Как найти пройденный путь по графику координаты

  1. Прямолинейное равномерное движение на координатной прямой
  2. Уравнение прямолинейного равномерного движения
  3. Удобная система отсчета для решения задачи о прямолинейном движении
  4. График движения x=x(t)
  5. Как найти уравнение движения по графику движения?
  6. График скорости vx=vx(t)
  7. Как найти путь и перемещение по графику скорости?
  8. Задачи

п.1. Прямолинейное равномерное движение на координатной прямой

Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.

Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.

Прямолинейное равномерное движение на координатной прямой

Составим таблицу перемещений за первые 4 секунды:

t, c 0 1 2 3 4
x, м 20 30 40 50 60

Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: begin{gather*} x=x_0+s=x_0+vt\ x=20+10t end{gather*}

Прямолинейное равномерное движение на координатной прямой

Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:

t, c 0 1 2 3 4
x, м 20 10 0 -10 -20

В этом случае координата x в любой момент времени t имеет вид: begin{gather*} x=x_0-st=x_0-vt\ x=20-10t end{gather*} Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.

п.2. Уравнение прямолинейного равномерного движения

Основная задача механики – уметь определять положение тела в пространстве в любой момент времени.

Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.

Назовем проекцией вектора скорости (overrightarrow{x}) на параллельную ему ось координат OX величину (v_x=pm|overrightarrow{v}|=pm v).
Знак проекции определяется следующим правилом:

  • если направление вектора (overrightarrow{v}) совпадает с направлением оси OX, то (v_x=vgt 0)
  • если направление вектора (overrightarrow{v}) противоположно направлению оси OX, то (v_x=-vlt 0)

В любой момент времени t координата тела x(t) при прямолинейном равномерном движении описывается уравнением: $$ x(t)=x_0+v_x t $$ где (x_0) — координата в начальный момент времени, (v_x) — проекция вектора скорости движения.

Проекция перемещения (overrightarrow{r}) на параллельную ему ось координат OX в любой момент времени t определяется формулой: $$ triangle x=x(t)-x_0 $$ Знак (triangle x) указывает на направление совершенного перемещения:

  • если (triangle xgt 0), перемещение (overrightarrow{r}) произошло в направлении оси OX;
  • если (triangle xlt 0), перемещение (overrightarrow{r}) произошло противоположно направлению оси OX.

п.3. Удобная система отсчета для решения задачи о прямолинейном движении

При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.

При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.

Прямолинейное движение описывается с помощью координатной прямой, параллельной направлению движения тела.

Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.

п.4. График движения x=x(t)

Сравним полученное уравнение движения (x(t)=x_0+v_x t) с уравнением прямой (y(x)=kx+b) (см. §38 справочника по алгебре для 7 класса).

В уравнении движения роль углового коэффициента (k) играет проекция скорости (v_x), а роль свободного члена (b) – начальная координата (x_0).

В осях (t) и (x) график (x(t)=x_0+v_x t) является прямой.
Эта прямая:

  • возрастает, если (v_xgt 0)
  • убывает, если (v_xlt 0)
  • постоянна (параллельна оси (t)), если (v_x= 0)
График движения x=x(t) Построим графики зависимости координаты от времени для нашего примера:

x=20+10t — машина движется вправо (в направлении оси OX)
x=20-10t — машина движется влево (в направлении, противоположном оси OX)
x=20 — машина стоит

п.5. Как найти уравнение движения по графику движения?

Как найти уравнение движения по графику движения

Шаг 1. Выбрать на прямой любые две точки (A(t_1,x_1)) и (B(t_2,x_2)).
Шаг 2. Найти проекцию скорости как отношение: $$ v_x=frac{x_2-x_1}{t_2-t_1}=frac{triangle x}{triangle t} $$ Шаг 3. Найти начальную координату по одной из формул: $$ x_0=x_1-v_x t_1 text{или} x_0=x_2-v_x t_2 $$ Шаг 4. Записать найденное уравнение движения: $$ x(t)=x_0+v_x t $$

п.6. График скорости vx=vx(t)

В осях (t) и (x) график (v_x(t)=v_x=const) является прямой, параллельной оси (t).
Эта прямая:

  • расположена над осью (t), если (v_xgt 0)
  • расположена под осью (t), если (v_xlt 0)
  • совпадает с осью (t), если (v_x=0)

Для рассмотренного примера:
График скорости v_x=v_x(t)

Внимание!
В отличие от алгебры, в физике масштабы на осях, как правило, разные.
Поэтому обязательно нужно:
1) указывать обозначения и единицы измерения физических величин, которым соответствуют оси графика;
2) подбирать масштабы так, чтобы с графиком было удобно работать.

п.7. Как найти путь и перемещение по графику скорости?

Пусть тело движется прямолинейно равномерно, зависимость его координаты от времени описывается уравнением: $$ x(t)=x_0+v_x t $$ Тогда в некоторый момент времени (t_1) координата равна (x_1=x_0+v_x t_1).
Несколько позже, в момент времени (t_2gt t_1) координата равна (x_2=x_0+v_x t_2).
Если (v_xgt 0), то пройденный за промежуток времени (triangle t=t_2-t_1) путь равен разности координат: $$ s=x_2-x_1=(x_0+v_x t_2)-(x_0+v_x t_1)=x_0-x_0+v_x (t_2-t_1)=v_x triangle t $$ В общем случае, т.к. (v_x) может быть и отрицательным, а путь всегда положительный, в формуле нужно поставить модуль: $$ s=|v_x|triangle t $$
Изобразим полученное соотношение на графике скорости: Как найти путь и перемещение по графику скорости

На графике скорости путь, пройденный за промежуток времени (triangle t=t_2-t_1) равен площади прямоугольника, длина которого равна (triangle t), а ширина (triangle |v_x|): $$ s=|v_x|triangle t $$

Проекция скорости (v_x) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ triangle x=v_x triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.

На графике скорости проекция перемещения на ось OX за промежуток времени (triangle t=t_2-t_1) равна площади (v_xtriangle t), с учетом знака: $$ triangle x=v_xtriangle t $$

Проекция перемещения может быть как положительной, так и отрицательной или равной 0.

п.8. Задачи

Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите (x_0=0) и запишите уравнение движения.
а) Постройте график движения (x=x(t)) и найдите с его помощью, сколько пробежит спортсмен за (t_1=5 с), за (t_2=10 с);
б) постройте график скорости (v=v(t)) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени (triangle t=t_2-t_1)?

По условию (x_0=0, v_x=8).
Уравнение движения: (x=x_0+v_x t=0+8t=8t)
а) Строим график прямой (x=8t) по двум точкам:

Задача 1
По графику находим: begin{gather*} x_1=x(5)=8cdot 5=40 text{(м)}\ x_2=x(10)=8cdot 10=80 text{(м)} end{gather*}
б) Скорость (v_x=8) м/с — постоянная величина, её график:
Задача 1
$$ t_1=5 с, t_2=10 с $$ Пройденный путь за промежуток времени (triangle t=t_2-t_1) равен площади заштрихованного прямоугольника: $$ s=v_x triangle t=8cdot (10-5)=40 text{(м)} $$ Ответ: а) 40 м и 80 м; б) 40 м

Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?

а) Будем откладывать время в часах, а расстояние в тыс.км
Отмечаем точки A(1;38) и B(2;56), проводим через них прямую.
Полученная прямая и есть график движения (x=x(t)).
Задача 2
Найдем скорость корабля (v_x): $$ v_x=frac{x_2-x_1}{t_2-t_1}=frac{56-38}{2-1}=18 (text{тыс.км/ч}) $$ Найдем начальную координату (x_0): $$ x_0=x_1-v_x t_1=38-18cdot v_1=20 (text{тыс.км/ч}) $$ Получаем уравнение движения: $$ x(t)=x_0+v_x t, x(t)=20+18t $$ где (x) – в тыс.км, а (t) – в часах.

б) В начальный момент времени корабль находился на расстоянии (x_0=20) тыс.км от астероида.

в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18cdot 4=92 (text{тыс.км}) $$
г) Переведем скорость в км/с: $$ 18000frac{text{км}}{text{ч}}=frac{18000 text{км}}{1 text{ч}}=frac{18000 text{км}}{3600 text{c}}=5 text{км/c} $$ Ответ:
а) (x(t)=20+18t) ((x) в тыс.км, (t) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с

Содержание:

Равномерное прямолинейное движение:

Вы изучали равномерное прямолинейное движение, познакомились с понятием «скорость». Скалярной или векторной величиной является скорость? Каковы закономерности равномерного прямолинейного движения?

Вы знаете, что движение, при котором за любые равные промежутки времени тело проходит одинаковые пути, называется равномерным. В каком случае одинаковыми будут не только пути, но и перемещения?

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Проделаем опыт. Проследим за падением металлического шарика в вертикальной трубке, заполненной вязкой жидкостью (например, густым сахарным сиропом) (рис. 43). Будем отмечать положение шарика через равные промежутки времени. Опыт показывает, что за равные промежутки времени, например за Равномерное прямолинейное движение в физике - формулы и определения с примерами

Сделаем вывод. При равномерном прямолинейном движении тело за любые равные промежутки времени совершает одинаковые перемещения и проходит одинаковые пути.

В 7-м классе вы находили скорость равномерного движения тела как отношение пути к промежутку времени, за который путь пройден: Равномерное прямолинейное движение в физике - формулы и определения с примерами Это отношение показывает, как быстро движется тело, но ничего не говорит о направлении движения. Чтобы скорость характеризовала и быстроту движения, и его направление, ее определяют через перемещение.

