Как найти пройденный путь или высоту

Содержание материала

  1. Кинематика
  2. Видео
  3. Как выглядит формула пути без времени, когда скорость тела уменьшается
  4. Импульс
  5. График скорости равномерного движения
  6. Виды движения и формулы длины пути
  7. Основные формулы электричества
  8. Примеры решения задач

Кинематика

К оглавлению…

Путь при равномерном движении:

Перемещение S (расстояние по прямой между начально

Перемещение S (расстояние по прямой между начальной и конечной точкой движения) обычно находится из геометрических соображений. Координата при равномерном прямолинейном движении изменяется по закону (аналогичные уравнения получаются для остальных координатных осей):

Средняя скорость пути:

Средняя скорость пути:

Средняя скорость перемещения:

Средняя скорость перемещения:

Определение ускорения при равноускоренном движении

Определение ускорения при равноускоренном движении:

Выразив из формулы выше конечную скорость, получае

Выразив из формулы выше конечную скорость, получаем более распространённый вид предыдущей формулы, которая теперь выражает зависимость скорости от времени при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Средняя скорость при равноускоренном движении:

Перемещение при равноускоренном прямолинейном движ

Перемещение при равноускоренном прямолинейном движении может быть рассчитано по нескольким формулам:

Координата при равноускоренном движении изменяется

Координата при равноускоренном движении изменяется по закону:

Проекция скорости при равноускоренном движении изм

Проекция скорости при равноускоренном движении изменяется по такому закону:

Скорость, с которой упадет тело падающее с высоты

Скорость, с которой упадет тело падающее с высоты h без начальной скорости:

Время падения тела с высоты h без начальной скорос

Время падения тела с высоты h без начальной скорости:

Максимальная высота на которую поднимется тело, бр

Максимальная высота на которую поднимется тело, брошенное вертикально вверх с начальной скоростью v, время подъема этого тела на максимальную высоту, и полное время полета (до возвращения в исходную точку):

Формула для тормозного пути тела:

Формула для тормозного пути тела:

Время падения тела при горизонтальном броске с выс

Время падения тела при горизонтальном броске с высоты H может быть найдено по формуле:

Дальность полета тела при горизонтальном броске с

Дальность полета тела при горизонтальном броске с высоты H:

Полная скорость в произвольный момент времени при

Полная скорость в произвольный момент времени при горизонтальном броске, и угол наклона скорости к горизонту:

Максимальная высота подъема при броске под углом к

Максимальная высота подъема при броске под углом к горизонту (относительно начального уровня):

Время подъема до максимальной высоты при броске по

Время подъема до максимальной высоты при броске под углом к горизонту:

Дальность полета и полное время полета тела брошен

Дальность полета и полное время полета тела брошенного под углом к горизонту (при условии, что полет заканчивается на той же высоте с которой начался, т.е. тело бросали, например, с земли на землю):

Определение периода вращения при равномерном движе

Определение периода вращения при равномерном движении по окружности:

Определение частоты вращения при равномерном движе

Определение частоты вращения при равномерном движении по окружности:

Связь периода и частоты:

Связь периода и частоты:

Линейная скорость при равномерном движении по окру

Линейная скорость при равномерном движении по окружности может быть найдена по формулам:

Угловая скорость вращения при равномерном движении

Угловая скорость вращения при равномерном движении по окружности:

Связь линейной и скорости и угловой скорости выраж

Связь линейной и скорости и угловой скорости выражается формулой:

Связь угла поворота и пути при равномерном движени

Связь угла поворота и пути при равномерном движении по окружности радиусом R (фактически, это просто формула для длины дуги из геометрии):

Центростремительное ускорение находится по одной и

Центростремительное ускорение находится по одной из формул:

 

Видео

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

[large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

[ large begin{cases} S  = v_{0} cdot t — displaystyle frac{a}{2} cdot t^{2} \ v  = v_{0} — a cdot t end{cases} ]

Импульс

К оглавлению…

Импульс тела находится по следующей формуле:

Изменение импульса тела или системы тел (обратите

Изменение импульса тела или системы тел (обратите внимание, что разность конечного и начального импульсов векторная):

Общий импульс системы тел (важно то, что сумма век

Общий импульс системы тел (важно то, что сумма векторная):

Второй закон Ньютона в импульсной форме может быть

Второй закон Ньютона в импульсной форме может быть записан в виде следующей формулы:

Закон сохранения импульса. Как следует из предыдущ

Закон сохранения импульса. Как следует из предыдущей формулы, в случае если на систему тел не действует внешних сил, либо действие внешних сил скомпенсировано (равнодействующая сила равна нолю), то изменение импульса равно нолю, что означает, что общий импульс системы сохраняется:

Если внешние силы не действуют только вдоль одной

Если внешние силы не действуют только вдоль одной из осей, то сохраняется проекция импульса на данную ось, например:

 

График скорости равномерного движения

Т.к. скорость – это векторная величина, она характеризуется и модулем, и направлением. В зависимости от выбранного направления скорость по знаку может быть как положительной, так и отрицательной.

На рисунке 1 изображен динозавр, автомобиль и дом. Зададим ось координат $x$.

Рисунок 1. Положительная и отрицательная скорости.

Рисунок 1. Положительная и отрицательная скорости.

Если динозавр начнет двигаться к дому, то его скорость будет положительной, т.к. направление движения совпадает с направлением оси $x$. Если же динозавр направится к автомобилю, то его скорость будет отрицательной, т.к. направление движения противоположно направлению оси $x$.

Итак, график скорости равномерного движения имеет вид, представленный на рисунке 2.

Рисунок 2. График скорости равномерного движения.

Рисунок 2. График скорости равномерного движения.

