Урок математики в 11-м классе «Расположение корней квадратного уравнения в зависимости от параметра»
Разделы: Математика
Цель:
- формировать умение распознавать положение квадратной параболы на плоскости в зависимости от параметра,
- развивать логическое мышление,
- умение работать в проблемной ситуации.
Ход урока
Проверка домашнего задания.
Объяснение нового материала.
Решение многих задач с параметрами, предлагаемых на экзаменах, в частности, на ЕГЭ по математике, требует умения правильно формулировать необходимые и достаточные условия, соответствующие различным случаям расположения корней квадратного трёхчлена на числовой оси.
Пусть квадратный трёхчлен f(x) = ax 2 + bx + с имеет корни x1 и x2, — абсцисса вершины параболы y = ax 2 + bx + с, d — заданное число. Рассмотрим ряд утверждений, связанных с взаимным расположением x1 , x2 и числа d.
Теорема 1. Для того чтобы оба корня квадратного трёхчлена были больше числа d, (рис.1) необходимо и достаточно выполнение условий.
Пример:
При каких значениях параметра а корни уравнения ax 2 —(2а + 1)х + 3а — 1 = 0 больше единицы?
Решение: 1. При а = 0 х = -1 — не удовлетворяет требованию задачи.
2. При а
Ответ:
Теорема 2. Для того чтобы оба корня квадратного трёхчлена были меньше числа d, (рис.2) необходимо и достаточно выполнение условий
Рассмотрим задачи на применение этих теорем, обращая внимание на алгоритм получения необходимых и достаточных условий, соответствующих данному случаю расположения корней квадратного трёхчлена на числовой оси. Учащиеся должны научиться составлять эти условия, а не пытаться механически их запомнить.
Задачи для самостоятельного решения.
Найдите значение параметра m, при которых уравнение имеет два отрицательных решения.
Ответ: при уравнение имеет два отрицательных решения.
Найти все значения параметра , при которых уравнение имеет два положительных различных решения.
Ответ: при уравнение имеет два положительных различных решения
При каких значениях параметра а корни уравнения больше 1?
Ответ: при корни уравнения больше 1.
При каких значениях параметра а оба корня уравнения меньше 1?
Ответ: при оба корня уравнения меньше 1.
При каких значениях параметра p оба корня квадратного трехчлена отрицательны?
Ответ: при оба корня квадратного трехчлена отрицательны.
Найдите все значения параметра а, при которых оба корня уравнения больше 1?
Ответ: не существует таких значений параметра а, при которых оба корня уравнения больше 1.
Теорема 3. Для того чтобы число d было расположено между корнями квадратного трёхчлена, (рис.3) необходимо и достаточно выполнение условий
Задача для самостоятельного решения
Найти все значения параметра , при которых только один корень квадратного трехчлена больше 2.
Ответ: или .
При каком значении параметра один корень уравнения больше 1, а другой — меньше 1?
Ответ: при один корень уравнения больше 1, а другой — меньше 1.
При каких значениях параметра число 2 находится между корнями квадратного уравнения ?
Ответ: при один корень уравнения больше 2, а другой — меньше .
Найти все значения параметра , при которых только один корень уравнения удовлетворяет неравенству .
Ответ: или .
Теорема 4. Для того чтобы оба корня квадратного трёхчлена лежали в интервале (d: p), (рис.4) необходимо и достаточно выполнение условий
(4)
Пример. При каких значениях параметра а оба корня уравнения удовлетворяют условию 1 8.08.2010
Квадратные уравнения с параметром
Задачи с параметрами. Простейшие задачи на квадратный трёхчлен.
Сегодня мы рассмотрим задачи на квадратный трёхчлен, про который, в зависимости от параметра, надо будет что-то выяснить. Это «что-то» может быть самым разнообразным, насколько только хватит фантазии у составителей задачи. Это самый простой тип задач с параметрами. И, если на ЕГЭ вам попалась такая — считайте, что вам повезло!
Но, прежде чем приступать к разбору самих задач, ответьте сами себе на такие простые вопросы:
— Что такое квадратное уравнение, как оно выглядит и как решается?
— Что такое дискриминант и куда его пристроить?
— Что такое теорема Виета и где её можно применить?
Если вы верно отвечаете на эти простые вопросы, то 50% успеха в решении параметрических задач на квадратный трёхчлен вам обеспечены! А остальные 50% — это обычная алгебра и арифметика: раскрытие скобок, приведение подобных, решение уравнений, неравенств и систем и т.д.
Для начала рассмотрим совсем безобидную задачку. Для разминки.
Пример 1
Приступаем к решению. Во-первых, чтобы в будущем не накосячить в коэффициентах, всегда полезно выписать их отдельно. Прямо в столбик. Вот так:
Да-да! Часть коэффициентов в уравнении (а именно — b и с) зависит от параметра. В этом как раз и состоит вся фишка таких задач. А теперь снова въедливо перечитываем условие. Ключевой зацепкой в формулировке задания являются слова «единственный корень». И когда же квадратное уравнение имеет единственный корень? Подключаем наши теоретические знания о квадратных уравнениях. Только в одном единственном случае — когда его дискриминант равен нулю.
Осталось составить выражение для дискриминанта и приравнять его к нулю. Поехали!
Теперь надо приравнять наш дискриминант к нулю:
Можно, конечно, решать это квадратное уравнение через дискриминант, а можно немного схитрить. На что у нас похожа левая часть, если как следует присмотреться? Она у нас похожа на квадрат разности (a-3) 2 !
Респект внимательным! Верно! Если заменить наше выражение слева на (a-3) 2 , то уравнение будет решаться в уме!
Вот и всё. Это значит, что единственный корень наше квадратное уравнение с параметром будет иметь только в одном единственном случае — когда значение параметра «а» равно тройке.)
Это был разминочный пример. Чтобы общую идею уловить.) Теперь будет задачка посерьёзнее.