Скорость равномерного прямолинейного движения — это величина, равная отношению перемещения к промежутку времени, за который оно совершено:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из равенства (1) следует, что скорость Равномерное прямолинейное движение в физике - формулы и определения с примерамивекторная физическая величина. Ее модуль численно равен модулю перемещения за единицу времени, а направление совпадает с направлением перемещения (т. к. Равномерное прямолинейное движение в физике - формулы и определения с примерами).

Отношение Равномерное прямолинейное движение в физике - формулы и определения с примерами для всех участков движения на рисунке 43 одинаково: Равномерное прямолинейное движение в физике - формулы и определения с примерами  Значит, скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.

Из формулы (1) легко найти перемещение:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

и путь Равномерное прямолинейное движение в физике - формулы и определения с примерами (равный модулю перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

А как определить положение равномерно и прямолинейно движущегося тела в любой момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Рассмотрим пример. Автомобиль движется с постоянной скоростью по прямолинейному участку шоссе (рис. 44).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Автомобиль рассматриваем как материальную точку. Из формулы (2) находим проекцию перемещения автомобиля на ось Ох:

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Согласно рисунку 44 за время Равномерное прямолинейное движение в физике - формулы и определения с примерами автомобиль совершил перемещение Равномерное прямолинейное движение в физике - формулы и определения с примерами Подставляя Равномерное прямолинейное движение в физике - формулы и определения с примерами в равенство (4), получим:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Приняв Равномерное прямолинейное движение в физике - формулы и определения с примерами запишем формулу для координаты автомобиля:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Зависимость координаты движущегося тела от времени называется кинематическим законом движения. Формула (5) выражает кинематический закон равномерного прямолинейного движения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для измерения скорости используются специальные приборы. В автомобилях имеется спидометр (рис. 45), на самолетах — указатель скорости. Эхолокаторы измеряют скорость тел, движущихся под водой, а радиолокаторы (радары) — в воздухе и по земле. Сотрудники службы дорожного движения с помощью портативного радара с видеокамерой (рис. 46) регистрируют скорость транспортных средств.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для любознательных:

Скорости движения могут сильно отличаться. За одну секунду черепаха может преодолеть несколько сантиметров, человек — до 10 м, гепард — до 30 м, гоночный автомобиль — около 100 м.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Около 8 км за секунду пролетает по орбите спутник Земли (рис. 47). Но даже скорости космических кораблей «черепашьи» по сравнению со скоростью микрочастиц в ускорителях. В современном ускорителе (рис. 48) электрон за одну секунду пролетает почти 300 000 км!

Главные выводы:

  1. При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
  2. Скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.
  3. При равномерном прямолинейном движении тела модуль перемещения равен пути, пройденному за тот же промежуток времени.
  4. Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Пример решения задачи:

Кинематический закон прямолинейного движения лодки но озеру вдоль оси Ох задан уравнением Равномерное прямолинейное движение в физике - формулы и определения с примерами где Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Определите: 1) проекцию скорости лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами 2) координату лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами в момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами 3) проекцию перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами лодки на ось Ох и путь, пройденный лодкой за время от момента Равномерное прямолинейное движение в физике - формулы и определения с примерами до момента Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение

Сделаем рисунок к задаче.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

По условию задачи координата лодки линейно зависит от времени. Значит, лодка движется равномерно. Сравнив Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами получимРавномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерами

Найдем Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из рисунка 49: проекция перемещенияРавномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Ответ: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графическое представление равномерного прямолинейного движения

Зависимости между различными величинами можно наглядно изобразить с помощью графиков. Использование графиков облегчает решение научных, практических задач и даже бытовых проблем.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Например, по графику зависимости температуры пациента от времени (рис. 50) видно, что на 5-е сутки температура достигла своего максимума, затем резко упала, а еще через сутки стала приближаться к норме. График дал наглядное представление о течении болезни.

В физике роль графиков чрезвычайно велика. Умение строить и читать графики помогает быстрее и глубже понять физические явления.

Рассмотрим простой пример из кинематики. Леша и Таня идут навстречу друг другу (рис. 51). Они движутся равномерно и прямолинейно. Модуль скорости Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами Как представить графически характеристики их движения?

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Выберем координатную ось Ох и зададим начальные положения участников движения (см. рис. 51). Пусть при Равномерное прямолинейное движение в физике - формулы и определения с примерами координата Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами

Построим графики зависимости проекции скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами проекции перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами пути S и координаты X от времени t.

График проекции скорости

Согласно условию и рисунку 52 для проекций скорости движения Тани и Леши на ось Ох получим: Равномерное прямолинейное движение в физике - формулы и определения с примерами Так как проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами постоянны, то графики их зависимости от времени t — прямые, параллельные оси времени (прямые I и II на рисунке 52).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики показывают: проекция скорости при равномерном прямолинейном движении с течением времени не изменяется.

График проекции перемещения

Проекция перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами совершенного за время t, определяется формулой Равномерное прямолинейное движение в физике - формулы и определения с примерами (см. § 6).

Зависимость проекции перемещения от времени для Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами График Равномерное прямолинейное движение в физике - формулы и определения с примерами — наклонная прямая I (рис. 53).

Для Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами График Равномерное прямолинейное движение в физике - формулы и определения с примерами — наклонная прямая II, изображенная на рисунке 53.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из графиков и формул следует, что при равномерном прямолинейном движении проекция перемещения прямо пропорциональна времени.

График пути

Путь — величина положительная при любом движении тела. При равномерном прямолинейном движении путь равен модулю перемещения: Равномерное прямолинейное движение в физике - формулы и определения с примерами Поэтому при Равномерное прямолинейное движение в физике - формулы и определения с примерами график пути совпадает с графиком проекции перемещения (прямая I), а при Равномерное прямолинейное движение в физике - формулы и определения с примерами график пути (прямая III) является «зеркальным отражением» графика II (проекции перемещения) от оси времени.

Графики пути показывают: при равномерном прямолинейном движении пройденный путь прямо пропорционален времени.

График координаты

Его называют также графиком движения.

По формуле Равномерное прямолинейное движение в физике - формулы и определения с примерами, используя данные из условия задачи и рисунок 51, находим зависимости координаты Равномерное прямолинейное движение в физике - формулы и определения с примерами Леши и Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани от времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами Графики этих зависимостей — прямые I и II на рисунке 54. Они параллельны соответствующим графикам проекций перемещения на рисунке 53.

Графики движения показывают: при равномерном прямолинейном движении координата тела линейно зависит от времени.

По точке пересечения графиков I и II (точке А) (рис. 54) легко найти момент и координату места встречи Леши и Тани. Определите их самостоятельно.

Что еще можно определить по графикам?

По графику проекции скорости можно найти проекцию перемещения и пройденный путь

Рассмотрим прямоугольник ABCD на рисунке 52. Его высота численно равна Равномерное прямолинейное движение в физике - формулы и определения с примерами а основание — времени t. Значит, площадь прямоугольника равна Равномерное прямолинейное движение в физике - формулы и определения с примерами Таким образом, проекция перемещения численно равна площади прямоугольника между графиком проекции скорости и осью времени. При Равномерное прямолинейное движение в физике - формулы и определения с примерами проекция перемещения отрицательна, и площадь надо брать со знаком «минус».

Докажите самостоятельно, что площадь между графиком проекции скорости и осью времени численно равна пройденному пути.

По углу наклона графика проекции перемещения можно оценить скорость движения

Рассмотрим треугольник АВС на рисунке 53. Чем больше угол наклона а графика проекции перемещения, тем больше скорость тела. Объясните это самостоятельно.

Главные выводы:

Для равномерного прямолинейного движения:

  1. График проекции скорости — прямая, параллельная оси времени.
  2. Графики проекции перемещения и координаты — прямые, наклон которых к оси времени определяется скоростью движения.
  3. Площадь фигуры между графиком проекции скорости и осью времени определяет проекцию перемещения.

Пример №1

Мотоциклист едет из города по прямолинейному участку шоссе с постоянной скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами Через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после проезда перекрестка он встречает едущего в город велосипедиста, движущегося равномерно со скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами Определите расстояние между участниками движения через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после их встречи, если Равномерное прямолинейное движение в физике - формулы и определения с примерами Запишите кинематические законы движения мотоциклиста и велосипедиста, постройте графики проекции и модуля скорости, проекции перемещения, координаты и пути для обоих участников движения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение

Изобразим координатную ось Ох, вдоль которой идет движение (рис. 55). Начало системы координат О свяжем с перекрестком.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

В начальный момент времени мотоциклист находился на перекрестке, а велосипедист в точке В. Значит, кинематический закон движения мотоциклиста имеет вид:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Найдем координату Равномерное прямолинейное движение в физике - формулы и определения с примерами велосипедиста в начальный момент времени. Пусть точка С на оси Ох — место встречи участников движения (рис. 56).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Тогда

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Кинематический закон движения велосипедиста имеет вид:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Расстояние между мотоциклистом и велосипедистом через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после их встречи равно сумме путей, которые они проделают за это время. Значит,

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Пример №2

Построим графики проекций и модулей скорости. Для мотоциклиста графики проекции скорости 1 и модуля скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами совпадают (рис. 56). Для велосипедиста график проекции скорости — прямая 2, а модуля скорости — прямая Равномерное прямолинейное движение в физике - формулы и определения с примерами Объясните причину несовпадения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графиками пути s, проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами и модуля перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами (рис. 57) будут прямые, выражающие прямую пропорциональную зависимость от времени t.

Для мотоциклиста:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики пути, модуля и проекции перемещения мотоциклиста совпадают (прямая 1).