Из графика видно, что скорость с течением времени не изменяется – она постоянна в любой выбранный момент времени. Из графика положительной скорости мы видим, что $upsilon = 6 frac{м}{с}$; из графика отрицательной — $upsilon = -4 frac{м}{с}$.

Зная скорость и время, мы можем рассчитать пройденный путь за определенный промежуток времени. Рассчитаем какой путь пройдет тело с положительной скоростью за $4 с$.

$$S = upsilon t = 6 frac{м}{с} cdot 4 c = 24 м$.$

Виды движения и формулы длины пути

Длина пути при равномерном движении (v=const) точки равна:

где t1 – начало отсчета движения, t2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.

Если движение не является равномерным, то можно длину пути $Delta s$ на отрезке времени от $t$ до $t + Delta t$ находят как:

где $langle vrangle$ – средняя путевая скорость. При равномерном движении $langle vrangle = v$ .

Путь, который проходит материальная тоска при равнопеременном движении (a=const)вычисляют как:

где a – постоянное ускорение, v – начальная скорость движения.

Основные формулы электричества

Для многих студентов тема про электричество сложнее, чем про термодинамика, но она не менее важна. Итак, начнём с электростатики:

Переходим к постоянному электрическому току:

Переходим к постоянному электрическому току:

Далее добавляем формулы по теме: “Магнитное поле э

Далее добавляем формулы по теме: “Магнитное поле электрического тока”

Электромагнитная индукция тоже важная тема для зна

Электромагнитная индукция тоже важная тема для знания и понимания физики. Конечно, формулы по этой теме необходимы:

Ну и, конечно, куда же без электромагнитных колеба

Ну и, конечно, куда же без электромагнитных колебаний:

Примеры решения задач

Примеры решения задач

1. Самым быстрым животным на Земле считается гепард. Он способен развивать скорость до $120 frac{км}{ч}$, но сохранять ее способен в течение короткого промежутка времени. Если за несколько секунд он не настигнет добычу, то, вероятнее всего, уже не сможет ее догнать. Найдите путь, который пробежит гепард на максимальной скорости за $3$ секунды.

Переведем единицы измерения скорость в СИ и решим задачу.

$120 frac{км}{ч} = 120 cdot frac{1000 м}{3600 с} approx 33 frac{м}{с}$.

Дано:$upsilon=120 frac{км}{ч}$$t = 3 c$СИ:$upsilon=33 frac{м}{с}$

Найти:$S — ?$

Показать решение и ответ

Скрыть

Решение:
Гепард двигается равномерно в течение 3 с.
Путь, который он проходит за это время:
$S = upsilon t = 33 frac{м}{с} cdot 3 с approx 100 м$

Ответ: $100 м$

2. Колибри – самые маленькие птицы на нашей планете. При полете они совершают около 4000 взмахов в минуту. Тем не менее, они способны пролетать очень большие расстояния. Например, некоторые виды данной птицы перелетают Мексиканский залив длиной $900 км$ со средней скоростью $40 frac{км}{ч}$. Сколько времени у них занимает такой полет?

Переведем единицы измерения скорость в СИ и решим задачу.

$40 frac{км}{ч} = 40 cdot frac{1000 м}{3600 с} approx 11 frac{м}{с}$;

$900 км = 900 000 м$.

Дано:$upsilon_{ср} = 40 frac{км}{ч}$$S = 900 км$CИ:$upsilon_{ср} = 11 frac{м}{с}$$S = 900 000 м$

Найти:$t-?$

Показать решение и ответ

Скрыть

Решение:
Полет колибри будет примером неравномерного движения. Зная среднюю скорость и путь, рассчитаем время перелета:
$t = frac{s}{upsilon_{ср}} = frac{900 000 м}{11 frac{м}{с}} approx 82 000 с$.

Переведем время в часы:
$1 ч = 60 мин = 60 cdot 60 c = 3600 c$.

Тогда,
$t = frac{82 000 c}{3600 c} approx 23 ч$.

Ответ: $t = 82 000 c = 23 ч$.

Теги

Вычисление пройденного пути

Если
известен график зависимости проекции
скорости от времени, то можно найти
путь, пройденный точкой за время движения.
Выделим на графике (рис. 1.6) бесконечно
малый интервал времени
,
такой, чтобы проекцию скоростина этом интервале можно было считать
постоянной.

Рис.
1.6

–мгновенная
скорость.

Тогда
путь, пройденный точкой за время
,
равен

.

Путь,
пройденный точкой за время движения
,
равен сумме

,

или путь
равен интегралу от скорости по времени

.

Физический
смысл интеграла
– бесконечно большая
сумма бесконечно малых слагаемых.

Геометрический
смысл интеграла
– площадь под кривой,
ограниченная двумя перпендикулярами
и осью абсцисс.

1.5. Ускорение

В
случае неравномерного движения для
описания изменения скорости с течением
времени вводят физическую величину –
ускорение.

Ускорение
характеризует быстроту изменения
скорости по величине и направлению.

Рассмотрим
общий случай, когда скорость меняется
по величине и направлению.

Пусть
материальная точка в положении Аимела скорость(рис. 1.7). Через промежуток
времениточка перешла в положениеВ, где ее
скорость оказалась равной:

или
.

Рис. 1.7

Средним
ускорением
в интервале от
доназывается векторная величина, равная
отношению вектора изменения скоростик интервалу времени:

. (1.15)

Мгновенным
ускорением
называется величина

. (1.16)

Таким
образом, ускорение
есть векторная величина, равная первой
производной скорости по времени.

Ускорениематериальной точки – это первая
производная от вектора скорости по
времени или вторая производная от
радиус-вектора по времени.

(1.17)

где
– проекции вектора ускорения на
координатные оси.

