Как найти промежутки монотонности функции через производную

Содержание:

  • Монотонность функции, основные понятия и определения
  • Связь монотонности функции с ее производной

Монотонность функции, основные понятия и определения

Определение

Функция $y=f(x)$ называется строго возрастающей на
промежутке
, если большему значению аргумента из этого промежутка соответствует большее значение функции, т.е.

$f(x) uparrow : x_{1} lt x_{2} Rightarrow fleft(x_{1}right) lt fleft(x_{2}right)$

Пример

Функция $y=x^{2}$ является возрастающей на промежутке
$[0 ; 1]$, так как:

для $0 lt 1 : f(0)=0^{2}=0 lt f(1)=1^{2}=1$

Определение

Функция $f(x)$ называется строго убывающей на
промежутке
, если большему значению аргумента из этого промежутка соответствует меньшее значение функции, т.е.

$f(x) downarrow : x_{1} lt x_{2} Rightarrow fleft(x_{1}right)>fleft(x_{2}right)$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Функция $y=x^{2}$ является строго убывающей на
промежутке $[-1 ; 0]$, так как:

для $-1 lt 0 : f(-1)=(-1)^{2}=1>f(0)=0^{2}=0$

Функция $y=f(x)$ строго возрастающая или строго убывающая
на промежутке называется монотонной на этом промежутке.

Определение

Функция $y=f(x)$ называется неубывающей на промежутке,
если из неравенства $x_{1} lt x_{2}$ следует неравенство
$fleft(x_{1}right) leq fleft(x_{2}right)$.

Функция $y=f(x)$ называется невозрастающей на
промежутке
, если из неравенства $x_{1} lt x_{2}$ следует
неравенство $fleft(x_{1}right) geq fleft(x_{2}right)$.

Связь монотонности функции с ее производной

Теорема

(Об условии возрастания/убывания монотонной функции)

Если производная функции $f^{prime}(x)>0$ на некотором
промежутке $X$, то функция
$y=f(x)$ возрастает на этом промежутке; если же
$f^{prime}(x) lt 0$ на промежутке
$X$, то функция
$y=f(x)$ убывает на этом промежутке.

Замечание

Обратное утверждение формулируется несколько иначе. Если функция возрастает на промежутке, то
$f^{prime}left(x_{0}right) geq 0$ или не существует.

Пример

Задание. Исследовать функцию $y=x^{3}$ на монотонность на всей числовой прямой.

Решение. Найдем производную заданной функции:

$y^{prime}=left(x^{3}right)^{prime}=3 x^{2}$

Для любого действительного $x$:
$y^{prime}(x)=3 x^{2} geq 0$, а поэтому делаем вывод, что заданная функция
возрастает на всей действительной оси.

Ответ. Функция $y=x^{3}$ возрастает на всей действительной оси.

Читать дальше: понятие экстремума функции.

Применение
производной в исследовании функций.

§1. Возрастание
и убывание функций.

Теорема (критерий
монотонности дифференцируемой функции).
Пусть функция

непрерывна
на промежутке

и дифференцируема во всех его внутренних
точках. Тогда:

— для монотонного
возрастания функции необходимо и
достаточно, чтобы в
0;

— для монотонного
убывания функции необходимо и достаточно,
чтобы в (а,в)
0;

— для постоянности
функции необходимо и достаточно, чтобы
в (а,в)

=0.

Док-во.
Докажем достаточность для возрастающей
функции. Выберем произвольно точки
.
По теореме Лагранжа найдется точка
,
такая что
.
Т.к. оба множителя в правой части
неотрицательны, то
,
т.е.
.
Следовательно, функция является монотонно
возрастающей.

Докажем необходимость
для возрастающей функции. Пусть f(x)
– монотонно
возрастает. Тогда
,
следовательно

в (а,в).

Для убывающей
функции доказательства аналогичны.

Докажем необходимость
для постоянной функции. Если f(x)=const
в (а,в),
то
.

Докажем достаточность
для постоянной функции. Пусть

в (a,b).
Тогда тем более

в (a,b).
Тогда по доказанному выше функция
монотонно возрастает в (a,b),
т.е.
.
С другой стороны, если

в (a,b),
то тем более

в (a,b).
Тогда по доказанному выше функция
монотонно убывает в (a,b),
т.е.
.
Одновременное выполнение этих условий
возможно лишь при
.▲

Пример.
Найти промежутки монотонности функции

.

Найдем производную
.
Очевидно, что при

производная
,
функция является возрастающей. При

производная
,
функция убывает.

§2.
Экстремумы функции.

Пусть функция

задана на интервале
.

Опр.
Точка

называется точкой локального максимума
функции f(x),
если в некоторой ее окрестности
выполняется условие:
.

Опр.
Точка

называется точкой локального минимума
функции f(x),
если в некоторой ее окрестности
выполняется условие:
.

Значения функции
в точках локального минимума и максимума
называют минимумом и максимумом функции.
Минимум и максимум функции объединяют
в понятие «экстремум функции»

(extr
f).

Отметить
отличия локального и глобального
экстремумов.

Теорема (необходимое
условие локального экстремума).
Если
дифференцируемая
функция
имеет экстремум в точке
,
то ее производная в этой точке равна
нулю:.

Док-во. Если

— точка экстремума дифференцируемой
функции, то существует некоторая
окрестность этой точки, в которой
выполнены условия теоремы Ферма. Тогда
ее производная
.

Замечание.
Функция может иметь экстремум и в точках,
в которых она не дифференцируема (если
эти точки входят в область определения).
Например, функция

имеет экстремум в точке х=0,
но не дифференцируема в ней.

Точки, в которых
производная равна нулю или не существует,
называются стационарными
или критическими
точками. Из теоремы следует, что точки
локального экстремума функции являются
ее критическими точками. Обратное
утверждение неверно. Например, функция


имеет неотрицательную производную,
т.е. возрастает на всей числовой оси,
следовательно не имеет точек экстремума.
В то же время,

является ее критической точкой.

Теорема
(достаточное условие локального
экстремума).
Если
при переходе через критическую точку

производная дифференцируемой функции
меняет знак с «+» на «-», то

— точка локального максимума, если с «-»
на «+», то

— точка локального минимума.

Док-во. В соответствии
с достаточным условием монотонности,
функция возрастает слева от

и убывает справа, тогда в силу непрерывности
функции,

является точкой максимума. Аналогичные
рассуждения для минимума.

Замечание.
Если при переходе через критическую
точку производная не меняет знак, то в
этой точке экстремума функции нет.

Теорема
(2 достаточное условие локального
экстремума)
.
Для того, чтобы функция имела локальный
максимум (минимум) в критической точке
,
достаточно, чтобы в некоторой окрестности
этой точки существовала непрерывная
вторая производная и

().

(без док-ва).

Пример. Найти
экстремумы функции;

Ее производная:.

Определим критические
точки:
,


— критические точки.

Определим знак
производной в окрестностях критических
точек.


— точка минимума,

— минимум функции;


— точка максимума,

— максимум функции.

§3. Наибольшее и
наименьшее значения функции на отрезке
.

При решении
прикладных задач бывает нужно найти
глобальные экстремумы функции на
некотором промежутке. Если этот промежуток
является отрезком, то экстремумы функция
может достигать как в точках экстремума,
так и на концах отрезка.