Для велосипедиста:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Прямая 2 является графиком пути и модуля перемещения велосипедиста.  Прямая Равномерное прямолинейное движение в физике - формулы и определения с примерами — графиком проекции его перемещения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики координат представлены на рисунке 58. Они выражают зависимости Равномерное прямолинейное движение в физике - формулы и определения с примерами (прямая 1) и Равномерное прямолинейное движение в физике - формулы и определения с примерами (прямая 2). Точка А определяет время встречи и координату места встречи.

Ответ: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Прямолинейное равномерное движение и скорость

Из курса Физики VII класса вам известно, что равномерное прямолинейное движение является самым простым видом механического движения.

Прямолинейное равномерное движение — это движение по прямой линии, при котором материальная точка за равные промежутки времени совершает одинаковые перемещения.

При прямолинейном равномерном движении модуль и направление скорости с течением времени не изменяются:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость при прямолинейном равномерном движении является постоянной физической величиной, равной отношению перемещения материальной точки ко времени, за которое это перемещение было совершено: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как отношение Равномерное прямолинейное движение в физике - формулы и определения с примерами в формуле является положительной скалярной величиной, то направление вектора скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами совпадает с направлением вектора перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами Единица измерения скорости в СИ — метр в секунду:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами  известна, то можно определить перемещение s материальной точки за промежуток времени Равномерное прямолинейное движение в физике - формулы и определения с примерами при прямолинейном равномерном движении:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При прямолинейном равномерном движении пройденный телом путь равен модулю перемещения: 

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как уравнение в векторном виде можно заменить алгебраическими уравнениями в проекциях векторов, то для вычисления перемещения используют не формулу, выраженную через векторы, а формулу, содержащую в себе проекции векторов на координатные оси. При прямолинейном движении положение материальной точки определяется одной координатой X, определяются проекции векторов скорости и перемещения материальной точки на эту ось и уравнение решается в этих проекциях. Поэтому выражение (1.2) можно записать в проекциях перемещения и скорости на ось ОХ:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Можно получить формулу для вычисления координаты точки Равномерное прямолинейное движение в физике - формулы и определения с примерами в произвольный момент времени (см.: тема 1.2):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Выражение (1.5) является уравнением прямолинейного равномерного движения тела. Если материальная точка движется по направлению выбранной координатной оси ОХ, то проекция скорости считается положительной (b), если же движется против направления координатной оси, то проекция скорости считается отрицательной (с).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из формулы (1.5) определяется выражение для проекции скорости: 

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из формулы (1.6) становится ясным физический смысл скорости: проекция скорости на ось равна изменению проекции соответствующей координаты за единицу времени.

Пройденный путь и координата материальной точки при прямолинейном равномерном движении являются линейной функцией от времени (d). Скорость же является постоянной величиной, поэтому график скорость — время будет представлять собой линию, параллельную оси времени — скорость такого движения не зависит от времени (е):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

График координата-время при равномерном движении образует определенный угол с осью времени. Тангенс этого угла равен проекции (модулю) скорости по оси ох (f): Равномерное прямолинейное движение в физике - формулы и определения с примерами

Пример №3

Два велосипедиста одновременно начали движение навстречу друг другу вдоль прямой линии из пунктов А и В, расстояние между которыми 90 км. Скорость первого велосипедиста Равномерное прямолинейное движение в физике - формулы и определения с примерами скорость второго велосипедиста Равномерное прямолинейное движение в физике - формулы и определения с примерами (g)?

Определите: а) координату и время Равномерное прямолинейное движение в физике - формулы и определения с примерами встречи велосипедистов; b) пройденные велосипедистами пути и совершенные ими перемещения к моменту встречи; с) время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее с начала движения до момента, когда расстояние между ними стало 10 км.

Дано:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение:

a) При решении задачи соблюдается следующая последовательность действий: 

I действие. Выбирается система координат ОХ с началом координат в точке А и рисуется схема (h).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

II действие. Уравнение движения записывается в общем виде: Равномерное прямолинейное движение в физике - формулы и определения с примерами

III действие. На основании условия задачи уравнения движения велосипедистов записываются в общем виде: Равномерное прямолинейное движение в физике - формулы и определения с примерами

IV действие. Координаты велосипедистов при встрече равны: Равномерное прямолинейное движение в физике - формулы и определения с примерами Это равенство решается для Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

V действие. Для определения координат Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами встречи велосипедистов необходимо решить уравнения их движения для времени Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как Равномерное прямолинейное движение в физике - формулы и определения с примерами то Равномерное прямолинейное движение в физике - формулы и определения с примерами

b) Так как по условию задачи велосипедисты движутся прямолинейно и без изменения направления движения, то пройденный путь равен проекции (модулю) перемещения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

c) Время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее с начала движения до момента, когда между ними осталось 10 км, вычисляется по нижеприведенному равенству:

Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость при равнопеременном прямолинейном движении

Из формулы (1.14) видно, что если известны ускорение Равномерное прямолинейное движение в физике - формулы и определения с примерами и начальная скорость тела Равномерное прямолинейное движение в физике - формулы и определения с примерами то можно определить его скорость в любой момент времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

или ее проекцию на ось Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если начальная скорость равна нулю Равномерное прямолинейное движение в физике - формулы и определения с примерами то:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из этих выражений видно, что скорость при равнопеременном движении является линейной функцией от времени. График зависимости скорости от времени — прямая линия, проходящая через начало координат (или через Равномерное прямолинейное движение в физике - формулы и определения с примерами Эта линия, в соответствии с увеличением или уменьшением скорости, направлена вверх или вниз (с).

Перемещение при равнопеременном прямолинейном движении

Формулу для определения перемещения при равнопеременном движении можно вывести на основе графика скорость-время. Проекция перемещения равна площади фигуры между графиком Равномерное прямолинейное движение в физике - формулы и определения с примерами и осью времени.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

На приведенных графиках — это заштрихованная фигура трапеции (см: с):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

или в векторной форме:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если в последнюю формулу вместо Равномерное прямолинейное движение в физике - формулы и определения с примерами подставить выражение (1.18), то получим

обобщенную формулу перемещения для равнопеременного движения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Таким образом, формула проекции перемещения (например, на ось Равномерное прямолинейное движение в физике - формулы и определения с примерами при равнопеременном прямолинейном движении будет:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

а формула координаты:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

(1.23) является формулой перемещения при равнопеременном движении в векторной форме, а (1.24) и (1.25) обобщенными формулами координаты и проекции перемещения, соответственно. Если материальная точка начинает движение из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Как видно из формулы, проекция перемещения при прямолинейном равнопеременном движении пропорциональна квадрату времени Равномерное прямолинейное движение в физике - формулы и определения с примерами и его график представляет собой параболу, проходящую через начало координат (d).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

В некоторых случаях возникает необходимость определить перемещение материальной точки, не зная время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее от начала движения. Такую задачу можно решить тогда, когда известны ускорение, начальное и конечное значения скорости. Для получения этой формулы из выражения (1.19) получаем Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Это выражение подставляется в формулу (1.21):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

После простых преобразований получаем:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для проекции конечной скорости получаем: Равномерное прямолинейное движение в физике - формулы и определения с примерами Если движение начинается из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то проекции перемещения и скорости будут равны:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равноускоренное и равнозамедленное движения

Равнопеременное движение по характеру может быть или равноускоренным, или же равнозамедленным.

При равноускоренном движении векторы Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют одинаковые направления. В этом случае знаки у обеих проекций Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами или положительные, или же отрицательные. Если материальная точка начнет движение из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то независимо от направления движения, оно во всех случаях будет равноускоренным.

При равнозамедленном движении векторы Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют противоположные направления. В этом случае проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют противоположные знаки, если один из них отрицательный, то другой — положительный.

В таблице 1.3 даны формулы и соответствующие графики равноускоренного и равнозамедленного прямолинейного движения.

Таблица 1.3.

Прямолинейное равноускоренное движение
Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Примечание: так как Равномерное прямолинейное движение в физике - формулы и определения с примерами то отношение проекций перемещения равно отношению квадратов соответствующих промежутков времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Это соотношение иногда называется «правило путей».

Прямолинейное равнозамедленное движение
Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Кинематика прямолинейного движения

Физические величины бывают скалярные и векторные. Скалярные физические величины характеризуются только численным значением, тогда как векторные определяются и числом (модулем), и направлением. Скалярными физическими величинами являются время, температура, масса, векторными — скорость, ускорение, сила.
Мир вокруг нас непрерывно изменяется, или движется, т. е. можно сказать, что движение (изменение) есть способ существования материи.

Простейшая форма движения материи — механическое движение — заключается в изменении взаимного расположения тел или их частей в пространстве с течением времени. Наука, изучающая механическое движение, называется механикой (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамиподъемная машина).

Даже самое простое движение тела оказывается достаточно сложным для изучения и исследования. Соответственно, для того чтобы в сложном явлении «увидеть» главное, в физике строится его адекватная упрощенная модель.

В механике широко используется простейшая модель реального тела, называемая материальной точкой (МТ). Под материальной точкой понимают тело, размерами и формой которого можно пренебречь при описании данного движения. Хотя МТ представляет собой абстрактное понятие, упрощающее изучение многих физических явлений, она, подобно реальному телу, «имеет» массу, энергию и т. д.

Кроме материальной точки, в механике используется модель абсолютно твердого тела. Под абсолютно твердым телом понимают модель реального тела, в которой расстояние между его любыми двумя точками остается постоянным. Это означает, что размеры и форма абсолютно твердого тела не изменяются в процессе его движения. В противном случае говорят о модели деформируемого тела.