(1.18)

1.6. Понятие о кривизне траектории

Если
материальная точка движется по
криволинейной траектории, то отличие
этой траектории от прямолинейной
траектории характеризуется радиусом
кривизны или кривизной траектории.

Рис. 1.8

Δφ– угол между касательными в точках,
отстоящих друг от друга на расстоянии
ΔS.

Кривизна
траектории

(1.19)

Кривизна
траектории
характеризует скорость
поворота касательной при движении или
степень искривленности кривой.

Радиус
кривизны траектории в данной точке есть
величина обратная кривизне:

(1.20)

Радиус
кривизны траектории в данной точке –
это радиус окружности, которая сливается
на бесконечно малом участке в данном
месте с кривой (рис. 1.8).

1.7. Нормальное и тангенциальное ускорение при криволинейном движении

Пусть
материальная точка движется по
криволинейной траектории. Рассмотрим
общий случай, когда скорость движения
меняется по величине и направлению.

Пусть
материальная точка в положении А
имела скорость
(рис. 1.9).Через промежуток времениточка перешла в положениеВ, где ее
скорость оказалась равной.

П

Рис. 1.9

еренесем векторпараллельно самому себе в точкуА(вектор)
и найдемравный.

Так
как в общем случае скорость может
меняться по величине и направлению,
то удобно разложить ускорение на две
составляющие. Для этого разложим на две
составляющие вектор
.

Из
точки Апо направлению скорости
отложим вектор,
по модулю равный вектору.
Очевидно, что вектор,
равный,
характеризует изменение скорости по
величине. Векторхарактеризует изменение скорости по
направлению

. (1.19)

Полное
ускорение

(1.21)

Составляющая
ускорение
называетсятангенциальным ускорением.Оно характеризует быстроту изменения
скорости по величине.
Его численное
значение равно первой производной по
времени от модуля скорости:

. (1.22)

Определим
направление вектора
.
Принаправление векторастремится к направлению векторав точкеА траектории. Значит, векторнаправлен по касательной к траектории
(рис. 1.10).

Рис.
1.10

;

;
(1.23)

↑↑;

↑↑.

Составляющая
ускорения
называетсянормальным ускорением.Оно характеризует быстроту изменения
скорости по направлению.
Нормальное
ускорение направлено по радиусу к центру
кривизны траектории.

Найдем
выражение для
.
Восстановим в точкахАиВперпендикуляры к касательным. Они
пересекутся в точкеО. ПридугуАВ можно рассматривать как
дугу окружности радиусаR.
Из подобия треугольниковCAEиAOB

; (1.24)

. (1.25)

Итак,
нормальное ускорение

, (1.26)

где
R
– радиус кривизны траектории.

Радиус
кривизны
представляет собой радиус
окружности, которая сливается в данном
месте с кривой на бесконечно малом ее
участке. Если траектория – окружность,
тоR– радиус этой
окружности.

Определим
направление вектора
.
При,
уголив пределе перпендикулярен,
следовательно,.
Полное ускорение равно по модулю:


Рис.
1.11

. (1.27)

Пусть
и– векторы единичной длины, один направлен
вдоль скорости, а другой – перпендикулярно
ему (рис. 1.11), при этом

.

Тогда
в векторном виде

;
;. (1.28)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

Путь и перемещение:

Вы знаете, что любой вид движения совершается по определенной траектории.

Траектория — это линия, которую описывает материальная точка при своем движении в данной системе отсчета. Эта линия может быть и невидима, например, траектория движения рыбы в воде, самолета в небе, пчелы в воздухе и др., которые можно только вообразить. По форме траектории механическое движение делится на прямолинейное и криволинейное.

Движение, траектория которого представляет собой прямую линию относительно данной системы отсчета, называется прямолинейным движением (b), а движение, траектория которого кривая линия, — криволинейным (с).

Длина траектории движения материальной точки, называется пройденным путем. Пройденный путь является положительной скалярной величиной, обозначается буквой Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Для полного описания движения материальной точки необходимо определить изменение его положения в пространстве с течением времени, т.е. определить изменение координат материальной точки, или же изменение его радиус-вектора.

Изменение любой физической величины равно разности его конечного и начального значений и обозначается знаком Путь и перемещение в физике - формулы и определения с примерами (буква греч. алфавита) перед этой величиной.

Изменение координат материальной точки во время движения

Изменение координат материальной точки во время движения может быть, как положительным, так и отрицательным. Например, предположим, что муравей, двигаясь по показанной на рисунке траектории, попадает из точки М в точку N (d). Так как координата муравья по оси X увеличивается Путь и перемещение в физике - формулы и определения с примерами то изменение координаты по этой оси будет положительным: Путь и перемещение в физике - формулы и определения с примерами Координата же муравья по оси У уменьшается Путь и перемещение в физике - формулы и определения с примерами поэтому изменение его координаты по этой оси будет отрицательным: Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Изменение радиус-вектора материальной точки во время движения

На следующем рисунке представлены радиус-векторы Путь и перемещение в физике - формулы и определения с примерами и Путь и перемещение в физике - формулы и определения с примерами начального и конечного положения, материальной точки (муравья) соответственно (е). Вектор Путь и перемещение в физике - формулы и определения с примерами соединяющий концы этих радиус-векторов Путь и перемещение в физике - формулы и определения с примерами называют перемещением данной материальной точки за промежуток времени Путь и перемещение в физике - формулы и определения с примерами Согласно правилу сложения векторов: Путь и перемещение в физике - формулы и определения с примерами Из последнего выражения получается, Путь и перемещение в физике - формулы и определения с примерами или Путь и перемещение в физике - формулы и определения с примерами где Путь и перемещение в физике - формулы и определения с примерами — перемещение материальной точки.

