Как найти пропущенный множитель

Ответим на вопрос, какой множитель пропущен в записи выражения. 1.

9* + 6 = 51.

Для этого перенесем в правую часть выражения слагаемое 6:

Получается, что произведение 9 и множителя равняется 51 — 6 = 45.

Согласно таблице умножения, чтобы получить 45, необходимо умножить 9 на 5.

Ответ: 5.

2. Аналогично для 9* +9=54.

Произведение 9 и множителя равно 54 — 9 = 45.

Множитель равен 5.
Ответ: 5.

3. Аналогично для 9* + 5 = 81.

Произведение равно 81 — 5 = 76.

Решения нет.

Название компонентов при умножении:

3      ·       4    =        12

               
   1 множитель     2 множитель   произведение

Как найти первый множитель?

Чтобы
найти первый множитель, надо произведение разделить на второй множитель.

Как найти второй множитель?

Чтобы
найти второй множитель, надо произведение разделить на первый множитель.

Название компонентов при умножении:

3      ·       4    =        12

               
   1 множитель     2 множитель   произведение

Как найти первый множитель?

Чтобы
найти первый множитель, надо произведение разделить на второй множитель.

Как найти второй множитель?

Чтобы
найти второй множитель, надо произведение разделить на первый множитель.

Название компонентов при умножении:

3      ·       4    =        12

               
   1 множитель     2 множитель   произведение

Как найти первый множитель?

Чтобы
найти первый множитель, надо произведение разделить на второй множитель.

Как найти второй множитель?

Чтобы
найти второй множитель, надо произведение разделить на первый множитель.

Название компонентов при умножении:

3      ·       4    =        12

               
   1 множитель     2 множитель   произведение

Как найти первый множитель?

Чтобы
найти первый множитель, надо произведение разделить на второй множитель.

Как найти второй множитель?

Чтобы
найти второй множитель, надо произведение разделить на первый множитель.

Название компонентов при умножении:

3      ·       4    =        12

               
   1 множитель     2 множитель   произведение

Как найти первый множитель?

Чтобы
найти первый множитель, надо произведение разделить на второй множитель.

Как найти второй множитель?

Чтобы
найти второй множитель, надо произведение разделить на первый множитель.

Название компонентов при умножении:

3      ·       4    =        12

               
   1 множитель     2 множитель   произведение

Как найти первый множитель?

Чтобы
найти первый множитель, надо произведение разделить на второй множитель.

Как найти второй множитель?

Чтобы
найти второй множитель, надо произведение разделить на первый множитель.

Содержание материала

  1. Сложение дробей с одинаковыми знаменателями
  2. Видео
  3. НОЗ и НОК
  4. Как устроена десятичная дробь
  5. Как привести десятичную дробь к новому знаменателю
  6. Чтобы найти общий знаменатель, перемножим знаменатели:
  7. Вычитание дробей с разными знаменателями

Сложение дробей с одинаковыми знаменателями

Такой случай наиболее простой. При сложении дробей с равными знаменателями складывают числители, а знаменатель оставляют тот же.

Пример.

C помощью букв это правило сложения можно записать

C помощью букв это правило сложения можно записать так:

Запомните!

Записывая ответ, проверьте нельзя ли п Запомните! Записывая ответ, проверьте нельзя ли полученную др

Записывая ответ, проверьте нельзя ли полученную дробь сократить.

Видео

НОЗ и НОК

При работе с дробями используются наименьший общий знаменатель (НОЗ) — это наименьшее натуральное число среди всех ОЗ ряда дробных чисел и наименьшее общее кратное (НОК) — это самый меньший общий делитель данного ряда чисел.

Наименьшее общее кратное — это НОЗ этого ряда. К нему можно прийти поиском НОК.

Например, необходимо провести следующую операцию для двух дробных значений: 7/16, 19/6. Нужно узнать, какой НОК у 16 и 6. Простые множители этих чисел:

16=8*2; 6= 3*2

НОК (16, 6) =8*2*3= 48.

Число 48 и есть искомый НОЗ.

Существует простое правило о том, как перевести дробное число к НОЗ. Вычисления проводятся по порядку:

  1. Найти НОК.
  2. Для каждого дробного числа из ряда определить дополнительный множитель. Определить его можно с помощью деления НОЗ на знаменатель каждой из дробей.
  3. Умножить обе части каждой дроби на их дополнительные множители.