Пример 2
Вот такая задачка. Начинаем распутывать. Первым делом выпишем наше квадратное уравнение:
0,5x 2 — 2x + 3a + 1,5 = 0
Самым логичным шагом, было бы умножить обе части на 2. Тогда у нас исчезнут дробные коэффициенты и само уравнение станет посимпатичнее. Умножаем:
Выписываем в столбик наши коэффициенты a, b, c:
Видно, что коэффициенты a и b у нас постоянны, а вот свободный член с зависит от параметра «а»! Который может быть каким угодно — положительным, отрицательным, целым, дробным, иррациональным — всяким!
А теперь, чтобы продвинуться дальше, вновь подключаем наши теоретические познания в области квадратных уравнений и начинаем рассуждать. Примерно так:
«Для того чтобы сумма кубов корней была меньше 28, эти самые корни, во-первых, должны существовать. Сами по себе. В принципе. А корни у квадратного уравнения существуют, тогда и только тогда, когда его дискриминант неотрицательный. Кроме того, в задании говорится о двух различных корнях. Эта фраза означает, что наш дискриминант обязан быть не просто неотрицательным, а строго положительным!»
Если вы рассуждаете таким образом, то вы движетесь правильным курсом! Верно.) Составляем условие положительности для дискриминанта:
Полученное условие говорит нам о том, что два различных корня у нашего уравнения будет не при любых значениях параметра «а», а только при тех, которые меньше одной шестой! Это глобальное требование, которое должно выполняться железно. Неважно, меньше 28 наша сумма кубов корней или больше. Значения параметра «а», большие или равные 1/6, нас заведомо не устроят. Гуд.) Соломки подстелили. Движемся дальше.
Теперь приступаем к загадочной сумме кубов корней. По условию она у нас должна быть меньше 28. Так и пишем:
Значит, для того чтобы ответить на вопрос задачи, нам надо совместно рассмотреть два условия:
А дальше начинаем отдельно работать с этой самой суммой кубов. Есть два способа такой работы: первый способ для трудолюбивых и второй способ — для внимательных.
Способ для трудолюбивых заключается в непосредственном нахождении корней уравнения через параметр. Прямо по общей формуле корней. Вот так:
Теперь составляем нужную нам сумму кубов найденных корней и требуем, чтобы она была меньше 28:
А дальше — обычная алгебра: раскрываем сумму кубов по формуле сокращённого умножения, приводим подобные, сокращаем и т.д. Если бы корни нашего уравнения получились покрасивее, без радикалов, то такой «лобовой» способ был бы неплох. Но проблема в том, что наши корни выглядят немного страшновато. И подставлять их в сумму кубов как-то неохота, да. Поэтому, для того чтобы избежать этой громоздкой процедуры, я предлагаю второй способ — для внимательных.
Для этого раскрываем сумму кубов корней по соответствующей формуле сокращенного умножения. Прямо в общем виде:
А дальше проделываем вот такой красивый фокус: во вторых скобках выражаем сумму квадратов корней через сумму корней и их произведение. Вот так:
Казалось бы, и что из этого? Сейчас интересно будет! Давайте, посмотрим ещё разок на наше уравнение. Как можно внимательнее:
Чему здесь равен коэффициент при x 2 ? Правильно, единичке! А как такое уравнение называется? Правильно, приведённое! А, раз приведённое, то, стало быть, для него справедлива теорема Виета:
Вот и ещё одна теорема нам пригодилась! Теперь, прямо по теореме Виета, подставляем сумму и произведение корней в наше требование для суммы кубов:
Осталось раскрыть скобки и решить простенькое линейное неравенство:
Вспоминаем, что ещё у нас есть глобальное требование a 0 необходимо пересечь с условием a . Рисуем картинку, пересекаем, и записываем окончательный ответ.
Да. Вот такой маленький интервальчик. От нуля до одной шестой… Видите, насколько знание теоремы Виета, порой, облегчает жизнь!
Вот вам небольшой практический совет: если в задании говорится о таких конструкциях, как сумма, произведение, сумма квадратов, сумма кубов корней, то пробуем применить теорему Виета. В 99% случаев решение значительно упрощается.
Это были довольно простые примеры. Чтобы суть уловить. Теперь будут примеры посолиднее.
Например, такая задачка из реального варианта ЕГЭ:
Пример 3
Что, внушает? Ничего не боимся и действуем по нашему излюбленному принципу: «Не знаешь, что нужно, делай что можно!»
Опять аккуратно выписываем все коэффициенты нашего квадратного уравнения:
А теперь вчитываемся в условие задачи и находим слова «модуль разности корней уравнения». Модуль разности нас пока не волнует, а вот слова «корней уравнения» примем во внимание. Раз говорится о корнях (неважно, двух одинаковых или двух различных), то наш дискриминант обязан быть неотрицательным! Так и пишем:
Что ж, аккуратно расписываем наш дискриминант через параметр а:
А теперь решаем квадратное неравенство. По стандартной схеме, через соответствующее квадратное уравнение и схематичный рисунок параболы:
Значит, для того чтобы у нашего уравнения в принципе имелись хоть какие-то корни, параметр а должен находиться в отрезке [-1; 3]. Это железное требование. Хорошо. Запомним.)
А теперь приступаем к этому самому модулю разности корней уравнения. От нас хотят, чтобы вот такая штука
принимала бы наибольшее значение. Для этого, ничего не поделать, но теперь нам всё-таки придётся находить сами корни и составлять их разность: x1 — x2. Теорема Виета здесь в этот раз бессильна.
Что ж, считаем корни по общей формуле:
Дальше составляем модуль разности этих самых корней:
Теперь вспоминаем, что корень квадратный — величина заведомо неотрицательная. Стало быть, без ущерба для здоровья, модуль можно смело опустить. Итого наш модуль разности корней выглядит так:
И эта функция f(a) должна принимать наибольшее значение. А для поиска наибольшего значения у нас есть такой мощный инструмент, как производная! Вперёд и с песнями!)
Дифференцируем нашу функцию и приравниваем производную к нулю:
Получили единственную критическую точку a = 2. Но это ещё не ответ, так как нам ещё надо проверить, что найденная точка и в самом деле является точкой максимума! Для этого исследуем знаки нашей производной слева и справа от двойки. Это легко делается простой подстановкой (например, а = 1,5 и а = 2,5).