Путь и перемещение в физике - формулы и определения с примерами

Перемещение — это направленный отрезок прямой, соединяющий начальное положение движущейся материальной точки с ее конечным положением. Перемещение — векторная величина.

Векторная величина — это величина, определяемая, кроме числового значения (модуля), также и направлением.

К вектору перемещения, как векторной величине, можно применить известные действия над векторами — сложение и вычитание векторов, определение результирующего вектора методом треугольника и параллелограмма.

Единицей измерения перемещения, как и пути, в СИ является метр, однако, перемещение имеет отличающийся физический смысл: перемещение показывает, на какое расстояние и в каком направлении изменилось начальное положение материальной точки за данный промежуток времени.

Внимание! Только при прямолинейном движении без изменения направлении, модуль перемещения равен пройденному пути, во всех остальных случаях (при изменении направления прямолинейного движения, криволинейном движении) пройденный путь больше модуля перемещения (е).

Путь и перемещение в физике - формулы и определения с примерами

Материальная точка прошла расстояние Путь и перемещение в физике - формулы и определения с примерами от точки М до точки N по прямой линии. В этом случае пройденный путь равен модулю перемещения: Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Материальная точка прошла расстояние Путь и перемещение в физике - формулы и определения с примерами от точки М до точки N по прямой линии, а затем по этой же линии вернулась назад в точку Путь и перемещение в физике - формулы и определения с примерами В этом случае материальная точка прошла путь, равный Путь и перемещение в физике - формулы и определения с примерами а модуль перемещения равен нулю:

Путь и перемещение в физике - формулы и определения с примерами

Если при движении материальной точки на плоскости известны его начальные координаты и вектор перемещения, то можно определить координаты конечного положения точки. Например, предположим, что материальная точка совершила перемещение Путь и перемещение в физике - формулы и определения с примерами Опуская перпендикуляры на оси ОХ и OY из начала и конца этого вектора, получаем проекции перемещения Путь и перемещение в физике - формулы и определения с примерами и Путь и перемещение в физике - формулы и определения с примерами (h). Как видно из рисунка, эти проекции равны разности начальных и конечных координат материальной точки: 

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Одинаковы ли путь и перемещение

Задача:

Велосипедист движется по круговому велотреку радиусом 80 м. Он стартует из точки А. Определите путь и перемещение велосипедиста при первом прохождении точки В (i).

Путь и перемещение в физике - формулы и определения с примерами

Дано:

Путь и перемещение в физике - формулы и определения с примерами

Решение:

Пройденный путь Путь и перемещение в физике - формулы и определения с примерами равен длине дуги: Путь и перемещение в физике - формулы и определения с примерами

Модуль перемещения же равен диаметру окружности: Путь и перемещение в физике - формулы и определения с примерами

Вычисление:

Путь и перемещение в физике - формулы и определения с примерами

Что такое путь и перемещение

Путь и перемещение в физике - формулы и определения с примерами

Автобус отправился из Москвы в 9 часов утра. Можно ли определить, где находился автобус в 11 часов, если известно, что он проделал путьПуть и перемещение в физике - формулы и определения с примерами

Конечно, нет. Ясно лишь, что в 11 часов он находился в месте, удаленном от Минска не более чем на 100 км (т. е. внутри окружности, изображенной на рисунке 37). Не исключено, что к 11 часам автобус вернулся в Москву.

Значит, для определения конечного положения тела недостаточно знать его начальное положение и пройденный им путь.

Мы нашли бы местонахождение автобуса в 11 часов, если бы знали траекторию его движения (зеленая линия на рисунке 38). Отсчитав 100 км от начальной точки маршрута вдоль траектории, найдем, что в 11 часов автобус прибыл в Борисов.

А можно поступить иначе. Конечное положение автобуса можно определить, зная его начальное положение и всего одну векторную величину, называемую перемещением.

Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением (для данного промежутка времени).

Обозначим перемещение символом Путь и перемещение в физике - формулы и определения с примерами На рисунке 38 вектор Путь и перемещение в физике - формулы и определения с примерами — это перемещение автобуса из Минска в Мытищи, вектор Путь и перемещение в физике - формулы и определения с примерами — из Мытищь в Балашиху, а вектор Путь и перемещение в физике - формулы и определения с примерами — из Минска в Борисов.

Теперь, даже не зная траектории, по начальной точке и перемещению мы можем найти конечную точку для каждого из участков движения автобуса и для всего маршрута в целом.

Путь и перемещение в физике - формулы и определения с примерами

Можно ли сравнивать путь S, пройденный телом, с его перемещением Путь и перемещение в физике - формулы и определения с примерами Нельзя, поскольку путь S — скаляр, а перемещение Путь и перемещение в физике - формулы и определения с примерами — вектор.

Сравнивать путь S можно с модулем перемещения Путь и перемещение в физике - формулы и определения с примерами который является скалярной величиной. Равен ли путь модулю перемещения?

В рассматриваемом примере путь, пройденный автобусом за два часа, Путь и перемещение в физике - формулы и определения с примерами Он равен длине траектории движения автобуса от Москвы через Мытищи до Балашихи (см. рис. 38). А модуль перемещения автобуса за это время равен расстоянию от Минска до Борисова: Путь и перемещение в физике - формулы и определения с примерами Путь автобуса больше модуля его перемещения: Путь и перемещение в физике - формулы и определения с примерами

Пройденный путь был бы равен модулю перемещения, если бы автобус все время двигался по прямой, не изменяя направления движения.

Следовательно, путь всегда не меньше модуля перемещения:

Путь и перемещение в физике - формулы и определения с примерами

Как складывают между собой пути и как — перемещения? Из рисунка 38 находим:

Путь и перемещение в физике - формулы и определения с примерами

Пройденные пути складывают арифметически, а перемещения — по правилам сложения векторов.