Пример.
Найти наибольшее значение функции

на отрезке
.

Решение.
Данная функция является непрерывной
на данном отрезке (т.к. знаменатель не
обращается в нуль), а следовательно,
может принимать экстремальные значения
либо в точках экстремума, либо на концах
отрезка. Вычислим производную:

.
Тогда критическими точками являются
точки х=0 и
х=-2.
Данному отрезку принадлежит только
точка х=0.
Вычислим значения функции в точке
экстремума и на концах отрезка:

,
,
.
Сравнивая эти значения, заключаем, что
наибольшее значение функции достигается
в точке х=0.

§4. Выпуклость
функции. Точки перегиба.

Опр. Функция
называется выпуклой вверх (выпуклой)
на промежутке Х, если
.
График выпуклой на промежутке Х функции
расположен над любой ее секущей (и под
любой ее касательной) на этом промежутке.

Аналогично вводится
определение функции, выпуклой вниз
(вогнутой).

выпуклая
(вверх)
вогнутая
(выпуклая вниз)

Теорема (критерий
выпуклости функции)
.
Пусть функция

дифференцируема в интервале (а,в).
Тогда для выпуклости функции вниз
необходимо и достаточно, чтобы

монотонно возрастала на этом интервале.
Для выпуклости функции вверх необходимо
и достаточно, чтобы

монотонно убывала на этом интервале.

Следствие
(достаточное условие выпуклости)
.
Если вторая производная дважды
дифференцируемой функции неотрицательна
(неположительна) внутри некоторого
промежутка, то функция выпукла вниз
(вверх) на этом промежутке.

Опр.
Точки, в которых график функции меняет
направление выпуклости, называются
точками перегиба графика функции.

Абсциссы точек
перегиба являются точками экстремума
первой производной.

Теорема (необходимое
условие точки перегиба
).
Вторая производная дважды дифференцируемой
функции в точке перегиба равна нулю:
.

Абсциссы точек, в
которых выполняется необходимое условие,
называются критическими
точками второго рода
.
Если перегиб графика есть, то только в
таких точках.

Теорема (достаточное
условие точки перегиба).
Пусть

— дважды дифференцируема в интервале
(а,в).
Тогда если вторая производная при
переходе через критическую точку второго
рода

меняет знак, то точка
является
точкой перегиба графика функции.

Замечание.
Если смены знака второй производной не
происходит, то перегиба графика в точке
нет.

Пример.
,
;

— точка перегиба.

Итак, чтобы найти
интервалы выпуклости функции, нужно:

1. Найти вторую
производную функции.

2. Найти точки, в
которых

или не существует.

3. Исследовать знак
второй производной слева и справа от
найденных точек и сделать вывод о
направлении выпуклости и точках перегиба
на основании достаточных условий.

§5. Асимптоты
графика функции.

Графики некоторых
функций расположены на плоскости так,
что при неограниченном удалении от
начала координат они неограниченно
приближаются к некоторым прямым, но не
пересекают их. Такие прямые называются
асимптотами функции.

Асимптоты могут
быть горизонтальными, вертикальными,
наклонными.


Прямая y=a
называется
горизонтальной асимптотой к графику
функции y=f(x),
если существует конечный предел
.

Прямая x=b
называется вертикальной асимптотой к
графику функции y=f(x),
если существует конечный предел
.

Вертикальные
асимптоты следует искать в точках
разрыва функции или на концах области
определения.

Если у функции нет
горизонтальных асимптот, то, возможно,
есть наклонные.

Наклонная асимптота
к графику функции существует в том
случае, когда существуют конечные числа
к
и в,
вычисляемые по формулам:

,

.
Тогда наклонная асимптота задается
уравнением y=kx+b.
Если хотя бы одно из чисел к
и в
несобственное, то наклонных асимптот
у графика функции нет.

§6. Общая схема
исследования функции.

I.
1. Область определения.

2. Точки
пересечения с осями координат.

3. Четность.

4. Периодичность.

5. непрерывность.

6. Асимптоты.

II.
7. Монотонность.

8. Точки
экстремума, экстремумы.

III.
9. Направления выпуклости.

10. Точки перегиба
графика.

IV.11.
Дополнительные точки.

12. Построение
графика.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Лекция 4. Применение производной к исследованию функций и построению графиков.

План

1. Возрастание и
убывание функции.

2. Экстремумы
функции.

3. Схема исследования функции и построения её
графика с помощью производной.

4. Решение задач

 (Учебник: Ш.А.
Алимов Алгебра и начала математического анализа 10-11 класс глава
IX §49, §50, §51, стр. 261-264, стр. 265-269, стр. 271-275)

1. Возрастание и
убывание функции.

Производная широко
используется для исследования функций, т.е. для изучения различных свойств
функций. Например, с помощью производной можно находить промежутки возрастания
и убывания функции, её наибольшее и наименьшее значения.

Рассмотрим применение
производной к нахождению промежутков возрастания и убывания функций
.

Пусть значения
производной функции
 положительны на некотором промежутке, т.е. . Тогда угловой коэффициент касательной  к графику этой функции в каждой точке данного промежутка положителен.
Это означает, что касательная образует острый угол с осью
Ox, и поэтому график функции на этом промежутке «поднимается», т.е.
функция
 возрастает (рис.120).

Если  на некотором промежутке, то угловой коэффициент касательной   к графику функции  отрицателен.

Это означает, что
касательная образует тупой угол с осью
Ox, и поэтому
график функции на этом промежутке «опускается», т.е. функция
 убывает (рис. 121).

Итак, если  на промежутке, то функция возрастает на этом промежутке.

Если  на промежутке, то функция убывает на этом промежутке.

При доказательстве
теорем о достаточных условиях возрастания или убывания функции используется теорема
Лагранжа
.

Теорема Лагранжа. Если функция  непрерывна на отрезке [a;b]
и дифференцируема на интервале (
a;b),
то существует точка
 такая, что .                 (1)

Доказательство
формулы (1) приводится в курсе высшей математики. Поясним геометрический смысл
этой формулы.

Проведём через
точки
 и  графика функции  прямую l и назовём эту прямую секущей. Угловой
коэффициент секущей равен
.

Запишем формулу (1)
в виде
.           (2)

Согласно формуле
(2) угловой коэффициент касательной к графику функции
 в точке C  с абсциссой c
(рис. 122) равен угловому коэффициенту секущей
l, т.е. на
интервале (
a;b) найдётся такая точка c, что в точке графика с абсциссой c касательная к
графику функции
 параллельна секущей. Сформулируем с помощью теоремы Лагранжа теорему
о достаточном условии возрастания функции
.

Теорема 2. Если
функция
 дифференцируема на интервале (a;b) и  для всех , то функция возрастает на интервале (a;b).

Пример 1.

Доказать, что
функция
 возрастает на промежутке .

Доказательство:

Найдём производную:
.

Если , и поэтому данная функция возрастает на промежутке .

Промежутки
возрастания и убывания функции часто называют промежутками монотонности
этой функции.

Правило
нахождения интервалов монотонности функции
.

1. Находят
производную
 данной функции.

2. Находят точки, в
которых
 равна нулю или не существует, т.е. критические точки функции.