Слева от двойки производная положительна, а справа от двойки — отрицательна. Это значит, что наша точка a = 2 и вправду является точкой максимума. Заштрихованная зона на картинке означает, что нашу функцию мы рассматриваем только на отрезке [1; 3]. Вне этого отрезка нашей функции f(a) попросту не существует. Потому, что в заштрихованной области наш дискриминант отрицательный, и разговоры о каких-либо корнях (и о функции тоже) бессмысленны. Это понятно, думаю.
Всё. Вот теперь наша задача полностью решена.
Здесь было применение производной. А бывают и такие задачи, где приходится решать уравнения либо неравенства с так ненавистными многими учениками модулями и сравнивать некрасивые иррациональные числа с корнями. Главное — не бояться! Разберём похожую злую задачку (тоже из ЕГЭ, кстати).
Пример 4
Итак, приступаем. Первым делом замечаем, что параметр а ни в коем случае не может быть равен нулю. Почему? А вы подставьте в исходное уравнение вместо а нолик. Что получится?
Получили линейное уравнение, имеющее единственный корень x=2. А это уже совсем не наш случай. От нас хотят, чтобы уравнение имело два различных корня, а для этого нам необходимо, чтобы оно, как минимум, было хотя бы квадратным.)
При всех остальных значениях параметра наше уравнение будет вполне себе квадратным. И, следовательно, чтобы оно имело два различных корня, необходимо (и достаточно), чтобы его дискриминант был положительным. То есть, первое наше требование будет D > 0.
А далее по накатанной колее. Считаем дискриминант:
D = 4(a-1) 2 — 4a(a-4) = 4a 2 -8a+4-4a 2 +16a = 4+8a
Вот так. Значит, наше уравнение имеет два различных корня тогда и только тогда, когда параметр a > -1/2. При прочих «а» у уравнения будет либо один корень, либо вообще ни одного. Берём на заметку это условие и движемся дальше.
Далее в задаче идёт речь о расстоянии между корнями. Расстояние между корнями, в математическом смысле, означает вот такую величину:
Зачем здесь нужен модуль? А затем, что любое расстояние (что в природе, что в математике) — величина неотрицательная. Причём здесь совершенно неважно, какой именно корень будет стоять в этой разности первым, а какой вторым: модуль — функция чётная и сжигает минус. Точно так же, как и квадрат.
Значит, ответом на вопрос задачи является решение вот такой системы:
Теперь, ясен перец, нам надо найти сами корни. Здесь тоже всё очевидно и прозрачно. Аккуратно подставляем все коэффициенты в нашу общую формулу корней и считаем:
Отлично. Корни получены. Теперь начинаем формировать наше расстояние:
Наше расстояние между корнями должно быть больше трёх, поэтому теперь нам надо решить вот такое неравенство:
Неравенство — не подарок: модуль, корень… Но и мы всё-таки уже решаем серьёзную задачу №18 из ЕГЭ! Делаем всё что можно, чтобы максимально упростить внешний вид неравенства. Мне здесь больше всего не нравится дробь. Поэтому первым делом я избавлюсь от знаменателя, умножив обе части неравенства на |a|. Это можно сделать, поскольку мы, во-первых, в самом начале решения примера договорились, что а ≠ 0, а во-вторых, сам модуль — величина неотрицательная.
Итак, смело умножаем обе части неравенства на положительное число |a|. Знак неравенства сохраняется:
Вот так. Теперь в нашем распоряжении имеется иррациональное неравенство с модулем. Ясное дело, для того чтобы решить его, надо избавляться от модуля. Поэтому придётся разбивать решение на два случая — когда параметр а, стоящий под модулем, положителен и когда отрицателен. Другого пути избавиться от модуля у нас, к сожалению, нет.
Случай 1 (a>0, |a|=a)
В этом случае наш модуль раскрывается с плюсом, и неравенство (уже без модуля!) принимает следующий вид:
Неравенство имеет структуру: «корень больше функции». Такие иррациональные неравенства решаются по следующей стандартной схеме:
Отдельно рассматривается случай а), когда обе части неравенства возводятся в квадрат и правая часть неотрицательна и отдельно — случай б), когда правая часть всё-таки отрицательна, но зато сам корень при этом извлекается.) И решения этих двух систем объединяются.
Тогда, в соответствии с этой схемой, наше неравенство распишется вот так:
А теперь можно существенно упростить себе дальнейшую работу. Для этого вспомним, что в случае 1 мы рассматриваем только a>0. С учётом этого требования, вторую систему можно вообще вычеркнуть из рассмотрения, поскольку, второе неравенство в ней (3a 0 и a
Упрощаем нашу совокупность с учётом главного условия a>0:
Вот так. А теперь решаем самое обычное квадратное неравенство:
Нас интересует промежуток между корнями. Стало быть,
Отлично. Теперь этот промежуток пересекаем со вторым условием системы a>0:
Есть. Таким образом, первым кусочком ответа к нашему неравенству (а пока не ко всей задаче!) будет вот такой интервал:
Всё. Случай 1 разложен по полочкам. Переходим к случаю 2.
Случай 2 (a
В этом случае наш модуль раскрывается с минусом, и неравенство принимает следующий вид:
Опять имеем структуру: «корень больше функции». Применяем нашу стандартную схему с двумя системами (см. выше):
С учётом общего требования a
А дальше снова решаем обычное квадратное неравенство:
И опять сокращаем себе работу. Ибо оно у нас уже решено в процессе разбора случая 1! Решение этого неравенства выглядело вот так:
Осталось лишь пересечь этот интервал с нашим новым условием a
Вот и второй кусочек ответа готов:
Кстати сказать, как я узнал, что ноль лежит именно между нашими иррациональными корнями? Легко! Очевидно, что правый корень заведомо положителен. А что касается левого корня, то я просто в уме сравнил иррациональное число
с нулём. Вот так:
А теперь объединяем оба найденных интервала. Ибо мы решаем совокупность (а не систему):
Готово дело. Эти два интервала — это пока ещё только решение неравенства
Кто забыл, данное неравенство отвечает у нас за расстояние между корнями нашего уравнения. Которое должно больше 3. Но! Это ещё не ответ!