Равен ли при этом модуль Путь и перемещение в физике - формулы и определения с примерами сумме модулей Путь и перемещение в физике - формулы и определения с примерами Ответьте самостоятельно.

Мы выяснили, что путь и траектория относительны. Покажите на примерах, что перемещение тоже относительно, т. е. зависит от выбора системы отсчета.

Путь и перемещение в физике - формулы и определения с примерами

При решении задач важно уметь находить проекции перемещения. Построим вектор перемещения куска мела по школьной доске из точки А в точку С (рис. 39). Из рисунка видно, что проекции вектора Путь и перемещение в физике - формулы и определения с примерами на координатные оси Ох и Оу равны разности координат конца и начала этого вектора:

Путь и перемещение в физике - формулы и определения с примерами

Главные выводы:

  1. Путь — это длина участка траектории, пройденного телом за данный промежуток времени. Путь — положительная скалярная величина.
  2. Перемещение тела — это вектор, соединяющий начальное положение тела с его конечным положением (для данного промежутка времени).
  3. Путь не меньше модуля перемещения тела за то же время.
  4. Пройденные пути складываются арифметически, а перемещения — по правилам сложения векторов.

Пример:

Путь и перемещение в физике - формулы и определения с примерамиПуть и перемещение в физике - формулы и определения с примерами
Конькобежец пересек прямоугольную ледовую площадку по диагонали АВ, а пешеход прошел из точки А в точку В по краю площадки (рис. 40). Размеры площадки 60 х 80 м. Определите модули перемещения конькобежца и пешехода и пути, пройденные ими.

Решение

Из рисунка 40 видно, что перемещения пешехода и конькобежца одинаковы. Модуль перемещения:

Путь и перемещение в физике - формулы и определения с примерами

Путь конькобежца: Путь и перемещение в физике - формулы и определения с примерами

Путь пешехода: Путь и перемещение в физике - формулы и определения с примерами

Ответ: Путь и перемещение в физике - формулы и определения с примерами

  • Заказать решение задач по физике

Траектория движения

Возьмите лист бумаги и карандаш. Поставьте на листе точки А и В и соедините их кривой линией (рис. 7.1). Эта линия совпадает с траекторией движения кончика карандаша, то есть линией, в каждой точке которой последовательно побывал кончик карандаша во время своего движения.

Траектория движения — это воображаемая линия, которую описывает в пространстве движущаяся точка. Обычно мы не видим траектории движения тел, но иногда бывают исключения.

Так, в без­облачную погоду высоко в небе можно увидеть белый след, который во время своего движения оставляет самолет*. По этому следу можно определить траекторию движения самолета. Траектории движения каких тел можно восстановить по следам, изображенным на рис. 7.2? В каких случаях траекторию движения «заготавливают» заранее? Форма траектории может быть разной: прямая, окружность, дуга, ломаная и т. д. В зависимости от формы траектории разли­чают прямолинейное и криволинейное движе­ния тел (рис. 7.3).

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Форма траектории движения тела зависит от того, относительно какой системы отсчета рассматривают движение. Приведем пример. У мальчика, едущего в автобусе, упало из рук яблоко (рис. 7.4). Для девочки, сидящей напротив, траектория движения яблока — короткий отрезок прямой. В этом случае система отсчета, относительно которой рассматривается движение яблока, связана с салоном автобуса. Но все время, пока яблоко падало, оно «ехало» вместе с автобусом, поэтому для человека, стоящего на обочине дороги, траектория движения яблока абсолютно другая. Система отсчета в таком случае связана с дорогой.

Чем путь отличается от перемещения

Вернемся к началу (см. рис. 7.1). Чтобы найти путь, который прошел конец карандаша, рисуя кривую линию, необходимо измерить длину этой линии, то есть найти длину траектории (рис. 7.5). Путь — это физическая величина, равная длине траектории. Путь обозначают символом l. Единица пути в СИ — метр: [l]= м. Используют также дольные и кратные единицы пути, например миллиметр (мм), сантиметр (см), километр (км):

Путь и перемещение в физике - формулы и определения с примерами

Путь, пройденный телом, будет разным относительно разных систем отсчета. Вспомним яблоко в автобусе (см. рис. 7.4): для пассажиров яблоко прошло путь около полуметра, а для человека на обочине дороги — несколько метров. Вернемся к рис. 7.1. Соединив точки А и В отрезком прямой со стрелкой, получим направленный отрезок, который покажет, в каком направлении и на какое расстояние переместился конец карандаша (рис. 7.6).

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Направленный отрезок прямой, соединяющий начальное и конечное положения тела, называют перемещением. Перемещение обозначают символом Путь и перемещение в физике - формулы и определения с примерами . Стрелка над символом показывает, что перемещение — это векторная физическая величина*. Чтобы правильно задать перемещение, необходимо указать не только его значение (модуль), но и направление.

Модуль перемещения, то есть расстояние, на которое переместилось тело в определенном направлении, также обозначают символом s, но без стрелки. Единица перемещения в СИ такая же, как и единица пути, — метр: [s]= м. В общем случае перемещение не совпадает с траекторией движения тела (рис. 7.7, а, б), поэтому путь, пройденный телом, обычно больше модуля перемещения. Путь и модуль перемещения равны только в том случае, когда тело движется вдоль прямой в неизменном направлении (рис. 7.7, в).

Итоги:

Воображаемая линия, которую описывает в пространстве движущаяся точка, называется траекторией. В зависимости от формы траектории различают прямолинейное и криволинейное движения тел. Путь l — это физическая величина, равная длине траектории. Перемещение Путь и перемещение в физике - формулы и определения с примерами — это направленный отрезок прямой, соединяющий начальное и конечное положения тела. Единица пути и перемещения в СИ — метр (м).