В классической (ньютоновской) механике рассматривается движение тел со скоростями, намного меньшими скорости света в вакуумеРавномерное прямолинейное движение в физике - формулы и определения с примерами
Классическая механика состоит из трех основных разделов: кинематики, динамики и статики. В кинематике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамидвижение) изучается механическое движение тел без учета их масс и действующих на них сил. В динамике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамисила) рассматривается влияние взаимодействия между телами на их движение. В статике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерами — искусство взвешивать) исследуются законы сложения сил и условия равновесия твердых, жидких и газообразных тел.

Всякое движение тела можно представить в виде двух основных видов движения — поступательного и вращательного.

Поступательным называется движение тела, при котором прямая, соединяющая в этом теле любые две точки, при перемещении остается параллельной самой себе (рис. 1).

Вращательным называется движение абсолютно твердого тела вокруг неподвижной прямой, называемой осью вращения, при котором все точки тела движутся по окружностям, центры которых лежат на этой оси (рис. 2).

Основными задачами кинематики являются:

описание совершаемого телом движения с помощью математических формул, графиков или таблиц;

определение кинематических характеристик движения (перемещения, скорости, ускорения).

Движение тела можно описать только относительно какого-либо другого тела. Тело, относительно которого рассматривается исследуемое движение, называют телом отсчета (ТО). Для описания движения используются формулы, графики и таблицы, выражающие зависимость координат, скоростей и ускорений от времени.

Основным свойством механического движения является его относительность: характер движения тела зависит от выбора системы отсчета (СО).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Систему отсчета, выбираемую для описания того или иного движения, образуют: тело отсчета, связанные с ним система координат (СК) и прибор для измерения времени (часы) (рис. 3).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Система координат и часы необходимы для того, чтобы знать, как с течением времени изменяется положение тела относительно выбранного тела отсчета.

Для описания движения материальной точки в пространстве вводятся такие понятия, как траектория, перемещение, путь.

Линию, которую описывает материальная точка в процессе движения по отношению к выбранной СО, называют траекторией (от латинского слова trajectorus относящийся к перемещению). Если траектория является прямой линией, то движение называется прямолинейным, в противном случае — криволинейным.

Длина участка траектории, пройденного МТ в процессе движения, называется путем (s).

Термин «скаляр», происходящий от латинского слова scalarus — ступенчатый, введен У. Гамильтоном в 1843 г.

Термин «вектор» произошел от латинского слова vector — несущий и введен У. Гамильтоном в 1845 г.
Перемещением называют вектор Равномерное прямолинейное движение в физике - формулы и определения с примерами направленный из точки, заданной радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами где МТ находилась в начальный момент времени, в точку, заданную радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами где МТ находится в рассматриваемый момент времени (рис. 4):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для количественного описания механического движения тел (МТ) вводятся физические величины, характеризующие пространство и время: длина l, время t.

Длина l определяется как расстояние между двумя точками в пространстве. Основной единицей длины в Международной системе единиц (СИ) является метр (1м).

Время t между двумя событиями в данной точке пространства определяется как разность показаний прибора для измерения времени, например часов. В основе работы прибора для измерения времени лежит строго периодический физический процесс. В СИ за основную единицу времени принята секунда (1с).
В зависимости от вида движения могут выбираться следующие системы координат: одномерная (на прямой линии) (рис. 5), двухмерная (на плоскости) (рис. 6), трехмерная (в пространстве) (рис. 7).

Равномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерами

Произвольное движение материальной точки может быть задано одним из трех способов: векторным, координатным, траекторным (естественным).

При векторном способе описания положение движущейся МТ по отношению к выбранной системе отсчета определяется ее радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами

Радиус-вектор Равномерное прямолинейное движение в физике - формулы и определения с примерами всегда проводится из начала координат О в текущее положение материальной точки (рис. 8). При движении положение МТ изменяется. Закон движения в этом случае задается векторным уравнением Равномерное прямолинейное движение в физике - формулы и определения с примерами
Равномерное прямолинейное движение в физике - формулы и определения с примерами
При координатном способе описания положение точки относительно СО определяется координатами х, у, z, а закон движения — уравнениями х = х(t), у = y(t), z = z(t) (см. рис. 8). Исключив из этих уравнений время /, можно найти уравнение траектории движения точки.

Траекторный (естественный) способ описания движения применяется, когда известна траектория движения материальной точки по отношению к выбранной СО (рис. 9).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Текущее положение материальной точки в данном случае определяется расстоянием s, измеренным вдоль траектории от выбранного на ней начала отсчета (точка О на рисунке 9). Кинематический закон движения МТ при этом задается уравнением s = s(t).

Если положить в основу классификации движений характер изменения скорости, то получим равномерные и неравномерные движения, а если вид траектории, то — прямолинейные и криволинейные.

Для того чтобы описать быстроту изменения положения тела (МТ) и направление движения относительно данной СО, используют векторную физическую величину, называемую скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами

Чтобы охарактеризовать неравномерное движение тела (МТ), вводят понятие средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами движения как отношение перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами тела к промежутку времени Равномерное прямолинейное движение в физике - формулы и определения с примерами за который это перемещение произошло (рис. 10):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами
 

Средней путевой скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами называется отношение длины отрезка пути As (см. рис. 9) к промежутку времени Равномерное прямолинейное движение в физике - формулы и определения с примерами его прохождения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Средняя путевая скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами в отличие от средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами является скалярной величиной.

Однако средняя скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами характеризует движение тела (МТ) на определенном участке траектории, но не дает информации о его движении в определенной точке траектории или в определенный момент времени. Кроме того, средняя скорость дает лишь приближенное понятие о характере движения, так как движение в течение каждого малого промежутка времени заменяется равномерным движением. В рамках этой модели скорость тела (МТ) меняется скачком при переходе от одного промежутка времени к другому.

Для того чтобы отразить характер движения в данной точке траектории или в данный момент времени, вводится понятие мгновенной скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами — это скорость тела (МТ), равная производной перемещения по времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Вектор мгновенной скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами в любой точке траектории направлен по касательной к ней (см. рис. 10).

В СИ основной единицей скорости является метр в секунду Равномерное прямолинейное движение в физике - формулы и определения с примерами

Простейший вид движения — равномерное. Равномерным называется движение МТ, при котором она за любые равные промежутки времени совершает одинаковые перемещения.

При прямолинейном движении в одном направлении модуль перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами равен пройденному пути s. Скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами равномерного движения равна отношению перемещения тела Равномерное прямолинейное движение в физике - формулы и определения с примерами ко времени Равномерное прямолинейное движение в физике - формулы и определения с примерами за которое это перемещение произошло:  

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При равномерном движении скорость постоянна Равномерное прямолинейное движение в физике - формулы и определения с примерами и равна средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами определяемой выражением (2).

Зависимость перемещения от времени имеет вид Равномерное прямолинейное движение в физике - формулы и определения с примерами Вследствие того, что Равномерное прямолинейное движение в физике - формулы и определения с примерами  — радиус-вектор, задающий положение МТ в начальный

момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами получаем кинематическое уравнение движения в векторном виде

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При проецировании радиус-вектора, например, на ось Ох получаем кинематическое уравнение для координаты при равномерном движении:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Здесь Равномерное прямолинейное движение в физике - формулы и определения с примерами — координата тела (МТ) в начальный момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Если начальный момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами уравнение принимает вид

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для наглядности описания механического движения удобно представлять зависимости между различными кинематическими величинами графически.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость МТ при равномерном движении постоянна, поэтому график зависимости проекции скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами от времени представляет собой отрезок прямой линии, параллельной оси времени Ot (рис. 11). Отрезок прямой l на рисунке 11 соответствует движению материальной точки в положительном направлении оси Равномерное прямолинейное движение в физике - формулы и определения с примерами а 2 — в отрицательном Равномерное прямолинейное движение в физике - формулы и определения с примерами Площади Равномерное прямолинейное движение в физике - формулы и определения с примерами закрашенных прямоугольников численно равны модулям перемещений МТ с проекциями скоростей Равномерное прямолинейное движение в физике - формулы и определения с примерами за промежуток времени Равномерное прямолинейное движение в физике - формулы и определения с примерами

График зависимости координаты материальной точки, движущейся равномерно прямолинейно, от времени x(t) — линейная функция (рис. 12).
На рисунке отрезок / прямой соответствует равномерному движению в положительном направлении оси Ох; отрезок 2 прямой — покою материальной точки; отрезок 3 прямой — равномерному движению в отрицательном направлении оси Ох.

Проекция скорости движения численно равна угловому коэффициенту этой прямой линии:  Равномерное прямолинейное движение в физике - формулы и определения с примерами

т. е. тангенсу угла наклона (tga) этой прямой к оси времени.

График зависимости пути (модуля перемещения|Равномерное прямолинейное движение в физике - формулы и определения с примерами от времени s(t) при равномерном движении представляет собой прямую линию, проходящую через начало координат (рис. 13).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Угловой коэффициент (tga) этой прямой численно равен модулю скорости движения v. Поэтому на рисунке большей скорости у, соответствует больший угловой коэффициент (tgРавномерное прямолинейное движение в физике - формулы и определения с примерами).

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Для тел (МТ), участвующих в нескольких движениях одновременно, справедлив принцип независимости движений:

если тело (МТ) участвует в нескольких движениях одновременно, то его результирующее перемещение равно векторной сумме перемещений за то же время в отдельных движениях:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Как следует из принципа независимости движений, конечное перемещение тела не зависит от порядка (последовательности) суммирования перемещений при отдельных движениях.