Ещё у нас есть условие положительного дискриминанта! Неравенство a>-1/2, помните? Это значит, что данное множество нам ещё надо пересечь с условием a>-1/2. Иными словами, теперь мы должны пересечь два множества:
Но есть одна проблемка. Мы не знаем, как именно расположено на прямой число -1/2 относительно левого (отрицательного) корня. Для этого нам придётся сравнить между собой два числа:
Поэтому сейчас берём черновик и начинаем сравнивать наши числа. Примерно так:
Это значит, что дробь -1/2 на числовой прямой находится левее нашего левого корня. И картинка к окончательному ответу задачи будет какая-то вот такая:
Всё, задача полностью решена и можно записывать окончательный ответ.
Ну как? Уловили суть? Тогда решаем самостоятельно.)
1. Найдите все значения параметра b, при которых уравнение
ax 2 + 3x +5 = 0
имеет единственный корень.
2. Найдите все значения параметра а, при каждом из которых больший корень уравнения
x 2 — (14a-9)x + 49a 2 — 63a + 20 = 0
3. Найдите все значения параметра а, при каждом из которых сумма квадратов корней уравнения
x 2 — 4ax + 5a = 0
4. Найдите все значения параметра а, при каждом из которых уравнение
x 2 + 2(a-2)x + a + 3 = 0
имеет два различных корня, расстояние между которыми больше 3.
Что такое уравнение и корни уравнения? Как решить уравнение?
Уравнения бывают разные. Вы изучите их многие виды в курсе математике, но все они решаются по одним правилам, эти правила мы сейчас рассмотрим подробно.
Что такое уравнение? Смысл и понятия.
Узнаем сначала все понятия, связанные с уравнением.
Определение:
Уравнение – это равенство, содержащее переменные и числовые значения.
Переменные (аргументы уравнения) или неизвестные уравнения – их обозначают в основном латинскими буквами (x, y, z, f и т.д.). При подстановки числового значения переменной в уравнение получаем верное равенство – это корень уравнения.
Решить уравнение – это значит найти все корни уравнения или доказать, что у данного уравнения нет корней.
Корни уравнения – это значение переменной при котором уравнение превращается в верное равенство.
Рассмотрим теперь, все термины на простом примере:
x+1=3
В данном случае x – переменная или неизвестное значение уравнения.
Можно устно решить данное уравнение. Какое надо число прибавить к 1, чтобы получить 3? Конечно, число 2. То есть наша переменная x =2. Корень уравнения равен 2. Проверим правильно ли мы решили уравнение? Чтобы проверить уравнение, нужно вместо переменной подставить полученный корень уравнения.
Получили верное равенство. Значит, правильно нашли корни уравнения.
Но бывают более сложные уравнения, которые устно не решить. Нужно прибегать к правилам решения уравнений. Рассмотрим правила решения уравнений ниже, которые объяснят нам как решать уравнения.
Правила уменьшения или увеличения уравнения на определенное число.
Чтобы понять правило рассмотрим подробно простой пример:
Решите уравнение x+2=7
Решение:
Чтобы решить данное уравнение нужно левую и правую часть уменьшить на 2. Это нужно сделать для того, чтобы переменная x осталась слева, а известные (т.е. числа) справа. Что значит уменьшить на 2? Это значит отнять от левой части двойку и одновременно от правой части отнять двойку. Если мы делаем какое-то действие, например, вычитание применяя его одновременно к левой части уравнения и к правой, то уравнение не меняет смысл.
Нужно остановиться на этом моменте подробно. Другими словами, мы +2 перенесли с левой части на правую и знак поменяли стало число -2.
Как проверить правильно ли вы нашли корень уравнения? Ведь не все уравнения будут простыми как данное. Чтобы проверить корень уравнения его значение нужно поставить в само уравнение.
Проверка:
Вместо переменной x подставим 5.
x+2=7
5+2=7
Получили верное равенство, значит уравнение решено верно.
Ответ: 5.
Разберем следующий пример:
Решите уравнение x-4=12.
Решение:
Чтобы решить данное уравнение нужно увеличить левую и правую часть уравнения на 4, чтобы переменная x осталось в левой стороне, а известные (т.е. числа) в правой стороне. Прибавим к левой и правой части число 4. Получим:
Другими словами, мы -4 перенесли из левой части уравнения в правую и получили +4. При переносе через равно знаки меняются на противоположные.
Теперь выполним проверку, вместо переменной x подставим в уравнение полученное число 16.
x-4=12
16-4=12
Ответ: 16
Очень важно понять правила переноса частей уравнения через знак равно. Не всегда нужно переносить числа, иногда нужно перенести переменные или даже целые выражения.
Рассмотрим пример:
Решите уравнение 4+3x=2x-5
Решение:
Чтобы решить уравнение необходимо неизвестные перенести в одну сторону, а известные в другую. То есть переменные с x будут в левой части, а числа в правой части.
Сначала перенесем 2x с правой стороны в левую сторону уравнения и получим -2x.
4+3x= 2x -5
4+3x -2x =-5
Далее 4 с левой стороны уравнения перенесем на правую сторону и получим -4
4 +3x-2x=-5
3x-2x=-5 -4
Теперь, когда все неизвестные в левой стороне, а все известные в правой стороне посчитаем их.
(3-2)x=-9
1x=-9 или x=-9
Сделаем проверку, правильно ли решено уравнение? Для этого вместо переменной x в уравнение подставим -9.
4+3x=2x-5
4+3⋅ (-9) =2⋅ (-9) -5
4-27=-18-5
-23=-23
Получилось верное равенство, уравнение решено верно.
Ответ: корень уравнения x=-9.
Правила уменьшения или увеличения уравнения в несколько раз.
Данное правило подходит тогда, когда вы уже посчитали все неизвестные и известные, но какой-то коэффициент остался перед переменной. Чтобы избавится от не нужного коэффициента мы применяем правило уменьшения или увеличения в несколько раз коэффициент уравнения.
Рассмотрим пример:
Решите уравнение 5x=20.