Физические величины, имеющие значение и направление, называется векторными а имеющие только значение — скалярными.

  • Равномерное прямолинейное движение
  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Физический и математический маятники
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось

Путь при неравномерном движении.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Сейчас мы будем рассматривать неравномерное движение — то есть движение, при котором абсолютная величина скорости меняется со временем. Оказывается, существует простая геометрическая интерпретация пути, пройденного телом при произвольном движении.
Начнём с равномерного движения. Пусть скорость тела постоянна и равна v. Возьмём два момента времени: начальный момент t_{displaystyle 1} и конечный момент t_{displaystyle 2}. Длительность рассматриваемого промежутка времени равна Delta t= t_{displaystyle 2} - t_{displaystyle 1}.

Очевидно, что за промежуток времени [t_{displaystyle 1},t_{displaystyle 2}] тело проходит путь:

s=v(t_{displaystyle 2}-t_{displaystyle 1})=vDelta t (1)

Давайте построим график зависимости скорости от времени. В данном случае это будет прямая, параллельная оси абсцисс (рис. 1).

Рис. 1. Путь при равномерном движении

Нетрудно видеть, что пройденный путь равен площади прямоугольника, расположенного под графиком скорости. В самом деле, первый множитель v в формуле (1) есть вертикальная сторона этого прямоугольника, а второй множитель Delta t — его горизонтальная сторона.

Теперь нам предстоит обобщить эту геометрическую интерпретацию на случай неравномерного движения.

Пусть скорость тела v зависит от времени, и на рассматриваемом промежутке [t_{displaystyle 1},t_{displaystyle 2}] график скорости выглядит, например, так (рис. 2):

Рис. 2. Неравномерное движение

Дальше мы рассуждаем следующим образом.

1. Разобьём наш промежуток времени [t_{displaystyle 1},t_{displaystyle 2}] на небольшие отрезки величиной Delta t.

2. Предположим, что на каждом таком отрезке [t_{displaystyle i},t_{displaystyle i}+Delta t] тело движется с постоянной скоростью v(t_{displaystyle i}). То есть, плавное изменение скорости заменим ступенчатой аппроксимацией*: в течение каждого небольшого отрезка времени тело движется равномерно, а затем скорость тела мгновенно и cкачком меняется.
На рис. 3 показаны две ступенчатые аппроксимации. Ширина ступенек Delta t на правом рисунке вдвое меньше, чем на левом.

Рис. 3. Ступенчатая аппроксимация

Путь, пройденный за время Delta t равномерного движения — это площадь прямоугольника, расположенного под ступенькой. Поэтому путь, пройденный за всё время такого «ступенчатого» движения — это сумма площадей всех прямоугольников на графике.

3. Теперь устремляем Delta t к нулю. Ясно, что в пределе наша ступенчатая аппроксимация перейдёт в исходный график скорости на рис. 2. Сумма площадей прямоугольников перейдёт в площадь под графиком скорости; следовательно, эта площадь и есть путь, пройденный телом за время от t_{displaystyle 1} до t_{displaystyle 2}. (рис. 4

Рис. 4. Путь при неравномерном движении

В итоге мы приходим к нужному нам обобщению геометрической интерпретации пути, полученной выше для случая равномерного движения.

Аппроксимация — это приближённая замена достаточно сложного объекта более простой моделью, которую удобнее изучать.

Геометрическая интерпретация пути.Путь, пройденный телом при любом движении, равен площади под графиком скорости на заданном промежутке времени.

Посмотрим, как работает эта геометрическая интерпретация в важном частном случае равноускоренного движения.

Задача. Тело, имеющее скорость v_{0} в начальный момент t=0, разгоняется с постоянным ускорением a. Найти путь, пройденный телом к моменту времени t.

Решение. Зависимость скорости от времени в данном случае имеет вид:

v=v_{0}+at. (2)

График скорости — прямая, изображённая на рис. 5. Искомый путь есть площадь трапеции, расположенной под графиком скорости.

Рис. 5. Путь при равноускоренном движении

Меньшее основание трапеции равно v_{0}. Большее основание равно v=v_{0}+at. Высота трапеции равна t. Поскольку площадь трапеции есть произведение полусуммы оснований на высоту, имеем:

s=frac{displaystyle v_{0}+displaystyle v}{2}cdot t=frac{displaystyle v_{0}+(v_{0}+at)}{2}cdot t=frac{displaystyle 2v_{0}t+at^{2}}{2}.

Эту формулу можно переписать в более привычном виде:

s=v_{0}t+frac{displaystyle at^{2}}{displaystyle2}.

Она, разумеется, вам хорошо известна из темы «Равноускоренное движение».

Задача. График скорости тела является полуокружностью диаметра tau (рис. 6). Максимальная скорость тела равна v. Найти путь, пройденный телом за время tau .

Решение. Как вы знаете, площадь круга радиуса R равна pi R^{2}. Но в данной задаче необходимо учесть, что радиусы полуокружности имеют разные размерности: горизонтальный радиус есть время tau /2 , а вертикальный радиус есть скорость v.

Поэтому пройденный путь, вычисляемый как площадь полукруга, равен половине произведения pi на горизонтальный радиус и на вертикальный радиус:

s=frac{1}{2}cdot pi cdot frac{displaystyle tau }{2}cdot v=frac{displaystyle pi vtau }{displaystyle 4}.

Рис. 6. К задаче

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Путь при неравномерном движении.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

На прошлых уроках мы познакомились с определением механического движения, узнали, каким бывает движение, изучили его свойства и характеристики. Теперь нам известны формулы для расчета скорости при равномерном движении ($upsilon = frac{S}{t}$) и средней скорости при неравномерном ($upsilon_{ср} = frac{S}{t}$).