Пусть, например, при переправе через реку, скорость течения которой Равномерное прямолинейное движение в физике - формулы и определения с примерами мы движемся на лодке со скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами относительно воды. В этом случае результирующее перемещение Равномерное прямолинейное движение в физике - формулы и определения с примерами (рис. 14) лодки относительно берега будет складываться из собственного перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами относительно воды и перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами вместе с водой вследствие течения реки: Равномерное прямолинейное движение в физике - формулы и определения с примерами

  • Заказать решение задач по физике

На основе принципа независимости движений формулируется классический закон сложения скоростей:

результирующая скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами тела (МТ), участвующего в нескольких движениях одновременно, равна векторной сумме скоростей Равномерное прямолинейное движение в физике - формулы и определения с примерами отдельных движений (рис. 15):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Этот закон справедлив только при условии, что скорость каждого отдельного движения мала по сравнению со скоростью света Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так, для рассмотренного примера (см. рис. 14) результирующая скорость лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное движение по прямой линии в повседневной жизни встречается сравнительно редко. Например, различные транспортные средства (автомобиль, автобус, троллейбус и т. д.) равномерно и прямолинейно движутся лишь на небольших участках своего пути, в то время как на остальных участках их скорость изменяется как по величине, так и по направлению.

Для измерения мгновенной скорости движения на транспортных средствах устанавливается прибор — спидометр.

  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Ускорение в физике
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение

Вычисление перемещения по графику проекции скорости

Из кодификатора по физике, 2020.
«1.1.3. Вычисление перемещения по графику зависимости υ(t).»

Теория

Пусть задан график зависимости проекции скорости { v }_{ x } от времени t (рис. 1).

Проекция перемещении тела { s }_{ x } за промежуток времени от { t }_{ 1 } до { t }_{ 2 } численно равна по величине площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 } и { t }_{ 2 } (см. рис. 1, площадь выделена штриховкой).

Проекцию перемещения на ось 0Х будем считать:

положительной, если проекция скорости на данную ось будет положительной (тело движется по направлению оси) (см. рис. 1);

отрицательной, если проекция скорости на данную ось будет отрицательной (тело движется против оси) (рис. 2).

Путь s может быть только положительным:

Напоминаем формулы для расчета площадей фигур:

— прямоугольника – S=acdot b

— треугольника – S=frac { acdot h }{ 2 }

— трапеции – S=frac { a+b }{ 2 } cdot h

Задачи

Задача 1. По графику проекции скорости тела (рис. 3) определите проекцию его перемещения между 1 и 5 с.

Ответ: ____ м.

Решение. Проекция перемещения за промежуток времени Δt={ t }_{ 2 }{ t }_{ 1 }=5с–1с=4c численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=1 с и { t }_{ 2 }=5 с (рис. 4, площадь выделена штриховкой). Фигура ABCD — это трапеция, ее площадь равна

S=frac { a+b }{ 2 } cdot h=frac { AD+BC }{ 2 } cdot DC

где DC = Δt = 4 c, AD = 3 м/c, BC = 5 м/c. Тогда S = 16 м.
Проекция перемещения { s }_{ x }>0, т.к. проекция скорости { v }_{ x }>0.
{ s }_{ x }=S=16 м.

Ответ: 16.

Задача 2. Автомобиль движется по прямой улице вдоль оси X. На рисунке 5 представлен график зависимости проекции скорости автомобиля от времени. Определите путь, пройденный автомобилем в течение указанных интервалов времени.

Интервал времени Путь
от 0 до 10 с Ответ: м.
от 30 до 40 с Ответ: м.

В бланк ответов перенесите только числа, не разделяя их пробелом или другим знаком.

Решение. Путь за промежуток времени Δt = { t }_{ 2 }{ t }_{ 1 } численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 } и { t }_{ 2 }.

На интервале [0 с, 10 с] ищем площадь треугольника (рис. 6).

{ S }_{ 1 }=frac { acdot h }{ 2 },

где a = 20 м/c, h=triangle { t }_{ 1 }=10c-0c=10c. Тогда { S }_{ 1 }=100 м.

Путь равен значению площади (путь всегда положительный, т.е. s > 0).

{ s }_{ 1 }={ S }_{ 1 }=100 м.

На интервале [30 с, 40 с] ищем площадь трапеции (см. рис. 6).

{ S }_{ 2 }=frac { a+b }{ 2 } cdot h,

где a = 10 м/c, b = 15 м/c, h = Δt = 40 c – 30 с = 10 с. Тогда { s }_{ 2 }={ S }_{ 2 }=125 м.

Ответ: 100125.

Задача 3. Определите за первые 4 с (рис. 7):

а) проекцию перемещения тела;

б) пройденный путь.

Ответ: а) ____ м; б) ____ м.

Решение. Проекция перемещения за время triangle t={ t }_{ 2 }-{ t }_{ 1 }=4c-0=4c (пер-вые 4 с) численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=0 с и { t }_{ 2 }=4 с (рис. 8, площадь выделена штриховкой).

Так как при { t }_{ 0 }=3 с проекция скорости поменяла знак, то получили две фигуры, два треугольника, площади которых равны:

{ S }_{ 1 }=frac { { a }_{ 1 }cdot { h }_{ 1 } }{ 2 } ,quad { S }_{ 2 }=frac { { a }_{ 2 }cdot { h }_{ 2 } }{ 2 } ,

где

{ a }_{ 1 }=30quad м/с, quad { h }_{ 1 }=triangle { t }_{ 1 }=3c-0c=3c

{ a }_{ 2 }=|-10 м/c|=10 м/c, quad { h }_{ 2 }=triangle { t }_{ 2 }=4c-3c=1c.

Тогда { S }_{ 1 }=45м, quad { S }_{ 2 }=5м.

а) Проекция перемещения { s }_{ 1x }>0, т.к. проекция скорости { v }_{ 1x }>0; проекция перемещения { s }_{ 2x }<0, т.к. проекция скорости { v }_{ 2x }<0. В итоге получаем: { s }_{ x }={ s }_{ 1x }+{ s }_{ 2x }={ S }_{ 1 }-{ S }_{ 2 },quad { s }_{ 1x }=45м — 5м = 40 м. б) Путь равен значению площади (путь всегда положительный, т.е. s>0).

s={ S }_{ 1 }+{ S }_{ 2 }, s = 45 м + 5 м = 50 м.

Ответ: а) 40; б) 50.

Задача 4. График зависимости проекции скорости материальной точки, движущейся вдоль оси 0Х, от времени изображен на рисунке 9. Определите перемещение точки, которое она совершила за первые 6 с.

Ответ: ____ м.

Решение. Проекция перемещения за время triangle t={ t }_{ 2 }-{ t }_{ 1 }=6c-0=6c (пер-вые 6 с) численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=0 c и { t }_{ 2 }=6 c (рис. 10, площадь выделена штриховкой).

Так как при { t }_{ 01 }=2c и { t }_{ 02 }=4c проекция скорости меняет знак, то получили три фигуры, три треугольника, площади которых равны:

{ S }_{ 1 }=frac { { a }_{ 1 }cdot { h }_{ 1 } }{ 2 } ,quad { S }_{ 2 }=frac { { a }_{ 2 }cdot { h }_{ 2 } }{ 2 } ,quad { S }_{ 3 }=frac { { a }_{ 3 }cdot { h }_{ 3 } }{ 2 } ,

где

{ a }_{ 1 }=3 м/с, h_{ 1 }=triangle { t }_{ 1 }=2c-0c=2c

{ a }_{ 2 }=|-2 м/c| = 2 м/с, h_{ 2 }=triangle { t }_{ 2 }=4c-2c=2c

{ a }_{ 2 }=3м/c, h_{ 3 }=triangle { t }_{ 3 }=6c-4c=2c.

Тогда { S }_{ 1 }=3 м, { S }_{ 2 }=2 м, { S }_{ 3 }=3 м.

Проекция перемещения { s }_{ 1x }>0, т.к. проекция скорости { v }_{ 1x }>0.

Проекция перемещения { s }_{ 2x }<0, т.к. проекция скорости { v }_{ 2x }<0. Проекция перемещения { s }_{ 3x }>0, т.к. проекция скорости { v }_{ 3x }>0. В итоге получаем:

{ s }_{ x }={ s }_{ 1x }+{ s }_{ 2x }+{ s }_{ 3x }={ S }_{ 1 }-{ S }_{ 2 }+{ S }_{ 3 },quad { s }_{ x }= 3 м – 2 м + 3 м = 4 м.

Ответ: 4.

Задача 5. На рисунке приведен график зависимости v_x скорости тела от времени t.

Определите путь, пройденный телом в интервале времени от 0 до 5 с.

Ответ: ____ м.

Решение. Решение любых графических задач основывается на умении «читать» графики. В данной задаче рассматривается зависимость проекции скорости тела от времени. На интервале от 0 до 3с проекция скорости уменьшается от значения 15 м/с до 0. На интервале от 3 до 5с модуль проекции начинает возрастать от нулевого значения до 10 м/с. Причем важно «увидеть», что тело в этом временном интервале начинает движение в направлении, противоположном оси ОХ.

Пройденный путь будет определяться площадью геометрической фигуры, образованной под графиком проекции скорости.

Рис.1

Дальнейшее решение задачи сводится к нахождению площадей двух треугольников, заштрихованных на рис.1

S_1=frac{15cdot 3}{2}=22,5 (м).

S_2=frac{10cdot 2}{2}=10 (м).

Тогда, общий путь в интервале времени от 0 до 5с будет определяться суммой отдельных путей S_1 и S_2.