3. Найденными
точками область определения функции 
 разбивается на интервалы, на каждом из которых производная  сохраняет свой знак. Эти интервалы являются интервалами монотонности
(т.е. критические точки отмечаем на числовой прямой и определяем знак
производной в каждом интервале, подставив соответствующее значение
xв формулу производной).

4. Исследуют знак  на каждом из найденных интервалов.

Если на
рассматриваемом интервале
, то на этом интервале   возрастает;

если же , то на таком интервале  убывает.

Пример 2.

Найти
интервалы монотонности функции
.

Решение

Найдем производную:
.

Решая неравенство , т.е. неравенство  , находим интервалы возрастания: .

Решая неравенство , т.е. неравенство , находим интервал убывания .

Ответ: возрастает;

убывает.

График функции  изображен на рисунке 123. Из этого рисунка видно, что функция  возрастает не только на интервалах , но и на промежутках ; убывает не только на интервале , но и на отрезке .

2. Экстремумы
функции.

На рисунке 123
изображён график функции
. Рассмотрим окрестность точки x = 0, т.е.
некоторый интервал, содержащий эту точку. Как видно из рисунка, существует
такая окрестность точки
x = 0, что наибольшее значение
функция
 в этой окрестности принимает в точке  x = 0.
Например, на интервале (-1; 1) наибольшее значение, равное 0, функция принимает
в точке
x = 0. Точку x = 0 называют
точкой максимума этой функции.

Аналогично точку x = 2 называют точкой минимума функции , так как функции в этой точке меньше её значения в любой точке
некоторой окрестности точки
x = 2, например окрестности
(1,5; 2,5).

Точка  называетсяточкой максимума функции, если существует такая окрестность точки , что для всех  из этой окрестности выполняется неравенство .

Например, точка  является точкой максимума функции , так как  и при всех значения  верно неравенство  (рис. 124).

Точка  называетсяточкой минимума функции, если существует такая окрестность точки , что для всех  из этой окрестности выполняется неравенство .

Например, точка  является точкой минимума функции , так как  при всех значениях  (рис. 125).

Точки минимума и
точки максимума называются точками экстремума. Экстремум
значение функции в этих точках.

Рассмотрим функцию , которая определена в некоторой окрестности точки  и имеет производную в этой точке.

Теорема. Если — точка экстремума дифференцируемой функции , то .

Это утверждение
называют теоремой Ферма.

Теорема Ферма имеет наглядный геометрический смысл: касательная к
графику функции
 в точке , где  — точка экстремума функции , параллельна оси абсцисс, и поэтому её угловой коэффициент равен нулю (рис. 126).

Например, функция  (рис.124) имеет в точке  максимум, её производная . Функция  имеет минимум в точке  (рис. 125), .

Отметим, что если , то этого недостаточно, чтобы утверждать, что  обязательно точка экстремума функции .

Например, если . Однако точка x = 0 не является точкой
экстремума, так как функция
 возрастает на всей числовой оси (рис. 127).

Итак, точки
экстремума дифференцируемой функции нужно искать только среди корней уравнения
, но не всегда корень этого уравнения является точкой экстремума.
Точки, в которых производная функции равна нулю, называют стационарными.

Заметим, что
функция может иметь экстремум и в точке, где эта функция не имеет производной.
Например,
x = 0 – точка минимума функции  не существует. Точки, в которых функция имеет производную, равную
нулю, или недифференцируема, называют критическими точками этой функции.

Таким образом, для
того чтобы точка
 была точкой экстремума функции , необходимо, чтобы эта точка была критической точкой данной функции.
Приведём достаточные условия того, что стационарная точка является точкой
экстремума, т.е. условия, при выполнении которых стационарная точка есть точка
максимума или минимума функции.

Теорема. Пусть функция  дифференцируема на интервале (a; b), , и .

Тогда:

1) если при переходе через стационарную точку  функции  её производная меняет знак с «плюса» на «минус», т.е.  слева от точки  и  справа от точки , то  — точка максимума функции  (рис. 128);

2) если при переходе через стационарную точку  функции  её производная меняет знак с «минуса» на «плюс»,  то  — точка минимума функции  (рис. 129);

Если же  не меняет знак  в окрестности точки , то данная функция не имеет экстремума в точке .

Правило
нахождения экстремумов функции
.

1. Находят
производную
 данной функции.

2. Находят все
критические точки из области определения функции.

3. Устанавливают
знаки производной функции при переходе через критические точки и выписывают
точки экстремума.

4. Вычисляют
значения функции
 в каждой точке экстремума.

Пример 3

Найти точки
экстремума функции
.

Решение

1. Найдём
производную:

2. Найдём все
критические точки из области определения функции. Решим уравнение
. .

3. Установим знаки производной функции при переходе через критические
точки и выпишем точки экстремума.
Для этого отметим полученные
значения на числовой прямой. Точки
 и  разделили область определения функции  на три интервала. Вычислим знак производной в каждом из этих
интервалов:

;

;

.

рис 1.JPG

Так как при
переходе через точку
 знак производной не меняется, то эта точка не является точкой
экстремума.

При переходе через
точку
 производная меняет знак с «-» на «+». Поэтому  — точка минимума.

Ответ: — точка минимума.

Пример 4

Найти точки
экстремума функции
 и значения функции в этих точках.

Решение

1. Найдём
производную:
.

2. Найдём
критические точки.

или      – не существует

.

3. Установим знаки производной функции при переходе через критические
точки и выпишем точки экстремума. Для этого о
тметим
полученные значения на числовой прямой. Точки
 и  разделили область определения функции  на три интервала. Вычислим знак производной в каждом из этих
интервалов:

;

;

.

рис 2.JPG

При переходе через
точку
 производная меняет знак с «+» на «-». Поэтому  — точка максимума. При переходе через точку  производная меняет знак с «-» на «+», поэтому  — точка минимума.

4. Вычислим значения функции  в каждой точке экстремума.

Значение функции в
точке максимума равно
, а в точке минимума
.

Ответ: — максимум, . – минимум.

3. Схема
исследования функции и построения её графика с помощью производной.

Примерная
схема исследования функции:

1. Найти область
определения функции (если возможно, то множество значений).

2. Выяснить, не
является ли функция чётной, нечётной, периодической.

3. Найти точки
пересечения графика функции с осями координат (если это не вызывает
затруднений).

4. Найти асимптоты
графика функции (если это необходимо, только для функций, которые имеют точки
разрыва, т.е. не являются непрерывными).

5. Найти промежутки
монотонности функции и её экстремумы.

6*. Найти
промежутки выпуклости графика функции и точки перегиба (применение производной
второго порядка).

7. Вычислить
координаты дополнительных точек (если это необходимо).

В зависимости от
сложности функции некоторые пункты данной схемы могут быть пропущены.

Пример 5

Построить график
функции
.

Решение

1.

2. Исследуем на
чётность:
. Функция не является ни чётной, ни нечетной, т.е. общего вида.

3. Пересечение с
осью
Ox: ,

. Таким образом, получили две точки .

Пересечение с осью Oy: .

4. С помощью
производной найдём промежутки монотонности этой функции и её точки экстремума.

Производная равна . Найдем стационарные точки: ,

откуда .

Для определения
знака производной разложим квадратный трёхчлен
 на множители: .

Производная
положительна на промежутках
, следовательно, на этих промежутках функция возрастает.