На данном уроке мы посмотрим на эти формулы с другой стороны — научимся использовать их для расчета пути и времени движения, а также рассмотрим графики скорости и пути для равномерного движения.

Формулы для расчета пути и времени движения при равномерном движении тела

Скорость тела при равномерном движении вычисляется по формуле $upsilon = frac{S}{t}$. Отсюда, если мы знаем скорость и время, то можем найти пройденный путь:

$S = upsilon t$.

Чтобы определить путь, пройденный телом при равномерном движении, нужно скорость тела умножить на время его движения.

Выразим время:

$t = frac{S}{upsilon}$.

Чтобы рассчитать время при равномерном движении, нужно путь, пройденный телом, разделить на скорость его движения.

Формулы для расчета пути и времени движения при неравномерном движении тела

При неравномерном движении мы используем определение средней скорости, которую можем найти по формуле:
$upsilon_{ср} = frac{S}{t}$.

Чтобы определить путь при неравномерном движении, нужно среднюю скорость движения умножить на время:

$large S = upsilon_{ср} t$.

Также мы можем рассчитать время, разделив путь, пройденный телом, на среднюю скорость его движения:

$t = frac{s}{upsilon_{ср}}$.

График скорости равномерного движения

Так как скорость – это векторная величина, она характеризуется и модулем, и направлением. В зависимости от выбранного направления скорость по знаку может быть как положительной, так и отрицательной.

На рисунке 1 изображен динозавр, автомобиль и дом. Зададим ось координат $x$.

 Положительная и отрицательная скорости

Рисунок 1. Положительная и отрицательная скорости

Если динозавр начнет двигаться к дому, то его скорость будет положительной, так как направление движения совпадает с направлением оси $x$. Если же динозавр направится к автомобилю, то его скорость будет отрицательной, так как направление движения противоположно направлению оси $x$.

Итак, график скорости равномерного движения имеет вид, представленный на рисунке 2.

 График скорости равномерного движения.
Рисунок 2. График скорости равномерного движения

Из графика видно, что скорости с течением времени не изменяется – они постоянны в любой выбранный момент времени. Если мы посмотрим на график положительной скорости, то увидим, что $upsilon = 6 frac{м}{с}$, на график отрицательной — $upsilon = -4 frac{м}{с}$.

Зная скорость и время, мы можем рассчитать пройденный путь за определенный промежуток времени. Рассчитаем какой путь пройдет тело с положительной скоростью за $4 space с$.

$S = upsilon t = 6 frac{м}{с} cdot space 4 c = 24 space м$.

График пути равномерного движения

Пример графика зависимости пути равномерного движения представлен на рисунке 3.

График пути равномерного движения.
Рисунок 3. График пути равномерного движения

Здесь $S$ — ось пройденных путей, $t$ — ось времени. По этому графику мы можем найти путь, пройденный телом за определенный промежуток времени. Например, за 1 с тело проходит путь длиной 2 м, за 2 с – 4 м, за 3 с – 6 м.

Зная путь и время, мы можем рассчитать скорость. Для удобства расчета возьмем самый первый отрезок пути: $t = 1 space с$, $S = 2 space м$. Тогда,

$upsilon = frac{S}{t} = frac{2 space м}{1 space с} = 2 frac{м}{с}$.

Задачи

Задача №1

Самым быстрым животным на Земле считается гепард. Он способен развивать скорость до $120 frac{км}{ч}$, но сохранять ее способен в течение короткого промежутка времени. Если за несколько секунд он не настигнет добычу, то, вероятнее всего, уже не сможет ее догнать. Найдите путь, который пробежит гепард на максимальной скорости за $3$ секунды.

Переведем единицы измерения скорость в СИ и решим задачу.

$120 frac{км}{ч} = 120 cdot frac{1000 space м}{3600 space с} approx 33 frac{м}{с}$.

Дано:
$upsilon = 120 frac{км}{ч}$
$t = 3 space c$

СИ:
$upsilon = 33 frac{м}{с}$

$S — ?$

Показать решение и ответ

Скрыть

Решение:

Гепард двигается равномерно в течение 3 с.
Путь, который он проходит за это время:
$S = upsilon t$,
$S = 33 frac{м}{с} cdot 3 с approx 100 space м$

Ответ: $S = 100 space м$.

Задача №2

Колибри – самые маленькие птицы на нашей планете. При полете они совершают около 4000 взмахов в минуту. Тем не менее, они способны пролетать очень большие расстояния. Например, некоторые виды данной птицы перелетают Мексиканский залив длиной $900 км$ со средней скоростью $40 frac{км}{ч}$. Сколько времени у них занимает такой полет?

Переведем единицы измерения скорость в СИ и решим задачу.

$40 frac{км}{ч} = 40 cdot frac{1000 м}{3600 с} approx 11 frac{м}{с}$,
$900 space км = 900 space 000 м$.

Дано:
$upsilon_{ср} = 40 frac{км}{ч}$
$S = 900 space км$

CИ:
$upsilon_{ср} = 11 frac{м}{с}$
$S = 900 space 000 space м$

$t-?$

Показать решение и ответ

Скрыть

Решение:

Полет колибри будет примером неравномерного движения. Зная среднюю скорость и путь, рассчитаем время перелета:
$t = frac{s}{upsilon_{ср}}$,
$t = frac{900 space 000 space м}{11 frac{м}{с}} approx 82 space 000 space с$.

Переведем время в часы:
$1 space ч = 60 space мин = 60 cdot 60 space c = 3600 space c$.

Тогда:
$t = frac{82 space 000 space c}{3600 space c} approx 23 space ч$.

Ответ: $t = 23 space ч$.

Больше задач на расчет пути и времени движения с подробными решениями смотрите в отдельном уроке.