Решение:
В данном уравнение не нужно переносить переменные и числа, все компоненты уравнения стоят на месте. Но нам мешает коэффициент 5 который стоит перед переменной x. Мы не можем его просто взять и перенести в правую сторону уравнения, потому что между число 5 и переменно x стоит умножение 5⋅х. Если бы между переменной и числом стоял знак плюс или минус, мы могли бы 5 перенести вправо. Но мы так поступить не можем. За то мы можем все уравнение уменьшить в 5 раз или поделить на 5. Обязательно делим правую и левую сторону одновременно.
5x=20
5x :5 =20 :5
5:5x=4
1x=4 или x=4
Делаем проверку уравнения. Вместо переменной x подставляем 4.
5x=20
5⋅ 4 =20
20=20 получили верное равенство, корень уравнение найден правильно.
Ответ: x=4.
Рассмотрим следующий пример:
Найдите корни уравнения .
Решение:
Так как перед переменной x стоит коэффициент необходимо от него избавиться. Надо все уравнение увеличить в 3 раза или умножить на 3, обязательно умножаем левую часть уравнения и правую часть.
Сделаем проверку уравнения. Подставим вместо переменной x полученный корень уравнения 21.
7=7 получено верное равенство.
Ответ: корень уравнения равен x=21.
Следующий пример:
Найдите корни уравнения
Решение:
Сначала перенесем -1 в правую сторону уравнения относительно знака равно, а в левую сторону и знаки у них поменяются на противоположные.
Теперь нужно все уравнение умножить на 5, чтобы в коэффициенте перед переменной x убрать из знаменателя 5.
Далее делим все уравнение на 3.
3x :3 =45 :3
(3:3)x=15
Сделаем проверку. Подставим в уравнение найденный корень.
Как решать уравнения? Алгоритм действий.
Подведем итог разобранной теме уравнений, рассмотрим общие правила решения уравнений:
- Перенести неизвестные в одну сторону, а известные в другую сторону уравнения относительно равно.
- Преобразовать и посчитать подобные в уравнении, то есть переменные с переменными, а числа с числами.
- Избавиться от коэффициента при переменной если нужно.
- В итоге всех действий получаем корень уравнение. Выполняем проверку.
Эти правила действуют на любой вид уравнения (линейный, квадратный, логарифмический, тригонометрический, рациональные, иррациональные, показательные и другие виды). Поэтому важно понять эти простые правила и научиться ими пользоваться.
http://abudnikov.ru/ege/chast-2.2/zadachi-s-parametrami/kvadratnyie-uravneniya-s-parametrom.html
http://tutomath.ru/6-klass/chto-takoe-uravnenie-i-korni-uravneniya-kak-reshit-uravnenie.html
Корни уравнения с параметром
Воскресенье, 27 октября, 2019
Очень часто среди заданий ЕГЭ, вступительных экзаменов и олимпиад по математике встречаются задачи, в которых каким-либо образом задаётся положение корней уравнений с параметром на числовой оси и требуется найти все возможные значения параметра, при которых имеет место такое расположение. Данная статья посвящена разбору нескольких заданий такого рода.
Пример 1. Найдите все значения параметра , при каждом из которых один из корней уравнения больше 3, а другой меньше 3.
Пусть — квадратичная функция, графиком которой является парабола. Поскольку коэффициент при в уравнении равен , то ветви этой параболы направлены вверх. Корни уравнения с параметром — это точки, в которых данная парабола пересекает ось OX. Значит, для выполнения заданного условия парабола должна быть расположена относительно оси OX условно следующим образом:
Из рисунка видно, что для выполнения заданного условия необходимо и достаточно, чтобы значение введённой функции было отрицательным в точке , то есть . Ну действительно, поскольку ветви параболы направлены вверх, то в таком случае она пересечёт ось OX в двух точках, одна из которых находится правее точки , а другая — левее. Итак, имеет место неравенство:
Ответ: .
Пример 2. Найдите все значения параметра , при каждом из которых число -1 лежит между корнями уравнения .
При получаем уравнение , которое имеет единственный корень , поэтому этот случай нам не подходит. Для можно поделить обе части данного уравнения на . Тогда мы приходим к следующему уравнению:
Теперь мы уверены, что ветви соответствующей параболы направлены вверх, и поэтому мы свели задачу к предыдущей. Пусть . Тогда требуемое условие будет выполнено тогда и только тогда, когда значение введённой функции в точке отрицательно, то есть :
Ну действительно, если ветви параболы направлены вверх, и в точке она принимает отрицательное значение, то ось OX эта парабола будет пересекать в двух точках и , одна из которых находится правее , вторая – левее. Эти точки представляют собой корни уравнения с параметром, которое записано в условии. Тогда точка окажется как раз между корнями уравнения, что нам и нужно. Значит, имеет место неравенство:
Ответ: .
Исследуем сразу случай, когда , то есть . В этом случае уравнение принимает вид: . Значит, корнем уравнения является число , что больше . То есть значение нам подходит.
Исследуем теперь случай, когда . В этом случае обе части уравнения можно поделить на . В результате приходим к следующему уравнению:
Пусть . Ветви соответствующей параболы направлены вверх, поэтому для того, чтобы выполнялось требуемое условие, эта парабола должна быть расположена относительно оси OX условно следующим образом:
Из рисунка видно, что требуемое условие выполняется только в том случае, если соответствующий квадратный трёхчлен имеет корни (парабола пересекает ось OX или касается её), то есть его дискриминант неотрицателен, значение этого квадратного трёхчлена в точке положительно, и вершина соответствующей параболы, ветви которой направлены вверх, лежит правее точки . То есть имеет место следующая система:
Выражаем все величины через параметр и после всех упрощений получаем следующую систему:
Каждое из неравенство системы решаем методом интервалов, а затем отбираем только те значения параметра , при которых выполняются все три неравенства системы.
Окончательный ответ к заданию имеет вид: .
Рассмотрим сперва случай, когда . В этом случае записанное уравнение принимает вид: . То есть корнем уравнения является число . Этот корень принадлежит промежутку , поэтому данный случай нам подходит.
