                       $z$                           $z^2$   

Сложная функция         $fleft(gleft(xright)right)=left(3x-1right)^2$            комбинированная из двух:   $f$   и $g$

для      $x=2$     функция         $fleft(gleft(2right)right)=fleft(5right)=25$,        значение по правилу такое же      $left(3cdot 2-1right)^2=25$

для      $x=0$     функция         $fleft(gleft(0right)right)=fleft(-1right)=1$,       также и значение по правилу      $left(3cdot -1-1right)^2=1$

  • термины $fleft(gleft(xright)right)$               $x$      аргумент   функции      $g$.                 $gleft(xright)$         аргумент функции     $f$.

  • $f$        внешняя функция,              $g$         внутренняя функция.           правило сложной функции   $left(3x-1right)^2$    

  • $fleft(gleft(xright)right)=fleft(3x-1right)=left(3x-1right)^2=left(gleft(xright)right)^2$            $x$   (по правилу   $g$ )    —>    $left(3x-1right)$    (по правилу $f$)     —>     $left(3x-1right)^2$

Пример 1:       Найти производную сложной функций         $left(left(3x-1right)^2right)’$

  • Сложная функция:   внутреняя   $gleft(xright)=left(3x-1right)^2$      и      внешняя $fleft(gright)=left(gleft(xright)right)^2$ — квадрат от аргумента, от внутренней

  • Метод Замены:       Введем новую переменную         $X=3x-1$ … «внутренняя функция стала переменной от $x$ «

  • Итак, зависимости:      $fleft(Xright)=left(Xright)^2$,         $X=3x-1$ .   C какой скоростью изменяется   $f$     при изменении    $x$ ?

  • выражение $left(Xright)^2$     при изменениях    $X$   изменяется со скоростью             $left(left(Xright)^2right)’=2cdot X=2cdot (3x-1)$

  • переменная $X$    при изменениях аргумента   $x$ изменяется со скоростью           $left(Xright)’=left(3x-1right)’=3$

  • тогда, «комбинация двух изменений»:        $left(Xright)^2$     при изменениях     $x$   меняется по умножения скоростей      $2cdot (3x-1)cdot 3$

  • иллюстрация правила умножения:    Проследим за всеми взаимными изменениями

  • $bigtriangleup left(X^2right)approx left(X^2right)’cdot bigtriangleup X=left[2Xright]cdot bigtriangleup X$        $bigtriangleup Xapprox left(X’right)cdot bigtriangleup x=left(3x-1right)’bigtriangleup x$

  • комбинированная скорость      $f’left(xright)approx frac{bigtriangleup left(X^2right)}{bigtriangleup x}=frac{bigtriangleup left(X^2right)}{bigtriangleup X}cdot frac{bigtriangleup left(Xright)}{bigtriangleup x}approx left[2Xright]cdot left(X’right)=left[2cdot left(3x-1right)right]cdot left(3right)$     — умножение скоростей

Решение:       Оформим записи о дифференцировании сложной функции через равенства — действия шаг за шагом:

$left(left(3x-1right)^2right)’=left(X^2right)’cdot X’=2Xcdot X’=2left(3x-1right)cdot left(3x-1right)’=2left(3x-1right)cdot 3=18x-6$.           Или, короче:

$left(left(3x-1right)^2right)’=2left(3x-1right)cdot left(3x-1right)’=2left(3x-1right)cdot 3=18x-6$     (замена    $X=3x-1$ в воображении)

Хорошие вопросы:     Производная Чего?   в этом случае «квадрата».    Что есть внешняя   и что есть внутренняя   функции?

Теорема: Производная Сложной Функции         по аргументу    $x$   равна умножению

производной внешней функции по внутренней на производной внутренней функции по $x$.

$left(fleft(gleft(xright)right)right)’=f_g’cdot g_x’$                   Метод Замены:                   $left(fleft(gleft(xright)right)right)’=left(fleft(Xright)right)’=f_X’left(Xright)cdot X’$.

$X=gleft(xright)$ — внутреннее выражение.       Доказательство через осмысление предела:   $frac{bigtriangleup fleft(gleft(xright)right)}{bigtriangleup x}=frac{bigtriangleup fleft(gright)}{bigtriangleup g}cdot frac{bigtriangleup gleft(xright)}{bigtriangleup x}$

Таблица Основных Производных …                       $X$ большое           любое выражение от     $x$

  1. Степень:                                        $left(X^nright)’=ncdot X^{n-1}cdot X’$                                             $left(X^3right)’=3X^2cdot X’$      

  2. Корень:                                         $left(sqrt{X}right)’=left(X^{frac{1}{2}}right)’=frac{1}{2}cdot X^{-frac{1}{2}}cdot X’$                     $left(sqrt[3]{X}right)’=left(X^{frac{1}{3}}right)’=frac{1}{3}cdot X^{-frac{2}{3}}cdot X’$

  3. Тригонометрические:                $left(sin Xright)’=cos Xcdot X’$                                             $left(cos Xright)’=-sin Xcdot X’$