Упражнения

Упражнение №1

Пользуясь таблицей 1 из прошлого урока, найдите скорости страуса, автомобиля, искусственного спутника Земли. Определите пути, пройденные ими за $5 space с$.

Дано:
$upsilon_1 = 22 frac{м}{с}$
$upsilon_2 = 20 frac{м}{с}$
$upsilon_3 = 8000 frac{м}{с}$
$t = 5 space с$

$S_1 — ?$
$S_2 — ?$
$S_3 — ?$

Показать решение и ответ

Скрыть

Решение:

Путь, пройденный страусом:
$S_1 = upsilon_1 t$,
$S_1 = 22 frac{м}{с} cdot 5 space с = 110 space м$.

Путь, пройденный автомобилем:
$S_2 = upsilon_2 t$,
$S_2 = 20 frac{м}{с} cdot 5 space с = 100 space м$.

Путь, пройденный искусственным спутником Земли:
$S_3 = upsilon_3 t$,
$S_3 = 8000 frac{м}{с} cdot 5 space с = 40 space 000 space м = 40 space км$.

Ответ: $S_1 = 110 space м$, $S_2 = 100 space м$, $S_3 = 40 space км$.

Упражнение №2

На велосипеде можно без особого напряжения ехать со скоростью $3 frac{м}{с}$. На какое расстояние можно уехать за $1.5 space ч$?

Дано:
$t = 1.5 space ч$
$upsilon = 3 frac{м}{с}$

СИ:
$t = 5400 space с$

$S — ?$

Показать решение и ответ

Скрыть

Решение:

Рассчитаем путь, который можно проехать на велосипеде с указанной скоростью:
$S = upsilon t$,
$S = 3 frac{м}{с} cdot 5400 space с = 16 space 200 space м = 16.2 space км$.

Ответ: $S = 16.2 space км$.

Упражнение №3

На рисунке 4 показан график зависимости пути равномерного движения тела от времени ($S$ — ось пройденного пути, $t$ — ось времени). По этому графику найдите, чему равен путь, пройденный телом за $2 space ч$. Затем рассчитайте скорость тела.

Рисунок 4. График зависимости пути от времени равномерного движения

Определим из графика путь, пройденный телом за $2 space ч$. Этому времени на графике соответствует значение пути, равное $200 space км$. Запишем условие задачи и решим ее.

Дано:
$S = 200 space км$
$t = 2 space ч$

$upsilon — ?$

Показать решение и ответ

Скрыть

Решение:

Скорость равномерного движения рассчитываем по формуле:
$upsilon = frac{S}{t}$.

$upsilon = frac{200 space км}{2 space ч} = 100 frac{км}{ч}$.

Ответ: $upsilon = 100 frac{км}{ч}$.

Упражнение №4

График зависимости скорости равномерного движения тела от времени представлен на рисунке 5. По этому графику определите скорость движения тела. Рассчитайте путь, который пройдет тело за $2 space ч$, $4 space ч$.

Рисунок 5. График зависимости скорости равномерного движения от времени

Из графика видно, что скорость тела равна $8 frac{м}{с}$. Этот график представляет собой прямую, параллельную оси времени, потому что движение равномерное, и скорость тела не изменяется с течением времени. Запишем условие задачи и решим ее.

Дано:
$t_1 = 2 space ч$
$t_2 = 4 space ч$
$upsilon = 8 frac{м}{с}$

СИ:
$t_1 = 7200 space с$
$t_2 = 14 space 400 space с$

$S_1 — ?$
$S_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Путь рассчитаем по формуле: $S = upsilon t$.

За $2 space ч$ тело пройдет путь:
$S_1 = upsilon t_1$,
$S_1 = 8 frac{м}{с} cdot 7200 space с = 57 space 600 space м = 57.6 space км$.

За $4 space ч$ тело пройдет путь:
$S_2 = upsilon t_2$,
$S_2 = 8 frac{м}{с} cdot 14 space 400 space с = 115 space 200 space м = 115.2 space км$.

Ответ: $S_1 = 57.6 space км$, $S_2 = 115.2 space км$.

Упражнения №5

По графикам зависимости путей от времени (рисунок 6) двух тел, движущихся равномерно, определите скорости этих тел. Скорость какого тела больше?

Рисунок 6. Графики зависимости путей от времени равномерного движения двух тел

Для того, чтобы рассчитать скорость тела, нам нужно знать путь и время, за которое этот путь был пройден. Возьмем эти значения для двух тел из их графиков. Первое тело (I) проходит путь, равный $4 space м$, за $2 space с$. Второе тело (II) проходит путь, равный $4 space м$, за $4 space с$. Запишем условие задачи и решим ее.

Дано:
$S = 4 space м$
$t_1 = 2 space с$
$t_2 = 4 space с$

$upsilon_1 — ?$
$upsilon_2 — ?$

Показать решение и ответ

Скрыть

Решение:

Рассчитаем скорость первого тела:
$upsilon_1 = frac{S}{t_1}$,
$upsilon_1 = frac{4 space м}{2 space с} = 2 frac{м}{с}$.

Рассчитаем скорость второго тела:
$upsilon_2 = frac{S}{t_2}$,
$upsilon_2 = frac{4 space м}{4 space с} = 1 frac{м}{с}$.

Получается, что скорость первого тела больше скорости второго.

Ответ: $upsilon_1 = 2 frac{м}{с}$, $upsilon_2 = 1 frac{м}{с}$, $upsilon_1 > upsilon_2$.

Понравилась статья? Поделить с друзьями:
  • Жди меня как найти свою заявку
  • Как так быстро найти девушку для секса
  • Как найти силу лоренца для электрона
  • Hide folder как найти
  • Как найти результирующий потенциал равностороннего треугольника