При  производная отрицательна, следовательно, на интервале  функция убывает.

Точка  является точкой максимума, так как слева от этой точки функция
возрастает, а справа убывает. Значение функции в этой точке равно
.

Точка  является точкой минимума, так как слева от этой точки функция убывает,
а справа возрастает; её значение в точке минимума равняется
.

Результаты
исследования представим в следующей таблице:

5.
Для более точного построения графика найдём значения функции ещё в двух точках:

.

Используя
результаты исследования, построим график функции
(рис. 132).

Пример 6. Исследуйте и постройте графики функций:

а) ;б).

План исследования

Применение

плана

шага

Функции

а)

б)

1

Находим область
определения функции

, ,

2

Исследуем функцию
на четность, нечетность

функция ни четная, ни
нечетная

функция четная

3

 

Находим нули
(корни) функции и промежутки её знакопостоянства

,

,

, — нуль функции

,

— нуль функции

4

Находим производную
функции и её критические точки

,

— критические точки
функции

— критическая точка
функции

5

 

 

Находим промежутки
монотонности, точки экстремума и экстремумы функции

х=0 – не
является точкой экстремума, х=1 – точка минимума,

,

х=0 – точка
максимума,

6

Находим предел
функции при

7

 

 

Строим эскиз
графика функции

4. Задания для
самостоятельного решения

Задача 1 (1 балл)

Найдите промежутки
убывания и возрастания функции:
.

В ответе укажите
промежуток убывания.

Задача 2 (2 балла)

Найдите промежутки
убывания и возрастания функции:
.

1. при  убывает; при  возрастает

2. при  убывает; при  возрастает

3. при  убывает; при  возрастает

4. при  возрастает

В ответе укажите
номер с правильным ответом.

Задача 3 (3 балла)

Найдите промежутки
убывания функции
.

Задача 4 (2 балла)

Найдите точку
минимума функции
.

Задача 5 (2 балла)

Найдите точку
максимума функции
.

С помощью производной можно исследовать функцию на монотонность и найти точки экстремума, определить наибольшее и наименьшее значения функции на отрезке.

Чтобы определить промежутки монотонности и экстремумы функции f(x), нужно:

1. найти производнуюf′(x).

2. Определить стационарные и критические точки.

3. Нанести стационарные и критические точки на числовую прямую и определить знаки производной на каждом промежутке.

4. Определить промежутки монотонности функции и точки экстремума функции.

Подробнее:

  • исследование функции на монотонность;
  • отыскание точек экстремума.

Чтобы найти наибольшее (наименьшее) значение функции (f(x)) на промежутке [(a); (b)], нужно:

1. вычислить производную (f’(x)).

2. Решить уравнение (f’(x)=0).

3. Выбрать те корни уравнения, которые попали в промежуток [(a); (b)].

4. Подставить в исходную функцию эти корни, а также точки (a) и (b).

5. Выбрать из полученных чисел наибольшее (наименьшее).

Для решения таких задач необходимо знать формулы и правила дифференцирования, уметь находить производную сложной функции.

Полезно знать основные свойства некоторых функций, например квадратичной функции, так как некоторые задания можно решить без нахождения производной.

Исследовать функцию — это значит установить её свойства: указать её область определения и область значений; промежутки возрастания и убывания; промежутки, на которых функция приобретает положительные значения, на которых — отрицательные; выяснить, не является ли данная функция чётной или нечётной и т. д.

Содержание:

Что такое исследование функции

Одна из важных задач исследования функции — определение промежутков её возрастания и убывания. Как отмечалось, в тех точках, в которых функция возрастает, её производная (угловой коэффициент касательной) положительная, а в точках убывания функции её производная отрицательная {рис. 70).

Применение производной к исследованию функции с примерами решения

Правильными будут следующие утверждения.

  • Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке возрастает.
  • Если производная в каждой точке промежутка отрицательная, то функция на этом промежутке убывает.
  • Если производная в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.

Строгое доказательство этого утверждения достаточно громоздкое, поэтому мы его не приводим. Заметим только, что в нём выражается достаточный признак возрастания или убывания функции, но не необходимый. Поэтому функция может возрастать и на промежутке, в некоторых точках которого она не имеет производной. Например, функция Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Из сказанного следует, что два соседних промежутка, на одном из которых функция возрастает, а на другом — убывает, могут разделяться только такой точкой, в которой производная функции равна нулю или не существует.

Внутренние точки области определения функции, в которых её производная равна нулю или не существует, называют критическими точками функции.

Следовательно, чтобы определить промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения нужно решить неравенства Применение производной к исследованию функции с примерами решения или найти все критические точки функции,разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких — убывает.    

Пример:

Найдите промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения

Уравнение Применение производной к исследованию функции с примерами решения имеет корни Применение производной к исследованию функции с примерами решения Это — критические точки. Область определения данной функции — множество Применение производной к исследованию функции с примерами решения — они разбивают на три промежутка: Применение производной к исследованию функции с примерами решения (рис. 72). Производная функции на этих промежутках имеет соответственно такие знаки: Применение производной к исследованию функции с примерами решения Следовательно, данная функция на промежутках Применение производной к исследованию функции с примерами решения возрастает, а на Применение производной к исследованию функции с примерами решения убывает.

Замечание: Если функция непрерывна в каком-нибудь конце промежутка возрастания или убывания, то эту точку можно присоединить к рассматриваемому промежутку. Поскольку функция Применение производной к исследованию функции с примерами решения в точках 0 и 2 непрерывна, то можно утверждать, что она возрастает на промежутках  Применение производной к исследованию функции с примерами решения на Применение производной к исследованию функции с примерами решения — убывает.

Пример:

Найдите промежутки убывания функции Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Критические точки: Применение производной к исследованию функции с примерами решения Они всю область определения функции разбивают на интервалы: Применение производной к исследованию функции с примерами решения (рис. 73). Производная Применение производной к исследованию функции с примерами решения на этих промежутках имеет соответственно такие знаки: Применение производной к исследованию функции с примерами решения Следовательно, функция убывает на промежутках Применение производной к исследованию функции с примерами решения Поскольку в точках Применение производной к исследованию функции с примерами решения данная функция непрерывна, то ответ можно записать и так: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример:

Найдите критические точки функции Применение производной к исследованию функции с примерами решения 

Решение:

Применение производной к исследованию функции с примерами решения Найдем произвольную функции: Применение производной к исследованию функции с примерами решения
Найдём точки, в которых производная равна нулю или не существует: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения — не существует, если знаменатель равен нулю, отсюда Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Точка Применение производной к исследованию функции с примерами решения не входит в область определения функции. Следовательно, функция имеет две критические точки: Применение производной к исследованию функции с примерами решения

Ответ. 0 и 4.

Пример:

Докажите, что функция Применение производной к исследованию функции с примерами решения возрастает на Применение производной к исследованию функции с примерами решения

Решение:

 Применение производной к исследованию функции с примерами решения При любом значении Применение производной к исследованию функции с примерами решения выражение Применение производной к исследованию функции с примерами решения имеет положительное значение. Следовательно, данная функция возрастает на всей области определения, т.е. на множестве Применение производной к исследованию функции с примерами решения

Пример:

Установите, на каком промежутке функция Применение производной к исследованию функции с примерами решения возрастает, а на каком убывает.