Теперь рассмотрим случай, когда . В этом случае обе части уравнения можно поделить на . Тогда получаем следующее уравнение:
Пусть . Ветви соответствующей параболы направлены вверх. Значит, для выполнения требуемого условия эта парабола должна быть расположена относительно оси OX условно следующим образом:
Из рисунка видно, что требуемое условие выполняется тогда и только тогда, когда корни уравнения с параметром существуют (парабола пересекает ось OX или касается её), то есть когда дискриминант соответствующего квадратного трёхчлена положителен или равен нулю, значения этого трёхчлена в точках и положительны, а вершина соответствующий параболы находится внутри промежутка . То есть имеет место следующая система:
Выражаем все величины через параметр и упрощаем получившиеся неравенства. В результате получаем следующую систему неравенств:
Каждое из неравенств системы решается методом интервалов, после чего отбираются значения параметра , удовлетворяющие каждому из неравенств.
В результате получаем окончательный ответ:
.
Корни уравнения с параметром для самостоятельного решения
Решите следующие задания самостоятельно для самопроверки понимания изложенного в статье материала. Если при выполнении этих заданий у вас возникнут вопросы, задавайте их в комментариях, а также пишите в них свои попытки и варианты решений.
- Найдите все значения параметра , при каждом из которых один из корней уравнения меньше 2, а другой больше 2.
Ответ: . - Найдите все значения параметра , при каждом из которых один из корней уравнения больше 1, а другой меньше 1.
Ответ: . - Найдите все значения параметра , при каждом из которых уравнение имеет два различных корня, каждый из которых больше -1.
Ответ: .
Материал подготовил репетитор по математике и физике в Москве Сергей Валерьевич
На этой странице вы узнаете
- Как мы ежедневно расставляем знаки неравенства в жизни?
- Как быстро определить верное обозначение точки на прямой?
- Как правильно чередовать знаки на числовой прямой?
Решая уравнение, мы стремимся к тому, чтобы обе части были равны. Но существуют такие примеры, где мы заведомо знаем, что два выражения не могут быть равны между собой. Они называются неравенствами.
Метод интервалов
Неравенство — это алгебраическое выражение, в котором одна сторона имеет отличное от другой значение. В неравенствах обычно одна сторона больше другой.
Для записи неравенств используют знаки > , < , ≥ , ≤ .
При этом “>” и “<” — это строгие знаки неравенства, а “≥” и “≤” — нестрогие знаки неравенства.
Их отличие в том, что нестрогие знаки неравенства включают граничные точки в итоговый промежуток, а строгие — нет.
Посмотрим на привычные ситуации с точки зрения строгости знаков неравенства.
Например, возьмем известную игру “Камень, ножницы, бумага”.
Правила игры говорят нам, что камень всегда побеждает ножницы, а бумага побеждает камень. Если перенести это на язык неравенства, то получится:
Теперь зайдем в магазин цифровой техники и попробуем выбрать себе новый мобильный телефон. Задачка непростая, не так ли? Две разные модели могут настолько незначительно отличаться друг от друга своими характеристиками, что будут казаться почти одинаковыми. Тогда мы можем сказать, что они практически равны между собой, то есть неравенство нестрогое. Но один из них всё-таки понравился нам больше.
И каждый наш выбор, каждый шаг – это расстановка знака неравенства в настоящей жизни. Просто по бокам от него не цифры и переменные, а существующие ситуации и вещи.
Рассмотрим пример неравенства (х — 10)(х + 21) > 0.
Его можно решить несколькими способами. Например, вспомним, что положительным будет произведение двух положительных или двух отрицательных множителей, тогда получается совокупность из двух систем.
Однако этот способ решения очень трудоемкий и требует много времени. А если множителей будет больше, например, три или четыре, то время на решение в разы увеличивается.
Небольшой секрет тайм-менеджмента: как сократить время при решении неравенств? В таких случаях на помощь приходит метод интервалов.
Метод интервалов — специальный алгоритм решения для сложных неравенств вида f(x) > 0. При этом знак неравенства может быть любым.
Интервал — это промежуток на числовой прямой, ограниченный двумя различными числами.
Алгоритм решения неравенств методом интервалов
1 шаг. Перенести все части неравенства в одну сторону так, чтобы с другой остался только 0.
2 шаг. Найти нули функции, для этого необходимо решить уравнение f(x) = 0.
3 шаг. Начертить числовую прямую и отметить на ней все полученные корни. Таким образом, числовая прямая разобьется на интервалы.
4 шаг. Определить знаки на каждом интервале. Для этого необходимо подставить любое удобное значение в f(x) и определить, какой знак будет иметь функция на данном интервале.
Расставляя полученные корни на прямой, необходимо отмечать их точками. При этом от того, какая отмечена точка (выколотая или закрашенная), будет зависеть ответ.
- Если в неравенстве стоит строгий знак неравенства, то все точки на прямой должны быть выколотыми.
Таким образом, граничные точки не будут включены в итоговый промежуток. Для записи таких точек используют круглые скобочки. Например, в промежуток (2;3) включаются все значения от 2 до 3, но не включаются граничные точки.
- Если в неравенстве стоит нестрогий знак неравенства, то найденные корни должны быть отмечены закрашенными точками.
Это означает, что мы включаем их в итоговый промежуток. Для записи таких точек используют квадратные скобочки. Например, в промежуток [2;3] включаются все значения от 2 до 3, в том числе и граничные точки.
- Если в неравенстве появляются ограничения и некоторые точки нельзя взять в ответ, то такие точки должны быть выколотыми на числовой прямой, при этом знак самого неравенства может быть как строгим, так и нестрогим.
Например, если необходимо решить неравенство с дробью, то нули знаменателя на числовой прямой обязательно должны быть обозначены выколотыми точками.
В случае сомнений мы всегда можем проверить себя по простой схеме.
Вывод:
— если знак неравенства строгий, то все точки будут выколотыми;
— если знак неравенства нестрогий, то точки будут закрашенными, кроме тех точек, которые нельзя взять в ответ (например, они не удовлетворяют ОДЗ).
Стоит отметить, что непрерывная функция будет менять знак только в точках, в которых она равна 0. Подробнее узнать про смену знака функции можно в статье «Определение и график функции». Именно поэтому в методе интервалов мы ищем и отмечаем нули функции на прямой — только при переходе через них будет меняться знак функции.