S_o = S_1+S_2
S_o = 22,5+10=32,5 (м).
Ответ: 32,5 м

По условию этой задачи можно поставить второй вопрос: найти проекцию перемещения в интервале времени от 0 до 5с.

В этом случае надо учесть, что проекция перемещения в интервале времени от 0 до 3 с положительная и её значение равно пройденному пути на этом интервале.

S_{1x}=S_1=22,5 (м).

В интервале времени от 3 с до 5 с проекция перемещения отрицательная, так как тело движется в направлении противоположном оси ОХ.

S_{2x}=-10 (м).

Проекция перемещения за весь интервал времени будет равна S_{o.x}=S_{1x}+S_{2x}
S_{o.x}=22,5+(-10)=12,5 (м).

Ответ: 12,5 м

Задача 6. На рисунке представлен график зависимости модуля скорости v прямолинейно движущегося тела от времени t. Определите по графику путь, пройденный телом в интервале времени от 1 до 5 с.


Ответ: ____ м.

Решение. Для нахождения пройденного пути в интервале времени от 1с до 5с необходимо рассчитать площадь геометрической фигуры под графиком модуля скорости.

Рис.1

Дальнейшее решение сводится к расчету площади трапеции, заштрихованной на графике (см. рис.1).

S=frac{4+2}{2}cdot 10=30 (м).

Особенностью подобной задачи является то, что при решении, необходимо внимательно отследить временной интервал, на котором требуется рассчитать пройденный путь.
Ответ: 30 м.

Задача 7. Из двух городов навстречу друг другу с постоянной скоростью двиижутся два автомобиля. На графике показана зависимость расстояния между автомобилями от времени. Скорость первого автомобиля равна 15 м/с. Какова скорость второго автомобиля?


Ответ: ____ м.

Решение. При движении навстречу друг к другу расстояние между двумя автомобилями уменьшается от значения 144 км до 0. На графике видно, что встреча автомобилей произошла в момент времени 60 минут, так как расстояние между автомобилями стало равным 0. Расчеты в этой задаче требуют обязательного применения системы «СИ».

144 км = 144000 м; 60 мин = 3600 с.
Используя эти данные, можно рассчитать скорость сближения автомобилей.

v=frac{144000}{3600}=40 м/с

Так как автомобили движутся навстречу друг другу, то v=v_1+v_2, отсюда скорость второго автомобиля можно выразить как v_2=v-v_1

v_2=40-15=25 (м/с)

Ответ: 25 м/с.

Задача 8. На рисунке представлен график зависимости модуля скорости тела от времени. Найдите путь, пройденный телом за время от момента времени 0 с до момента времени 5 с. (Ответ дайте в метрах.)


Ответ: ____ м.

Решение. Для нахождения пройденного пути необходимо рассчитать площадь геометрической фигуры (трапеции) под графиком модуля скорости (см.рис.1). Это относится к интервалу времени от 0 до 3 с. От 3 с до 5 с скорость тела равна 0, следовательно, тело находилось в состоянии покоя и пройденный путь в этом интервале равен 0.

Рис.1

S_1=frac{3+1}{2}cdot 10=20 (м).
S_2=0
S_o=20+0=20 (м).

Сакович А.Л., 2020

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Вычисление перемещения по графику проекции скорости» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Перемещение при равноускоренном движении. Уравнение координаты

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как, зная тормозной путь, определить начальную скорость автомобиля и как, зная характеристики движения, такие как начальная скорость, ускорение, время, определить перемещение автомобиля? Ответы мы получим после того, как познакомимся с темой сегодняшнего урока: «Перемещение при равноускоренном движении, зависимость координаты от времени при равноускоренном движении».

Перемещение и путь при равноускоренном прямолинейном движении

теория по физике 🧲 кинематика

Геометрический смысл перемещения заключается в том, что перемещение есть площадь фигуры, заключенной между графиком скорости, осью времени и прямыми, проведенными перпендикулярно к оси времени через точки, соответствующие времени начала и конца движения.

При равноускоренном прямолинейном движении перемещение определяется площадью трапеции, основаниями которой служат проекции начальной и конечной скорости тела, а ее боковыми сторонами — ось времени и график скорости соответственно. Поэтому перемещение (путь) можно вычислить по формуле:

Пример №1. По графику определить перемещение тела в момент времени t=3 с.

Перемещение есть площадь фигуры, ограниченной графиком скорости, осью времени и перпендикулярами, проведенными к ней. Поэтому в нашем случае:

Извлекаем из графика необходимые данные:

  • Фигура 1. Начальная скорость — 3 м/с. Конечная — 0 м/с. Время — 1,5 с.
  • Фигура 2. Начальная скорость — 0 м/с. Конечная — –3 м/с. Время — 1,5 с (3 с – 1,5 с).

Подставляем известные данные в формулу:

Перемещение равно 0, так как тело сначала проделало некоторый путь, а затем вернулось в исходное положение.

Варианты записи формулы перемещения

Конечная скорость движения тела часто неизвестна. Поэтому при решении задач вместо нее обычно подставляют эту формулу:

В итоге получается формула:

Если движение равнозамедленное, в формуле используется знак «–». Если движение равноускоренное, оставляется знак «+».

Если начальная скорость равна 0 (v0 = 0), эта формула принимает

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

Если неизвестно время движения, но известно ускорение, начальная и конечная скорости, то перемещение можно вычислить по формуле:

Пример №2. Найти тормозной путь автомобиля, который начал тормозить при скорости 72 км/ч. Торможение до полной остановки заняло 3 секунды. Модуль ускорения при этом составил 2 м/с.

Перемещение при разгоне и торможении тела

Все перечисленные выше формулы работают, если направление вектора ускорения и вектора скорости совпадают ( а ↑↑ v ). Если векторы имеют противоположное направление ( а ↑↓ v ), движение следует описывать в два этапа:

Этап торможения

Время торможения равно разности полного времени движения и времени второго этапа:

Когда тело тормозит, через некоторое время t1оно останавливается. Поэтому скорость в момент времени t1 равна 0:

При торможении перемещение s1 равно:

Этап разгона

Время разгона равно разности полного времени движения и времени первого этапа:

Тело начинает разгоняться сразу после преодоления нулевого значения скорости, которую можно считать начальной. Поэтому скорость в момент времени t2 равна:

При разгоне перемещение s2 равно:

При этом модуль перемещения в течение всего времени движения равен:

Полный путь (обозначим его l), пройденный телом за оба этапа, равен:

Пример №3. Мальчик пробежал из состояния покоя некоторое расстояние за 5 секунд с ускорением 1 м/с 2 . Затем он тормозил до полной остановки в течение 2 секунд с другим по модулю ускорением. Найти этот модуль ускорения, если его тормозной путь составил 3 метра.

В данном случае движение нужно разделить на два этапа, так как мальчик сначала разогнался, потом затормозил. Тормозной путь будет соответствовать второму этапу. Через него мы выразим ускорение:

Из первого этапа (разгона) можно выразить конечную скорость, которая послужит для второго этапа начальной скоростью:

Подставляем выраженные величины в формулу:

Перемещение в n-ную секунду прямолинейного равноускоренного движения

Иногда в механике встречаются задачи, когда нужно найти перемещение тела за определенный промежуток времени при условии, что тело начинало движение из состояния покоя. В таком случае перемещение определяется формулой:

За первую секунду тело переместится на расстояние, равное:

За вторую секунду тело переместится на расстояние, равное разности перемещения за 2 секунды и перемещения за 1 секунду:

За третью секунду тело переместится на расстояние, равное разности перемещения за 3 секунды и перемещения за 2 секунды:

Видно, что за каждую секунду тело проходит перемещение, кратное целому нечетному числу:

Из формул перемещений за 1, 2 и 3 секунду можно выявить закономерность: перемещение за n-ную секунду равно половине произведения модуля ускорения на (2n–1), где n — секунда, за которую мы ищем перемещение тела. Математически это записывается так:

Формула перемещения за n-ную секунду

Пример №4. Автомобиль разгоняется с ускорением 3 м/с 2. Найти его перемещение за 6 секунду.

Подставляем известные данные в формулу и получаем:

Таким же способом можно найти перемещение не за 1 секунду, а за некоторый промежуток времени: за 2, 3, 4 секунды и т. д. В этом случае используется формула:

где t — время одного промежутка, а n — порядковый номер этого промежутка.

Пример №5. Ягуар ринулся за добычей с ускорением 2,5 м/с 2 . Найти его перемещение за промежуток времени от 4 до 6 секунд включительно.

Время от 4 до 6 секунд включительно — это 3 секунды: 4-ая, 5-ая и 6-ая. Значит, промежуток времени составляет 3 секунды. До наступления этого промежутка успело пройти еще 3 секунды. Значит, время от 4 до 6 секунд — это второй по счету временной промежуток.

Подставляем известные данные в формулу:

Проекция и график перемещения

Проекция перемещения на ось ОХ. График перемещения — это график зависимости перемещения от времени. Графиком перемещения при равноускоренном движении является ветка параболы. График перемещения при равноускоренном движении, когда вектор скорости направлен в сторону оси ОХ ( v ↑↑OX), а вектора скорости и ускорения сонаправлены ( v ↑↑ a ), принимает следующий вид:

График перемещения при равнозамедленном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения противоположно ( v ↓↑ a ), принимает следующий вид:

Определение направления знака проекции ускорения по графику его перемещения:

  • Если ветви параболического графика смотрят вниз, проекция ускорения тела отрицательна.
  • Если ветви параболического графика смотрят вверх, проекция ускорения тела положительна.