Решение:

Способ 1. Применение производной к исследованию функции с примерами решения Найдём производную функции:

Применение производной к исследованию функции с примерами решения

Найдём критические точки функции:

Применение производной к исследованию функции с примерами решения

Эта точка разбивает область определения функции на два промежутка (рис. 74). Определим знак производной на каждом из них. 

Применение производной к исследованию функции с примерами решения

Следовательно, функция Применение производной к исследованию функции с примерами решения возрастает на промежутке Применение производной к исследованию функции с примерами решения а убывает на Применение производной к исследованию функции с примерами решения

Способ 2. Решим неравенство Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Ответ. Возрастает, если Применение производной к исследованию функции с примерами решения убывает если Применение производной к исследованию функции с примерами решения

Применение второй производной к исследованию функций и построению их графиков

При помощи первой производной можно исследовать функцию на монотонность и экстремумы и схематично построить график. Оказывается, что поведение некоторых функций не всегда можно охарактеризовать, используя первую производную. Более детальное исследование проводится при помощи второй производной. Вспомним, что такое вторая производная.

Пусть функция Применение производной к исследованию функции с примерами решения является дифференцируемой, Применение производной к исследованию функции с примерами решения её производная Применение производной к исследованию функции с примерами решения — функция, которая также дифференцируема. Тогда можно найти производную Применение производной к исследованию функции с примерами решения Это производная второго порядка, или вторая производная функции Применение производной к исследованию функции с примерами решения

Например, найти производную 2-го порядка функции Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решенияозначает найти производную этой функции Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения и полученную функцию продифференцировать: Применение производной к исследованию функции с примерами решения

Кривая Применение производной к исследованию функции с примерами решения называется выпуклой на интервале Применение производной к исследованию функции с примерами решения если все её точки, кроме точки касания, лежат ниже произвольной её касательной на этом интервале (на рис. 86 — 1).

Кривая Применение производной к исследованию функции с примерами решения называется вогнутой на интервале Применение производной к исследованию функции с примерами решения если все её точки, кроме точки касания, лежат выше произвольной её касательной на этом интервале (на рис. 86 — 2).

Применение производной к исследованию функции с примерами решения

Точкой перегиба называется такая точка кривой, которая отделяет её выпуклую часть от вогнутой.

Интервалы выпуклости и вогнутости находят при помощи такой теоремы.

Теорема. Если вторая производная дважды дифференцируемой функции Применение производной к исследованию функции с примерами решения отрицательна Применение производной к исследованию функции с примерами решения на интервале Применение производной к исследованию функции с примерами решения то кривая Применение производной к исследованию функции с примерами решениявыпуклая на данном интервале; если вторая производная функции Применение производной к исследованию функции с примерами решенияположительная Применение производной к исследованию функции с примерами решения то кривая вогнутая на Применение производной к исследованию функции с примерами решения

Из теоремы следует, что точками перегиба кривой Применение производной к исследованию функции с примерами решения могут быть только точки, в которых вторая производная Применение производной к исследованию функции с примерами решения равна нулю или не существует. Такие точки называют критическими точками второго рода.

Установим до статочное условие существования точки перегиба.

Теорема. Пусть Применение производной к исследованию функции с примерами решения — критическая точка второго рода функции Применение производной к исследованию функции с примерами решения Если при переходе через точку Применение производной к исследованию функции с примерами решения производная Применение производной к исследованию функции с примерами решения меняет знак, то точка Применение производной к исследованию функции с примерами решенияявляется точкой перегиба кривой Применение производной к исследованию функции с примерами решения

Для нахождения промежутков выпуклости и точек перегиба графика функции целесообразно пользоваться следующей схемой:

  1. найти область определения функции;
  2. найти критические точки второго рода;
  3. определить знак второй производной на образованных интервалах. Если Применение производной к исследованию функции с примерами решения то кривая выпуклая; если Применение производной к исследованию функции с примерами решения — кривая вогнутая;
  4. если производная Применение производной к исследованию функции с примерами решения меняет знак при переходе через точку Применение производной к исследованию функции с примерами решения то точка Применение производной к исследованию функции с примерами решения является точкой перегиба кривой Применение производной к исследованию функции с примерами решения

Пример №1

Найдите интервалы выпуклости, вогнутости и точки перегиба кривой Применение производной к исследованию функции с примерами решения

Решение:

1) Область определения функции: Применение производной к исследованию функции с примерами решения

2) Найдём вторую производную: Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решенияКритические точки второго рода: Применение производной к исследованию функции с примерами решения Других критических точек нет.

3)    Разбиваем область определения на интервалы Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения и определяем знак второй производной на каждом из них.

Если Применение производной к исследованию функции с примерами решения поэтому кривая вогнутая.

Если Применение производной к исследованию функции с примерами решения поэтому кривая выпуклая.

Если Применение производной к исследованию функции с примерами решения — кривая вогнутая.

Следовательно, точки Применение производной к исследованию функции с примерами решения — точки перегиба кривой. Рассмотрим ещё один компонент в исследовании функций, благодаря которому упрощается построение некоторых графиков. Это асимптоты. В предыдущих параграфах рассматривались горизонтальные и вертикальные асимптоты. Повторим, расширим и обобщим это понятие. Асимптоты бывают вертикальные, наклонные и горизонтальные (рис. 87).

Применение производной к исследованию функции с примерами решения

Напомним, что прямая Применение производной к исследованию функции с примерами решения будет вертикальной асимптотой кривой Применение производной к исследованию функции с примерами решения если при Применение производной к исследованию функции с примерами решения (справа или слева) значение функции Применение производной к исследованию функции с примерами решения стремится к бесконечности, т.е. выполняется одно из условий: Применение производной к исследованию функции с примерами решения

Уравнение наклонной асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Если записанные пределы существуют, то существует наклонная асимптота; если хотя бы один из них не существует или равен Применение производной к исследованию функции с примерами решения то кривая наклонной асимптоты не имеет.

Если Применение производной к исследованию функции с примерами решения поэтому Применение производной к исследованию функции с примерами решенияуравнение горизонтальной асимптоты.

Замечание: Рассмотренные пределы могут быть односторонними, а под символом Применение производной к исследованию функции с примерами решения следует понимать и Применение производной к исследованию функции с примерами решения При этом указанные пределы могут быть разными при Применение производной к исследованию функции с примерами решения

Пример №2

Найдите асимптоты кривых:

Применение производной к исследованию функции с примерами решения

Решение:

а) Применение производной к исследованию функции с примерами решения Найдём вертикальные асимптоты. Поскольку функция не определена в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения то прямые Применение производной к исследованию функции с примерами решения — вертикальные асимптоты.

Найдём наклонную асимптоту: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения Кривая имеет горизонтальную асимптоту, её уравнение: Применение производной к исследованию функции с примерами решения

Следовательно, заданная кривая имеет три асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Найдем вертикальные асимптоты.

Поскольку функция не определена в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения то прямые Применение производной к исследованию функции с примерами решения — вергикальные асимптоты.

Для наклонной асимптоты Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Значит прямая Применение производной к исследованию функции с примерами решения — наклонная асимптота. Горизонтальной асимптоты нет.