При этом существует способ, с помощью которого можно быстро расставить знаки на прямой. Достаточно определить знак на одном из интервалов, а дальше чередовать знаки при переходе через каждую точку на прямой.
Правила чередования знаков:
- Если корень повторяется нечетное количество раз (то есть его степень нечетная), то знак при переходе на следующий интервал меняется.
- Если корень повторяется четное количество раз (его степень четная), то знак при переходе на следующий интервал не меняется.
Всегда будет нелишним перепроверить знак на каждом интервале, подставив значения в функцию, и убедиться в правильности расстановки знаков на прямой.
Но при расстановке можно пользоваться следующим алгоритмом, что значительно сократит время расстановки знаков.
Методом интервалов можно решить практически любое неравенство в задании 14 из ЕГЭ по профильной математике, также он может понадобиться в заданиях 8, 11 и 17 «профиля» или в задании 17 ЕГЭ по базовой математике.
На ОГЭ данным методом можно воспользоваться при решении неравенств из первой и второй частей — №13 и №20.
Так что осваивайте метод и 2 балла ЕГЭ или 3 балла ОГЭ будут у вас в кармане. Обязательно следуйте алгоритму решения неравенств методом интервалов, тогда вы точно решите неравенство верно.
Практика
Рассмотрим несколько примеров, чтобы на практике разобрать применение метода интервалов для решения неравенств.
Пример 1. Решить неравенство x2 + 8x — 33 > 0.
Шаг 1. Первым шагом необходимо найти нули функции, для этого приравниваем выражение слева к 0: x2 + 8x — 33 = 0.
Шаг 2. Находим корни уравнения, получаем х = 3 и х = -11.
Шаг 3. Расставляем полученные корни на числовой прямой. Поскольку знак неравенства строгий, то точки должны быть выколотыми:
Шаг 4. Дальше необходимо определить знаки на каждом интервале. Для этого подставим х = -12 в x2 + 8x — 33. Получаем:
(-12)2 + 8*(-12) — 33 = 144 — 96 — 33 = 15.
Получается положительное число, следовательно, интервал от минус бесконечности до -11 положительный. Поскольку все корни в неравенстве повторяются нечетное количество раз (по одному разу), то знаки чередуются.
В ответ необходимо записать промежутки с положительным знаком, следовательно, ответом будет х ∈ (-∞; -11) U (3; +∞).
Пример 2. Решить неравенство (frac{2х^2 + 22х — 204}{(х-3)(х+5)} ≤ 0).
1. Находим нули функции.
Нули числителя: 2х2 + 22х — 204 = 0. Решая уравнение, получаем х = 6 и х = -17.
Нули знаменателя: (х — 3)(х + 5) = 0, следовательно, х = 3 и х = -5.
2. Расставляем полученные корни на числовой прямой. Нули числителя будут обозначены закрашенными точками, поскольку знак неравенства нестрогий. А вот нули знаменателя — выколотыми, поскольку знаменатель не может равняться 0, следовательно, и нули знаменателя не должны входить в итоговый промежуток.
3. Определяем знак на крайнем левом промежутке, подставляя х=-20 в дробь:
(frac{2(-20)^2 + 22(-20) — 204}{(-20 -3)(-20 +5)} = frac{2 * 400 — 440 — 204}{(-23) * (-15)} = 156345. )
Следовательно, промежуток положительный.
4. Поскольку каждый корень встречается один раз, то есть нечетное количество раз, то знаки будут чередоваться.
В ответ необходимо включить отрицательные промежутки. Следовательно, ответом будет х ∈ [-17; -5) U (3; 6].
Пример 3. Решить неравенство (frac{1}{х^2} ≥ frac{1}{х+2})
1. Первым делом следует отметить, что знаменатели не могут быть равны 0, следовательно, х2 ≠ 0 и х + 2 ≠ 0, отсюда получаем х ≠ 0 и х ≠ -2.
2. Теперь перенесем все части неравенства влево:
(frac{1}{х^2} — frac{1}{х+2} ≥ 0).
Приведем к общему знаменателю:
(frac{х + 2 — х^2}{х^2 (х + 2)} ≥ 0).
Для решения неравенства будет удобнее, если перед х2 в числителе будет стоять положительный знак, для этого умножим неравенство на -1.
При умножении неравенства на отрицательное число знак неравенства меняется на противоположный.
Получаем:
(frac{х^2 — х — 2}{х^2 (х + 2)} ≤ 0).
Теперь найдем нули функции.
Нули числителя: х2 — х — 2 = 0. Тогда х = -1 и х = 2.
Нули знаменателя: х = 0 и х = -2.
2. Расставим корни на числовой прямой, при этом нули числителя будут обозначены закрашенными точками, а нули знаменателя — выколотыми.
3. Определим знак на крайнем левом промежутке, подставив для этого х = -3 в дробь:
(frac{(-3)^2 — (-3) — 2}{(-3)^2 ((-3) + 2)} = frac{9 + 3 — 2}{9 * (-1)} = frac{10}{-9})
Промежуток отрицательный.
4. Дальше расставляем знаки, чередуя их. При этом следует заметить, что х = 0 — корень, повторяющийся четное количество раз (поскольку у х2 четная степень). Следовательно, при переходе через эту точку знак функции меняться не будет.
В ответ необходимо включить отрицательные промежутки, следовательно: х ∈ (-∞; -2) U [-1; 0) U (0; 2].
Давайте подведем итог. Для чего мы это изучили?
Конечно же, эти знания пригодятся на экзаменах, а также в решении школьных примеров с 8 класса по 11 класс.
Советуем после прочтения этой статьи попрактиковаться в рубрике «Проверь себя», чтобы закрепить полученные знания. После чего можете приступить к решению заданий посложнее, чтобы на экзамене у вас точно получилось решить подобные задания и набрать за них максимум баллов.
Фактчек
- Метод интервалов позволяет упростить решение любого неравенства, а также экономит время, которое ограничено на экзамене.
- Чтобы решить неравенство с помощью метода интервалов необходимо найти нули функции, расставить их на числовой прямой, а после определить знак каждого полученного интервала.