Пример №6. Определить ускорение тела по графику его перемещения.

Перемещение тела в момент времени t=0 с соответствует нулю. Значит, ускорение можно выразить из формулы перемещения без начального ускорения. Получим:

Теперь возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 с. Этой точке соответствует перемещение 30 м. Подставляем известные данные в формулу и получаем:

График пути

График пути от времени в случае равноускоренного движения совпадает с графиком проекции перемещения, так как s = l.

В случае с равнозамедленным движением график пути представляет собой линию, поделенную на 2 части:

  • 1 часть — до момента, когда скорость тела принимает нулевое значение (v = 0). Эта часть графика является частью параболы от начала координат до ее вершины.
  • 2 часть — после момента, при котором скорость тела принимает нулевое значение (v = 0). Эта часть является ветвью такой же, но перевернутой параболы. Ее вершина совпадает с вершиной предыдущей параболы, но ее ветвь направлена вверх.

Такой вид графика (возрастающий) объясняется тем, что путь не может уменьшаться — он либо не меняется (в состоянии покоя), либо растет независимо от того, в каком направлении, с какой скоростью и с каким ускорением движется тело.

Пример №7. По графику пути от времени, соответствующему равноускоренному прямолинейному движению, определить ускорение тела.

При равноускоренном прямолинейном движении графиком пути является ветвь параболы. Поэтому наш график — красный. График пути при равноускоренном прямолинейном движении также совпадает с графиком проекции его ускорения. Поэтому для вычисления ускорения мы можем использовать эту формулу:

Для расчета возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 c. Ей соответствует путь, равный 5 м. Значит, перемещение тоже равно 5 м. Подставляем известные данные в формулу:

Тело массой 200 г движется вдоль оси Ох, при этом его координата изменяется во времени в соответствии с формулой х(t) = 10 + 5t – «>– 3t 2 (все величины выражены в СИ).

Установите соответствие между физическими величинами и формулами, выражающими их зависимости от времени в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

Алгоритм решения

Решение

Из условия задачи известна только масса тела: m = 200 г = 0,2 кг.

Так как тело движется вдоль оси Ox, уравнение движения тела при прямолинейном равноускоренном движении имеет вид:

x ( t ) = x 0 + v 0 t + a t 2 2 . .

Теперь мы можем выделить кинематические характеристики движения тела:

Перемещение тела определяется формулой:

s = v 0 t + a t 2 2 . .

Начальная координата не учитывается, так как это расстояние было уже пройдено до начала отсчета времени. Поэтому перемещение равно:

x ( t ) = v 0 t + a t 2 2 . . = 5 t − 3 t 2

Кинетическая энергия тела определяется формулой:

Скорость при прямолинейном равноускоренном движении равна:

v = v 0 + a t = 5 − 6 t

Поэтому кинетическая энергия тела равна:

E k = m ( 5 − 6 t ) 2 2 . . = 0 , 2 2 . . ( 5 − 6 t ) 2 = 0 , 1 ( 5 − 6 t ) 2

Следовательно, правильная последовательность цифр в ответе будет: 34.

pазбирался: Алиса Никитина | обсудить разбор | оценить

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.

Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

pазбирался: Алиса Никитина | обсудить разбор | оценить

pазбирался: Алиса Никитина | обсудить разбор | оценить

Алгоритм решения

  1. Охарактеризовать движение тела на различных участках графика.
  2. Выделить участки движения, над которыми нужно работать по условию задачи.
  3. Записать исходные данные.
  4. Записать формулу определения искомой величины.
  5. Произвести вычисления.

Решение

Весь график можно поделить на 3 участка:

  1. От t1 = 0 c до t2 = 10 с. В это время тело двигалось равноускоренно (с положительным ускорением).
  2. От t1 = 10 c до t2 = 30 с. В это время тело двигалось равномерно (с нулевым ускорением).
  3. От t1 = 30 c до t2 = 50 с. В это время тело двигалось равнозамедленно (с отрицательным ускорением).

По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:

  1. От t1 = 20 c до t2 = 30 с — с равномерным движением.
  2. От t1 = 30 c до t2 = 50 с — с равнозамедленным движением.
  • Для первого участка. Начальный момент времени t1 = 20 c. Конечный момент времени t2 = 30 с. Скорость (определяем по графику) — 10 м/с.
  • Для второго участка. Начальный момент времени t1 = 30 c. Конечный момент времени t2 = 50 с. Скорость определяем по графику. Начальная скорость — 10 м/с, конечная — 0 м/с.

Записываем формулу искомой величины:

s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.

s1и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:

Теперь рассчитаем пути s1и s2, а затем сложим их:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Путь и перемещение

При своем движении материальная точка описывает некоторую линию, которую называют ее траекторией движения. Траектория может быть прямой линией, а может представлять собой кривую.

Путь — длина участка траектории, который прошла материальная точка за рассматриваемый отрезок времени. Путь — это скалярная величина.

При прямолинейном движении в одном направлении пройденный путь ($Delta s$) равен модулю изменения координаты тела. Так, если тело двигалось по оси X, то путь можно найти как:

где $x_1$ — координата начального положения тела; $x_2$ — конечная координата тела.

Его можно вычислить, если известен модуль скорости ($v=v_x$):

[Delta s=vt left(2right),]

где $t$ — время движения тела.

Графиком, который отображает зависимость пути от времени при равномерном прямолинейном движении, является прямая (рис.1). С увеличением величины скорости увеличивается угол наклона прямой относительно оси времени.

Если по графику $Delta s(t)$ необходимо найти путь, который проделало тело за время $t_1$, то из точки $t_1$ на оси времени проводят перпендикуляр до пересечения с графиком $Delta s(t)$. Затем из точки пересечения восстанавливают перпендикуляр к оси $Delta s$. На пересечении оси и перпендикуляра получают точку $<Delta s>_1$, которая соответствует пройденному пути за время от $t=0 c$ до $t_1$.

Путь не бывает меньше нуля и не может уменьшаться при движении тела.

Перемещение

Перемещением называют вектор, который проводят из начального положения движущейся материальной точки в ее конечное положение:

[Delta overline=overlineleft(t+Delta tright)-overlineleft(tright)left(3right).]

Вектор перемещения численно равен расстоянию между конечной и начальной точками и направлен от начальной точки к конечной.

Приращение радиус-вектора материальной точки — это перемещение ($Delta overline$).

В декартовой системе координат радиус-вектор точки представляют в виде:

где $overline$, $overline$,$ overline$ — единичные орты осей X,Y,Z. Тогда $Delta overline$ равен:

[Delta overline=left[xleft(t+Delta tright)-xleft(tright)right]overline+left[yleft(t+?tright)-yleft(tright)right]overline+left[zleft(t+?tright)-zleft(tright)right]overlineleft(5right).]

При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и длина вектора перемещения равна пройденному точкой пути:

[left|Delta overlineright|=Delta s left(6right).]

Длину вектора перемещения (как и любого вектора) можно обозначать как $left|Delta overlineright|$ или просто $Delta r$ (без указания стрелки).

Если тело совершает несколько перемещений, то их можно складывать по правилам сложения векторов:

Если направление движения тела изменяется, то модуль вектора перемещения не равен пройденному телом пути.

Примеры задач на путь и перемещение

Задание: Мяч бросили вертикально вверх от поверхности Земли. Он долетел до высоты 20 м. и упал на Землю. Чему равен путь, который прошел мяч, каков модуль перемещения?

Решение: Сделаем рисунок.

В нашей задаче мяч движется прямолинейно сначала вверх, затем вниз. Так как путь — длина траектории, то получается, что мяч дважды прошел расстояние h, следовательно:

Перемещение — направленный отрезок, соединяющий начальную точку и конечную при движении тела, но тело начало движение из той же точки, в которую вернулось, следовательно, перемещение мяча равно нулю:

Ответ: $ Путь Delta s=2h$. Перемещение $Delta r=0$

Задание: В начальный момент времени тело находилось в точке с координатами $(x_0=3;; y_0=1)$(см). Через некоторый промежуток времени оно переместилось в точку координаты которой ($x=2;;y=4$) (см). Каковы проекции вектора перемещения на оси X и Y?

Решение: Сделаем рисунок.

Радиус — вектор начальной точки запишем как:

Радиус — вектор конечной точки имеет вид:

Вектор перемещения представим как:

Из формулы видим, что:

[Delta r_x=-1;;Delta r_y=3. ]

Ответ: $Delta r_x=-1;;Delta r_y=3 $

источники:

Рассмотрим поступательное движение. Когда тело движется поступательно, его координаты изменяются.

Прямолинейное движение – это когда тело движется по прямой. Прямую, вдоль которой движется тело, назовем осью Ox.

Будем отдельно рассматривать:

  • движение без ускорения (равномерное), и
  • движение с ускорением (неравномерное).

1). Равномерное движение — скорость тела остается одной и той же (т. е. не изменяется). При таком движении ускорения нет: (vec{a} =0).

2). Неравномерное движение — скорость меняется и появляется ускорение.

Пусть ускорение есть и, оно не изменяется: (vec{a} =const). Такое неравномерное движение называют равнопеременным. Чтобы уточнить, увеличивается ли скорость, или уменьшается, вместо слова «равнопеременное» говорят:

  • Равноускоренное движение — скорость тела увеличивается.
  • Равнозамедленное движение — скорость уменьшается.

Примечание: Когда изменяется скорость, всегда появляется ускорение!

Движение будем изображать графически, используя две перпендикулярные оси.

На графиках будем откладывать:

  • по горизонтали — время в секундах.
  • по вертикали — координаты тела, или проекции скорости и ускорения.