Итак, асимптоты кривой: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Будем искать наклонные асимптоты:

Применение производной к исследованию функции с примерами решения

Следовательно, Применение производной к исследованию функции с примерами решения — наклонная асимптота, если Применение производной к исследованию функции с примерами решения

2) если Применение производной к исследованию функции с примерами решения (проверьте самостоятельно), отсюда Применение производной к исследованию функции с примерами решения — наклонная асимптота, если Применение производной к исследованию функции с примерами решения

Следовательно, заданная кривая имеет две асимптоты: Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

Определение точек перегиба, интервалов выпуклости и асимптот существенно помогает в построении графиков различных функций.

Нахождение промежутков возрастания и убывания функции

Интервалы возрастания и убывания функции

возрастающая функция

Применение производной к исследованию функции с примерами решения

Если для любых Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения из некоторого промежутка области определения при Применение производной к исследованию функции с примерами решения выполняется условие Применение производной к исследованию функции с примерами решения то на этом промежутке функция возрастающая.

убывающая

Применение производной к исследованию функции с примерами решения

Если для любых Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения из некоторого промежутка области определения при Применение производной к исследованию функции с примерами решения выполняется условие Применение производной к исследованию функции с примерами решения на этом промежутке функция убывающая.

Связь промежутков возрастания и убывания функции с угловым коэффициентом секущей можно выразить следующим образом.

Если на заданном промежутке угловой коэффициент любой секущей положителен, то на этом промежутке функция Применение производной к исследованию функции с примерами решения возрастает.

Применение производной к исследованию функции с примерами решения

Если на заданном промежутке угловой коэффициент любой секущей отрицателен, то на этом промежутке функция Применение производной к исследованию функции с примерами решения убывает.

Применение производной к исследованию функции с примерами решения

Промежутки возрастания и убывания функции

Пусть на определенном промежутке производная функции Применение производной к исследованию функции с примерами решения положительна, т. е. Применение производной к исследованию функции с примерами решения Так как Применение производной к исследованию функции с примерами решения то угловой коэффициент касательной будет положительным. А это значит, что касательная с положительным направлением оси абсцисс образует острый угол и на заданном промежутке график «поднимается «, т. е. функция возрастает. Если Применение производной к исследованию функции с примерами решения тогда касательная с положительным направлением оси абсцисс образует тупой угол, график «спускается», т. е. функция убывает.

Теорема. Если функция Применение производной к исследованию функции с примерами решения дифференцируема в каждой точке заданного промежутка, то:

Примечание: если функция Применение производной к исследованию функции с примерами решениянепрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.

По графику функции Применение производной к исследованию функции с примерами решения исследуйте промежутки возрастания и убывания функции.

Применение производной к исследованию функции с примерами решения

На интервалах Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения угловой коэффициент касательной положительный, поэтому на каждом из промежутков Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения функция Применение производной к исследованию функции с примерами решениявозрастает.

На интервале Применение производной к исследованию функции с примерами решения угловой коэффициент касательной отрицателен, поэтому на промежутке Применение производной к исследованию функции с примерами решения функция Применение производной к исследованию функции с примерами решения убывает.

Пример №3

При помощи производной определите промежутки возрастания и убывания функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Решение: 1. Алгебраический метод.

Найдем производную функции

Применение производной к исследованию функции с примерами решения

Функция Применение производной к исследованию функции с примерами решения на промежутке удовлетворяющем неравенству Применение производной к исследованию функции с примерами решения т. е. Применение производной к исследованию функции с примерами решения возрастает.

Для решения неравенства сначала надо решить соответствующее уравнение

Применение производной к исследованию функции с примерами решения

Значит, при Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Точки Применение производной к исследованию функции с примерами решения разбивают область определения функции на три интервала: Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения В каждом из интервалов выберем контрольную точку для проверки и установим знак производной.

Применение производной к исследованию функции с примерами решения

Из таблицы и непрерывности функции Применение производной к исследованию функции с примерами решения видно, что данная функция возрастает на промежутках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения и убывает на промежутке Применение производной к исследованию функции с примерами решения Из графика так же видно, что задания решение верно.

Применение производной к исследованию функции с примерами решения

2. Промежутки возрастания и убывания функции можно определить но графику производной. На рисунке изображен график производной

Применение производной к исследованию функции с примерами решения

График производной Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения расположен выше оси Применение производной к исследованию функции с примерами решения значит, Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения график производной расположен ниже оси Применение производной к исследованию функции с примерами решения значит Применение производной к исследованию функции с примерами решения Так как функция Применение производной к исследованию функции с примерами решения в точках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения непрерывна, то на промежутках Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения она возрастает, а на промежутке Применение производной к исследованию функции с примерами решения убывает.

Пример №4

Изобразите схематично график непрерывной функции согласно еле дующим условиям:

a) при Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

b) при Применение производной к исследованию функции с примерами решения или Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

Решение:

а) при Применение производной к исследованию функции с примерами решения знак производной положительный: Применение производной к исследованию функции с примерами решения значит,

функция возрастает. При Применение производной к исследованию функции с примерами решения знак производной отрицательный: Применение производной к исследованию функции с примерами решения значит, функция убывает, при Применение производной к исследованию функции с примерами решения значение функции равно 5.

Применение производной к исследованию функции с примерами решения

b) При Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения знак производной положительный: Применение производной к исследованию функции с примерами решения значит, функция возрастает. При Применение производной к исследованию функции с примерами решения знак производной отрицательный: Применение производной к исследованию функции с примерами решения значит, функция убывает, при Применение производной к исследованию функции с примерами решения значение функции равно 0.

Применение производной к исследованию функции с примерами решения

Критические точки и экстремумы функции

В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.

Применение производной к исследованию функции с примерами решения

1. Для значений Применение производной к исследованию функции с примерами решения равных Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решения угловой коэффициент касательной к графику равен 0. Т. e.Применение производной к исследованию функции с примерами решенияЭти точки являются критическими точками функции.

2. В точках Применение производной к исследованию функции с примерами решения функция не имеет производной. Эти тоже критические точки функции.

3. Для рассматриваемой нами функции критические точки Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки Применение производной к исследованию функции с примерами решения — критические точки, которые не изменяют возрастание и убывание (или наоборот).

Применение производной к исследованию функции с примерами решения

По графику видно, что в точках внутреннего экстремума(Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения) производная функции равна нулю, а в точке Применение производной к исследованию функции с примерами решения производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.

Теорема Ферма (Необходимое условие существовании экстремумов)

Во внутренних точках экстремума производная либо равна нулю, либо не существует.

Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке Применение производной к исследованию функции с примерами решения производная функции Применение производной к исследованию функции с примерами решения равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.

На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т. е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.

Применение производной к исследованию функции с примерами решения

Достаточное условие существования экстремума

Пусть функция Применение производной к исследованию функции с примерами решения непрерывна на промежутке Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Если Применение производной к исследованию функции с примерами решения является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:

  1. Применение производной к исследованию функции с примерами решения слева от точки Применение производной к исследованию функции с примерами решения положительна, а справа — отрицательна, то точка Применение производной к исследованию функции с примерами решения является точкой максимума.
  2. Применение производной к исследованию функции с примерами решения слева от Применение производной к исследованию функции с примерами решения отрицательна, а справа — положительна, то точка Применение производной к исследованию функции с примерами решения является точкой минимума
  3. Применение производной к исследованию функции с примерами решения с каждой стороны от точки Применение производной к исследованию функции с примерами решения имеет одинаковые знаки, то точка Применение производной к исследованию функции с примерами решения не является точкой экстремума.

Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.

Соответствующие наибольшее и наименьшее значения функции Применение производной к исследованию функции с примерами решения на отрезке Применение производной к исследованию функции с примерами решения записываются как Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.

Применение производной к исследованию функции с примерами решения

Пример №5

Для функцииПрименение производной к исследованию функции с примерами решения определите максимумы и минимумы и схематично изобразите график.

Решение: Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.

1. Производная функции: Применение производной к исследованию функции с примерами решения

2. Критические точки функции: Применение производной к исследованию функции с примерами решения

3. Точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения разбивают область определения функции на три промежутка.

Проверим знак Применение производной к исследованию функции с примерами решения на интервалах, выбрав пробные точки:

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения для интервала Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решениямаксимум

При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения Применение производной к исследованию функции с примерами решения минимум

4. Используя полученные для функции Применение производной к исследованию функции с примерами решения данные и найдя координаты нескольких дополнительных точек, построим график функции.

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример №6

Найдите наибольшее и наименьшее значение функции Применение производной к исследованию функции с примерами решения на отрезке Применение производной к исследованию функции с примерами решения

Решение: Сначала найдем критические точки.

Так как Применение производной к исследованию функции с примерами решения то критические точки можно найти из уравнения Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения Критическая точка Применение производной к исследованию функции с примерами решения не принадлежит данному отрезку Применение производной к исследованию функции с примерами решения и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке Применение производной к исследованию функции с примерами решения и на концах отрезка.

Применение производной к исследованию функции с примерами решения

Из этих значений наименьшее — 4, наибольшее 12. Таким образом:

Применение производной к исследованию функции с примерами решения

Пример №7

Найдите экстремумы функции Применение производной к исследованию функции с примерами решения

Решение: 1. Производная функции: Применение производной к исследованию функции с примерами решения

2. Критические точки: Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

3. Интервалы, на которые критические точки делят область определения функции:

Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Проверим знак Применение производной к исследованию функции с примерами решения на интервалах, выбрав пробные точки.

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для промежутка Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Используя полученную для функции Применение производной к исследованию функции с примерами решения информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.

Применение производной к исследованию функции с примерами решения

Пример №8

Найдите экстремумы функции Применение производной к исследованию функции с примерами решения

Решение: 1. Производная Применение производной к исследованию функции с примерами решения

2. Критические точки: для этого надо решить уравнение Применение производной к исследованию функции с примерами решения или найти точки, в которых производная не существует. В точке Применение производной к исследованию функции с примерами решения функция не имеет конечной производной. Однако точка Применение производной к исследованию функции с примерами решения принадлежит области определения. Значит, точка Применение производной к исследованию функции с примерами решения является критической точкой функции.

3. Промежутки, на которые критическая точка делит область определения функции: Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Определим знак Применение производной к исследованию функции с примерами решения выбрав пробные точки для каждого промежутка:

Для Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Для Применение производной к исследованию функции с примерами решения возьмем Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Пример №9

По графику функции производной Применение производной к исследованию функции с примерами решения схематично изобразите график самой функции.

Применение производной к исследованию функции с примерами решения

Решение:

Производная Применение производной к исследованию функции с примерами решения в точке Применение производной к исследованию функции с примерами решения равна нулю, а при Применение производной к исследованию функции с примерами решения отрицательна, значит, на интервале Применение производной к исследованию функции с примерами решения функция убывающая. При Применение производной к исследованию функции с примерами решения производная положительна, а это говорит о том, что функция/на промежутке Применение производной к исследованию функции с примерами решения возрастает. Точкой перехода от возрастания к убыванию функции является точка Применение производной к исследованию функции с примерами решения Соответствующий график представлен на рисунке.

  • Заказать решение задач по высшей математике

Построение графиков функции с помощью производной

Функция — многочлен определена и непрерывна на всей числовой оси.

Чтобы построить график функции- многочлен надо выполнить следующие шаги.

  • Определите точки пересечения с осями координат.
  • Найдите критические точки.
  • Найдите промежутки возрастания и убывания функции.
  • Найдите максимумы и минимумы.
  • Постройте график.

Пример:

Постройте график функции Применение производной к исследованию функции с примерами решения

1) Точки пересечения с осями координат :

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

2) Критические точки ( точки, в которых производная равна нулю): Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

значит, точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения расположены на графике.

Применение производной к исследованию функции с примерами решения

3) Промежутки возрастания и убывания. Экстремумы.

Критические точки Применение производной к исследованию функции с примерами решения деляг область определения функции на четыре промежутка. Проверим знаки производной Применение производной к исследованию функции с примерами решенияПрименение производной к исследованию функции с примерами решения

4) Используя полученную информацию, построим график функции.

Применение производной к исследованию функции с примерами решения

Чтобы построить график рациональной функции надо выполнить следующие шаги.

  • Найдите область определения.
  • Найдите асимптоты (если они есть).
  • Определите точки пересечения с осями координат.
  • Найдите критические точки.
  • Найдите промежутки возрастания и убывания и экстремумы.
  • Постройте график.

Пример:

Постройте график функции Применение производной к исследованию функции с примерами решения

1) Область определения функции: Применение производной к исследованию функции с примерами решения

2) Асимптоты: Применение производной к исследованию функции с примерами решения

Прямая Применение производной к исследованию функции с примерами решения вертикальная асимптота функции.

Так как степень многочлена в числителе больше степени многочлена в знаменателе, рациональная функция не имеет горизонтальной асимптоты. Однако, записав следующее: Применение производной к исследованию функции с примерами решения

условии Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения т. е. график функции Применение производной к исследованию функции с примерами решения бесконечно приближается к прямой Применение производной к исследованию функции с примерами решения В этом случае прямая Применение производной к исследованию функции с примерами решения является наклонной асимптотой функции Применение производной к исследованию функции с примерами решения Вообще, если степень многочлена Применение производной к исследованию функции с примерами решения на 1 единицу больше степени многочлена Применение производной к исследованию функции с примерами решениято рациональная функция Применение производной к исследованию функции с примерами решения имеет наклонную асимптоту.

3) Точки пересечения с осями координат: Применение производной к исследованию функции с примерами решения

4) Критические точки:

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

5) Промежутки возрастания и убывания: в точке Применение производной к исследованию функции с примерами решения функция не определена, точки Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения являются критическими точками функции. Определим знаки производной в каждом полученном интервале.

Применение производной к исследованию функции с примерами решения

6) Построим график. Отметим на координатной плоскости точки Применение производной к исследованию функции с примерами решения относящиеся к графику. Проведем вертикальную асимптоту Применение производной к исследованию функции с примерами решения и наклонную асимптоту Применение производной к исследованию функции с примерами решения Используя полученные результаты, изобразим график функции.