- Нули функции на прямой обозначаются точками, при этом закрашенные точки включают граничные значения в итоговый промежуток, а незакрашенные, напротив, исключают их из промежутка.
- Для определения знака на каждом интервале необходимо подставить любое значение из этого интервала в функцию.
- Для упрощения расстановки знаков можно пользоваться правилами чередования, определив знак только на одном интервале, а дальше менять знаки на каждом следующем. При этом если корень встречается в функции нечетное количество раз, то знак при переходе через эту точку на следующий интервал меняется, а если корень встречается четное количество раз, то знак на следующем интервале не меняется.
Проверь себя
Задание 1.
Какие знаки неравенства существуют?
- Строгие
- Нестрогие
- Строгие и нестрогие
- Больше и меньше
Задание 2.
Какой знак неравенства может встретиться в методе интервалов?
- Только больше или меньше.
- Только “больше или равно” или “меньше или равно”.
- Только “больше” и “больше или равно” или только “меньше” и “меньше или равно”.
- Любой.
Задание 3.
Какое утверждение верное?
- Если в неравенстве строгий знак неравенства, то точки на числовой прямой закрашены.
- Если в неравенстве строгий знак неравенства, то точки на числовой прямой выколоты.
- Если в неравенстве нестрогий знак неравенства, то все точки на числовой прямой закрашены, даже если в неравенстве есть ограничения.
- Если в неравенстве нестрогий знак неравенства, то все точки на числовой прямой выколоты.
Задание 4.
Какое утверждение верное?
- При переходе на числовой прямой на следующий интервал, знак на интервале всегда будет меняться.
- Если корень встречается в неравенстве четное количество раз, то при переходе через него на следующий интервал знак не меняется.
- Если корень встречается в неравенстве нечетное количество раз, то при переходе через него на следующий интервал знак не меняется.
- Невозможно определить правильное чередование знаков на прямой, не подставляя значение из каждого интервала в функцию.
Задание 5.
Если в неравенстве строгий знак неравенства, то какие скобочки могут встретиться в ответе?
- Круглые
- Квадратные
- И круглые, и квадратные
- Ни один из перечисленных вариантов
Ответы: 1. — 3 2. — 4 3. — 2 4. — 2 5. — 1
РЕШЕНИЕ НЕЛИНЕЙНЫХ
УРАВНЕНИЙ
Отделение корней
уравнений
-
Пусть дано уравнение
.
(1)
Точным
корнем уравнения (1) на конечном или
бесконечном отрезке
для непрерывной функции
назовем такое значение
,
при котором
.
Так как уравнение может быть достаточно
сложным, редко удается найти его точные
корни, и задача состоит в том, чтобы
найти его приближенные корни и оценить
степень их точности.
Процесс
решения трансцендентного уравнения
общего вида f(x)
= 0 проводится
в два этапа:
1.
Отделение корней, т.е. установление
возможно малых промежутков
,
в которых содержится один и только один
корень уравнения(1);
2.
Уточнение приближенных корней, т.е.
нахождение их с заданной точностью ε.
Теорема
1: Если
непрерывная функция
принимает значения противоположных
знаков на концах
,
т.е.
,
то внутри этого отрезка содержится, по
меньшей мере, один корень уравнения
,
т.е. найдется хотя бы одно число ξ, такое,
что
.
Корень
[
]заведомо
будет единственным, если производная
существует и сохраняет постоянный знак
внутри интервала
,
т.е.
(или
)
при
.
Аналитический
метод отделения корней
Процесс
отделения корней начинается с установления
знаков функции
в граничных точках
и
области ее существования. Затем
определяются знаки функции
в
ряде промежуточных точек
,
выбор которых учитывает особенности
функции
.
(Имеются в виду точки, где функция имеет
экстремум или разрыв) Если окажется,
что
,
то в силу теоремы в интервале
существует корень уравнения
.
Можно сузить полученные промежутки
методом простой подстановки значений
в уравнение.
Пример1.
Отделить корни уравнения
Найдем корни
производной
,
x1=1
x2=0.75
x3=1
Составим таблицу.
В первой строке поместим в порядке
возрастания концы интервала и точки
экстремумов, во второй знаки функции в
этих точках.
х |
-∞ |
-1 |
0.75 |
1 |
∞ |
Sign |
+ |
— |
— |
— |
+ |
Уравнение
имеет два корня.
,
.
Уменьшим промежутки, в которых находятся
корни:
х |
-∞ |
-2 |
-1 |
0.75 |
1 |
2 |
∞ |
Sign |
+ |
+ |
— |
— |
— |
+ |
+ |
Следовательно,
,
.
-
Графический метод отделения корней
Действительные
корни уравнения f(x)=0
приближенно можно определить как
абсциссы точек пересечения графика
функции
с осью Ох. Если уравнение
не имеет близких между собой корней, то
этим способом корни легко определяются.
На практике часто удобно тождественно
преобразовать уравнение к виду
,
где
и
—
более простые функции, чем функция
.
Тогда, построив графики
и
,
искомые корни получаются как абсциссы
точек пересечения этих графиков.
Пример2.
Отделить
графически корни уравнения x·ln(x)-1=0.
Преобразуем его к виду 1/x=ln(x)
и построим графики.
Замечание редакционного характера: чтобы не путать x градусов с нулевой степенью, нужно в показателе вместо 0 писать команду circ
У Вас итоговый вывод верен, но по ходу дела в уравнении с произведением синусов и косинусов исчезла градусная мера углов 135 и 185. Я бы с самого начала считал всё в радианах, то есть заменил бы x градусов на пx/180 радиан.
Так или иначе, надо найти минимальное расстояние между членами двух арифметических прогрессий. Для этого достаточно рассмотреть модуль разности. Можно изменить масштаб, домножив на 35 и 37 и поделив на 36. Тогда будет 74n и 70k+35. Одно число чётно, другое нечётно. Разница как минимум 1. Она достигается при условии 74n=70k+36, 37n=35k+18, 2n=35(k-n)+18, 2(n-9)=35(k-n). Полагаем k-n=2, n-9=35, n=44, k=46.
Возвращая масштаб обратно, имеем в ответе число 36/(36^2-1)=36/1295.