Для каждого вида движения получим три графика. Графики будем называть так:

  1. x(t) – зависимость координаты от времени;
  2. v(t) – зависимость проекции скорости от времени;
  3. a(t) – зависимость проекции ускорения от времени.

Прочитайте вначале, что такое проекция вектора на ось, это поможет лучше усвоить материал.

Тело покоится, его координата не меняется, а скорость и ускорение отсутствуют

Пусть тело покоится на оси Ox – (рис 1а).
Точкой (x_{0}) обозначена координата этого тела. Когда тело неподвижно, его координата не меняется. На графике неизменную координату обозначают горизонтальной линией, расположенной параллельно оси времени (рис. 1б).
[x=x_{0}]

Случаю, когда тело покоится – рис. а), соответствует горизонтальный график координаты x(t) – рис. б), скорость «v» – рис. в) и ускорение «a» – рис. г) лежат на оси времени

Рис.1. Тело покоится, график координаты x(t) — горизонтальная прямая рис. б).
Скорость «v» и ускорение «a» — это прямые, лежащие на оси Ox. График скорости – рис. в). График ускорения – рис. г)

Скорость и ускорение неподвижного тела равны нулю:

[vec{v}=0]

[vec{a}=0]

Из-за этого, графики скорости (рис. 1в) и ускорения (рис. 1г) – это горизонтальные линии, лежащие на оси t времени.

Скорость не меняется — движение равномерное

Разберём равномерное движение в направлении оси (рис. 2а).

Начальная координата тела – это точка (x_{0}), а конечная координата — точка (x) на  оси Ox. В точку «x» тело переместится к конечному времени «t».

Красной стрелкой обозначено направление, в котором тело движется.

 Примечание: Тело движется туда, куда направлен вектор его скорости.

Движению с постоянной скоростью вдоль оси Ox соответствует возрастающая прямая x(t) – рис а). Скорость не изменяется, поэтому график v(t) – горизонтальная прямая, а ускорение нулевое, его график г) лежит на оси времени

Рис.2. Тело движется равномерно в направлении оси Ox – рис а). Зависимость координаты от времени – это возрастающая прямая x(t) – рис. б). График скорости в) – это горизонтальная прямая, а график ускорения г) лежит на оси времени, так как ускорение равно нулю

Координата возрастает со временем, так как тело движется туда же, куда указывает ось. Поэтому график координаты от времени — это возрастающая прямая x(t) – рис. б).

Уравнение, описывающее изменение координаты выглядят так:

[ x  = x_{0} + v cdot t ]

Скорость на графике рис. в) изображена горизонтальной прямой линией, потому, что скорость остается одной и той же (не изменяется). Уравнение скорости записывается так:

[ v  = v_{0} = const ]

Ускорение рис. г) изображается прямой, лежащей на оси времени, так как ускорения нет. Математики посмотрят на такой график и скажут: «Ускорение равно нулю и не изменяется». Эту фразу они запишут формулой:

[ a = 0 ]

Равномерное движение в направлении противоположном оси

Пусть теперь тело движется с одной и той же скоростью в направлении, противоположном оси (рис. 3а).

Случаю, когда тело движется равномерно против оси Ox – рис. а), соответствуют убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Рис.3. Тело движется равномерно противоположно направлению оси Ox – рис. а). Такому движению соответствуют: убывающая зависимость координаты от времени – рис б), отрицательная проекция скорости на ось – рис. в) и, нулевое ускорение – рис. г)

Так как тело теперь движется против направления оси, то координата тела будет уменьшаться. График (рис 3б) координаты x(t) выглядит, как убывающая прямая линия.

Так как скорость не изменяется, то график v(t) – это горизонтальная прямая.

Тело движется против оси, его вектор скорости направлен противоположно оси Ox. Поэтому проекция скорости будет отрицательной (рис 3в) и на графике v(t) скорость — это горизонтальная прямая, лежащая ниже оси времени.

А график ускорения (рис 3г) лежит на оси времени, так как ускорение нулевое.

Равноускоренное движение в направлении оси, скорость увеличивается

Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.

Когда тело движется равноускорено по направлению оси Ox – рис. а), его координата изменяется параболически – рис. б), график скорости изображается возрастающей наклонной прямой – рис. в), проекция ускорения на ось Ox – это горизонтальный график рис. г)

Рис.4. Тело движется равноускорено – рис. а) по направлению оси Ox. Изменение координаты от времени x(t) описывается правой ветвью параболы – рис. б), график v(t) скорости изображен наклонной возрастающей прямой – рис. в), а график неизменного ускорения a(t) – рис. г) изображается горизонтальной прямой, лежащей выше оси времени

Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.

Уравнение, которое описывает квадратичное изменение координаты, выглядит так:

[ x = frac{a}{2}cdot t^{2} + v_{0} cdot t + x_{0} ]

Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:

[ v  = v_{0} + a cdot t ]

Ускорение есть (рис. 4г) и оно не меняется:

[ a = const ]

Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.

Примечания:

1). Координата «x» будет изменяться:

  • по линейному закону, когда скорость не меняется — остается одной и той же.
  • по квадратичному закону, когда скорость будет изменяться (расти, или убывать).

2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.

3). Квадратичный закон – это уравнение второй степени, на графике — парабола.

4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.

Равноускоренное движение против оси

Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).

Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).

Когда тело движется равноускорено против оси Ox – рис. а), его координата изменяется по правой ветви параболы – рис. б), график скорости - возрастающая в отрицательную область наклонная прямая – рис. в), горизонтальный график ускорения - рис. г) лежит ниже оси Ox

Рис.5. Тело движется равноускорено противоположно оси Ox – рис. а). Координата меняется параболически – рис. б), ветвь правая, так как скорость растет. Скорость — рис. в), и ускорение — рис. г), направлены против оси Ox, их графики лежат ниже оси времени

Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).

Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec{v}) и (vec{a}) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.

Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.

Скорость уменьшается — движение равнозамедленное

Когда скорость тела уменьшается с постоянным ускорением, движение называют равнозамедленным. Координата в этом случае изменяется по квадратичному закону. График координаты – это ветвь параболы. Когда скорость уменьшается, координату описываем с помощью левой ветви параболы, с вершиной вверху (рис. 6б).

Равнозамедленное движение по оси Ox – рис. а), координата тела изменяется по левой ветви параболы – рис. б), график скорости - убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения - рис. г) лежит ниже оси времени

Рис.6. Тело движется равнозамедленно по оси Ox – рис. а), его координата растет по левой ветви параболы – рис. б), график скорости — убывающая наклонная прямая – рис. в), ускорение направлено против оси Ox, горизонтальный график ускорения — рис. г) лежит ниже оси времени

Примечание: Чтобы скорость уменьшалась по модулю, нужно, чтобы векторы скорости и ускорения были направлены в противоположные стороны (ссылка).

Скорость уменьшается, при этом, скорость направлена по оси. Поэтому, график скорости – это убывающая прямая линия, лежащая выше оси времени (рис. 6в).

А ускорение есть, оно не изменяется и направлено против оси. Поэтому, ускорение отрицательное, его график – это горизонтальная прямая, лежащая ниже оси времени (рис. 6г).

Равнозамедленное движение против оси

Если тело будет двигаться против оси, замедляясь, то график координаты — это левая ветвь параболы, вершиной вниз (рис. 7б).

Скорость вначале была большой, но так как тело замедляется, она падает до нуля. Но тело двигается против оси Ox, поэтому график скорости лежит ниже оси времени (рис. 7в).

Равнозамедленное движение против оси. Координата убывает по левой ветви параболы – рис. б), отрицательная скорость падает к нулю, график скорости - наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения - рис. г) лежит выше оси времени

Рис.7. Тело движется равнозамедлено против оси Ox – рис. а), его координата убывает по левой ветви параболы – рис. б), скорость отрицательная и уменьшается к нулю, график скорости — наклонная прямая – рис. в), ускорение направлено по оси Ox, горизонтальный график ускорения — рис. г) лежит выше оси времени

Скорость отрицательная. А чтобы она уменьшалась, нужно, чтобы ускорение было направлено противоположно скорости. Поэтому ускорение будет положительным. Значит, график ускорения будет лежать выше оси времени. Так как ускорение не меняется, то его график изображен горизонтальной прямой линией (рис. 7г).

Примечание: Можно вычислить перемещение тела по графику скорости v(t), не пользуясь для этого графиком функции x(t) для координат тела.

Выводы

1). Все, что лежит:

  • выше оси t – положительное;
  • ниже оси t – отрицательное;
  • на горизонтальной оси t – равно нулю.

2). Когда ускорение, или скорость направлены против оси, они будут отрицательными, т. е. будут лежать ниже горизонтальной оси t. Если график ускорения лежит на горизонтальной оси, то ускорение отсутствует (т. е. равно нулю, нулевое).

3). Если скорость не меняется, ускорения нет.

  • График x(t) координаты – это прямая линия.
  • График v(t) скорости – горизонтальная прямая.
  • График a(t) ускорения лежит на оси t.

4). Если скорость растет, ускорение и скорость направлены в одну и ту же сторону.

  • График x(t) координаты – это правая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

5). Если скорость уменьшается, ускорение и скорость направлены в противоположные стороны.

  • График x(t) координаты – это левая ветвь параболы.
  • График v(t) скорости – наклонная прямая.
  • График a(t) ускорения – горизонтальная прямая.

Понравилась статья? Поделить с друзьями:
  • Как составить график выплат для банка
  • Как найти трубку сцепления
  • Как найти печать в яндекс
  • Как найти котика геншин
  • Сдан отчет фсс как исправить ошибки