Применение производной к исследованию функции с примерами решения

Обратите внимание! В области, близкой к точке Применение производной к исследованию функции с примерами решения график функции ведет себя как парабола Применение производной к исследованию функции с примерами решения

Задачи на экстремумы. Оптимизации

В реальной жизненной ситуации возникает необходимость выбора оптимального варианта и нахождения экстремумов определенной функции. Ежедневно, при решении проблем в различных областях, мы сталкиваемся с терминами наибольшая прибыль, наименьшие затраты, наибольшее напряжение, наибольший объем, наибольшая площадь и т.д. Большое экономическое значение в промышленности, при определении дизайна упаковки, имеет вопрос, как подобрать размеры упаковки с наименьшими затратами. Такого рода задания связаны с нахождением максимального или минимального значения величины. Задачи на нахождение максимального и минимального значения величины называются задачами на оптимизацию. Для решения данных задач применяется производная.

Замечание 1: На интервале Применение производной к исследованию функции с примерами решения должны учитываться предельные значения функции на концах.

Замечание 2: В рассматриваемом интервале может быть одна стационарная точка: или точка максимума, или точка минимума. В этом случае, в точке максимума функция принимает наибольшее значение, а в точке минимума — наименьшее значение.

Пример 1. Максимальный объем. Фирма планирует выпуск коробки без крышки, с квадратным основанием и площадью поверхности Применение производной к исследованию функции с примерами решения Найдите размеры коробки, при которых она будет иметь наибольший объем?

Применение производной к исследованию функции с примерами решения

Решение:

Так как основанием коробки является квадрат, то ее объем можно вычислить по формуле Применение производной к исследованию функции с примерами решения Используя другие данные задачи, выразим объем только через одну переменную Применение производной к исследованию функции с примерами решенияВычислим площадь поверхности коробки. Она равна Применение производной к исследованию функции с примерами решения и состоит из 4 площадей боковых граней + площадь основания.

Применение производной к исследованию функции с примерами решения

Тогда выразим Применение производной к исследованию функции с примерами решения подставим в формулу Применение производной к исследованию функции с примерами решения Зависимость объема коробки от переменной Применение производной к исследованию функции с примерами решения можно выразить следующим образом:

Применение производной к исследованию функции с примерами решения

Теперь найдем область определения функции Применение производной к исследованию функции с примерами решения согласно условию задачи.

Понятно, что длина не может быть отрицательной, т. е. Применение производной к исследованию функции с примерами решения Площадь квадрата в основании коробки должна быть меньше 192, т. е. Применение производной к исследованию функции с примерами решения

или Применение производной к исследованию функции с примерами решенияЗначит, Применение производной к исследованию функции с примерами решения

Найдем максимальное значение функции Применение производной к исследованию функции с примерами решения на интервале Применение производной к исследованию функции с примерами решения

Для этого используем производную первого порядка:

Применение производной к исследованию функции с примерами решения

При Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения имеем, что Применение производной к исследованию функции с примерами решения

Однако. Применение производной к исследованию функции с примерами решения Значит, в рассматриваемом интервале критической точкой является Применение производной к исследованию функции с примерами решения

При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения функция

Применение производной к исследованию функции с примерами решения в точке Применение производной к исследованию функции с примерами решения принимает максимальное значение.

Если длина основания коробки будет 8 см, то высота будет равна

Применение производной к исследованию функции с примерами решения

Значит, максимальный объем будет иметь коробка с размерами Применение производной к исследованию функции с примерами решения

Построив при помощи графкалькулятора график функции Применение производной к исследованию функции с примерами решения также можно увидеть, что при Применение производной к исследованию функции с примерами решения объем имеет максимальное значение. Постройте график функции при помощи производной и убедитесь в правильности решения.

Применение производной к исследованию функции с примерами решения

Пример 2. Минимальное потребление. Два столба высотой 4 м и 12 м находятся на расстоянии 12 м друг от друга. Самые высокие точки столбов соединены с металлической проволокой, каждая из которых, в свою очередь крепится на земле в одной точке. Выберите такую точку на земле, чтобы для крепления использовалось наименьшее количество проволоки.

Решение: 1) Изобразим рисунок, соответствующий условию задачи, и обозначим соответствующие данные на рисунке.

Применение производной к исследованию функции с примерами решения

2) Аналитически выразим зависимость между переменными.

По теореме Пифагора:

Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

зависимость функции Применение производной к исследованию функции с примерами решения от переменной Применение производной к исследованию функции с примерами решения будет

Применение производной к исследованию функции с примерами решения

Производная функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Найдем критические точки функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Сравнивая значения функции Применение производной к исследованию функции с примерами решения в точках Применение производной к исследованию функции с примерами решения (это проверьте самостоятельно), получим, что наименьшее количество проволоки используется при Применение производной к исследованию функции с примерами решения (метр)

При решении задач на экстремумы обратите внимание на следующее!

1. Внимательно читайте условие. Сделайте соответствующий рисунок.

2. Задайте список соответствующих переменных и констант, которые менялись и оставались неизменными и какие единицы использовались. Если на рисунке есть размеры, обозначьте их.

3. Выберите соответствующий параметр Применение производной к исследованию функции с примерами решения и выразите искомую величину функцией Применение производной к исследованию функции с примерами решения Найдите экстремумы данной функции.

4. Полученные значения объясните экспериментально.

Пример: Минимальное потребление материала. Для мясных консервов планируется использовать банку в форме цилиндра объемом 250 Применение производной к исследованию функции с примерами решения

a) Каких размеров должна быть банка, чтобы для ее изготовления использовалось как можно меньше материала?

b) Для круглого основания используется материал, цена 1 Применение производной к исследованию функции с примерами решения которого равна 0,05 гяпик, а для боковой поверхности используется материал цена 1 Применение производной к исследованию функции с примерами решения которого равна 0,12 гяпик. Какие размеры должна иметь банка, чтобы затраты на ее изготовление были минимальными?

Решение: а) По условию задачи объем равен 250 Применение производной к исследованию функции с примерами решения Эти данные дают нам возможность найти зависимость между Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Для функции, выражающей площадь поверхности, область определения представляет собой незамкнутый интервал, и мы должны найти, при каком значении Применение производной к исследованию функции с примерами решения где Применение производной к исследованию функции с примерами решения функция имеет наименьшее значение. Найдем производную функции Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения Критическая точка функции: Применение производной к исследованию функции с примерами решения При Применение производной к исследованию функции с примерами решения имеем Применение производной к исследованию функции с примерами решения при Применение производной к исследованию функции с примерами решения

Значит, Применение производной к исследованию функции с примерами решения

Подставим значение Применение производной к исследованию функции с примерами решения в формулу для высоты Применение производной к исследованию функции с примерами решения получим Применение производной к исследованию функции с примерами решения

Итак, минимальные затраты на материал будет иметь банка цилиндрической формы с размерами Применение производной к исследованию функции с примерами решения и Применение производной к исследованию функции с примерами решения

Применение производной к исследованию функции с примерами решения

Размеры, при которых затраты на материал будут минимальными

Применение производной к исследованию функции с примерами решения

  • Приложения производной
  • Производные высших порядков
  • Дифференциал функции
  • Дифференцируемые функции
  • Касательная к графику функции и производная
  • Предел и непрерывность функции
  • Свойства функций, непрерывных в точке и на промежутке
  • Предел функции на бесконечности

Понравилась статья? Поделить с друзьями:
  • Как найти индекс по улице в москве
  • Как найти ширину окна огэ 2022
  • Как в инстаграмме найти паблики
  • Как найти степень риска
  • Как найти среднюю месячную зарплату