  4. Экспоненциальные:                    $left(e^Xright)’=e^Xcdot X’$                                                        $left(a^Xright)’=a^Xcdot ln acdot X’$

  5. Логарифмические:                     $left(ln Xright)’=frac{1}{X}cdot X’$                                                       $left(log _aXright)’=left(frac{ln X}{ln a}right)’=frac{1}{Xcdot ln a}cdot X’$

Правила Дифференцирования:

  1. производная суммы равна сумме производных:                 $left(A-B+Cright)’=A’-B’+C’$

  2. правило производной от умножения:                                       $left(Acdot Bright)’=A’cdot B+Acdot B’$

  3. правило производной от деления:                                             $left(frac{A}{B}right)’=frac{A’cdot B-Acdot B’}{B^2}$

  4. производная сложной функции :                                                 $left(fleft(Xright)right)’=f’left(Xright)cdotleft(Xright)’$

Дифференцирование «сложных» функций, … … «как замена» и умножение на производную «замены»:

  • Производная сложной функции …   в аргументе функции выражение от $x$, называем «заменой» $X$ :
  • $left(fleft(Xright)right)’=f’left(Xright)cdotleft(Xright)’$.   В сложных функциях надо распознать и выделить внешнюю и внутреннюю функцию.
  • Найти производную внешней функции и умножить на производную внутренней функции.
  • f- внешняя функция,         $X$ — внутренняя.       $f’left(Xright)$        производная в $X$ !

Пример 2:       Найти производные «сложных» функций

В сложных функциях важно правильно распознать внешнюю и внутреннюю функцию. И, перемножить их производные.

A.       $left(sin7xright)’=left(sin Xright)’=cos Xcdotleft(X’right)=cos7xcdotleft(7xright)’=7cos7x$

B.       $left(sqrt{5cdot x^2-6}right)’=left(sqrt{X}right)’=frac{1}{2sqrt{X}}cdotleft(Xright)’=frac{1}{2sqrt{5cdot x^2-6}}cdotleft(5cdot x^2-6right)’=frac{10x}{2sqrt{5cdot x^2-6}}=frac{5x}{sqrt{5cdot x^2-6}}$

C.       $left(e^{-5x}right)’=left(e^Xright)’=e^Xcdotleft(Xright)’=e^{-5x}cdotleft(-5xright)’=-5e^{-5x}$      

D.       $left(cossqrt{5cdot x^2-6}right)’=left(cos Xright)’=-sin Xcdotleft(Xright)’=-sinsqrt{5cdot x^2-6}cdotleft(sqrt{5cdot x^2-6}right)’=-frac{5xcdotsinsqrt{5cdot x^2-6}}{sqrt{5cdot x^2-6}}$

E.       $left(log_3left(x^5-3x^2right)right)’=left(log_3Xright)’=left(frac{ln X}{ln3}right)’=frac{1}{ln3cdot X}cdotleft(Xright)’=frac{1}{ln3cdotleft(x^5-3x^2right)}cdotleft(x^5-3x^2right)’=frac{5x^4-6x}{ln3cdotleft(x^5-3x^2right)}$

Пример 3:       Найти   производную        $left(sqrt{3x}cosleft(4x+1right)right)’$

  • перед нами произведение двух функций , возьмем производную от умножения по формуле

  • $left(fgright)’=f’g+fg’$ :                $left(sqrt{3x}right)’cosleft(4x+1right)+sqrt{3x}left(cosleft(4x+1right)right)’$ .

  • функции , от которых   предстоит взять производную, являются сложными ….   производные   сложных?

  • важно правильно распознать, какая функция будет внешней, а какая внутренней для каждой сложной функции.

  • $sqrt{3x}$    :     внешняя функция — квадратный корень ; внутренняя — выражение под корнем $3x$ , берем производную:

  • $left(sqrt{3x}right)’=frac{1}{2}left(3xright)^{frac{1}{2}-1}cdotleft(3xright)’=frac{1}{2}left(3xright)^{-frac{1}{2}}cdot3=frac{3}{2sqrt{3x}}$

  • $cosleft(4x+1right)$ :    внешняя функция   — тригонометрическая    cos   ; внутренняя — аргумент косинуса $4x+1$

  • $left(cosleft(4x+1right)right)’=-sinleft(4x+1right)cdotleft(4x+1right)’=-sinleft(4x+1right)cdot4x’=-4sinleft(4x+1right)$

  • соберем все наши выкладки и получим производную исходного выражения:

  • $left(sqrt{3x}right)’cosleft(4x+1right)+sqrt{3x}left(cosleft(4x+1right)right)’=frac{3}{2sqrt{3x}}cosleft(4x+1right)-4sqrt{3x}sinleft(4x+1right)$

Иллюстационный пример:        Учет сложности под разными функциями ….

Классная Интерактивная Доска:

Упражнения:

Понравилась статья? Поделить с друзьями:
  • Посудомоечная машина bosch ошибка е27 как исправить ошибку
  • Как правильно составить резюме для водителя образец заполнения
  • Как найти скорость через силу сопротивления
  • Как найти проститутку в барановичах
  • Как найти площадь фигуры построенной на векторах