Пример. Есть 2 дробных значения: 3/14 и 18/30. Теперь можно воспользоваться правилом, для того чтобы найти НОЗ:

  1. Найти НОК: 14 = 2*7; 30 = 5*2*3; НОК (14,32) = 5*2*7*3 = 210;
  2. Найти дополнительные множители: 210/14 = 15; 210/30 = 7;
  3. Перемножить верхнюю и нижнюю части с дополнительными множителями: 3*15/14*15 = 45/210; 18*7/30*7 = 126/210.

Как устроена десятичная дробь

В десятичной дроби знаменатель всегда равен 10, 100, 1000, 10000 и т.д. Выходит, что десятичная дробь — это то, что получается, если разделить числитель на знаменатель. Десятичную дробь записывают в строчку через запятую, чтобы отделить целую часть от дробной. Вот так:

  • 0,3
  • 4,23
  • 9,939

Конечная десятичная дробь — это дробь, в которой количество цифр после запятой точно определено.

Бесконечная десятичная дробь — это когда после запятой количество цифр бесконечно. Для удобства математики договорились округлять эти цифры до 1-3 после запятой.

Как привести десятичную дробь к новому знаменателю

Для приведения десятичной дроби к новому знаменателю, необходимо десятичную дробь преобразовать в обыкновенную дробь. Затем числитель и знаменатель дроби домножить на дополнительный множитель.

Разберём пример. Приведём десятичную дробь 2.5 к знаменателю 4.Преобразуем десятичную дробь в обыкновенную дробь. 2.5 =5/2 Найдём дополнительный множитель — для этого разделим 4 на 2 получится 4 / 2 = 2. Домножим числитель и знаменатель дроби на 2 получится дробь 10/4

2.5

=

2.5 × 101 × 10

=

2510

=

5 × 5 2 × 5

=

52

=

5 × 22 × 2

=

104

Чтобы найти общий знаменатель, перемножим знаменатели:

Дополнительный множитель к первой дроби:

Дробь примет вид:

Дополнительный множитель ко второй дроби:

Дробь примет вид:

Дополнительный множитель к третьей дроби:

Дробь примет вид:

Итак, были дроби:

Запишем полученные дроби с общим знаменателем:

Вычитание дробей с разными знаменателями

Теперь научимся вычитать дроби у которых разные знаменатели. Когда вычитают дроби их знаменатели должны быть одинаковыми. Но одинаковыми они бывают не всегда.

Например, от дроби Общий знаменатель находят по тому же принципу, кот можно вычесть дробь Общий знаменатель находят по тому же принципу, кот, поскольку у этих дробей  одинаковые знаменатели. А вот от дроби Общий знаменатель находят по тому же принципу, кот нельзя вычесть дробь Общий знаменатель находят по тому же принципу, кот, поскольку у этих дробей разные знаменатели. В таких случаях дроби нужно приводить к одинаковому (общему) знаменателю.

Общий знаменатель находят по тому же принципу, которым мы пользовались при сложении дробей с разными знаменателями. В первую очередь находят НОК знаменателей обеих дробей. Затем НОК делят на знаменатель первой дроби и получают первый дополнительный множитель, который записывается над первой дробью. Аналогично НОК делят на знаменатель второй дроби и получают второй дополнительный множитель, который записывается над второй дробью.

Затем дроби умножаются на свои дополнительные множители. В результате этих операций, дроби у которых были разные знаменатели, обращаются в дроби, у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем.

Пример 1. Найти значение выражения: У этих дробей разные знаменатели, поэтому нужно пр

У этих дробей разные знаменатели, поэтому нужно привести их к одинаковому (общему) знаменателю.

Сначала находим НОК знаменателей обеих дробей. Знаменатель первой дроби это число 3, а знаменатель второй дроби — число 4. Наименьшее общее кратное этих чисел равно 12

НОК (3 и 4) = 12

Теперь возвращаемся к дробям Найдём дополнительный множитель для первой дроби.  и Найдём дополнительный множитель для первой дроби.

Найдём дополнительный множитель для первой дроби. Для этого разделим НОК на знаменатель первой дроби. НОК это число 12, а знаменатель первой дроби — число 3. Делим 12 на 3, получаем 4. Записываем четвёрку над первой дробью:

Аналогично поступаем и со второй дробью. Делим НОК

Аналогично поступаем и со второй дробью. Делим НОК на знаменатель второй дроби. НОК это число 12, а знаменатель второй дроби — число 4. Делим 12 на 4, получаем 3. Записываем тройку над второй дробью:

Теперь у нас всё готово для вычитания. Осталось ум

Теперь у нас всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли к тому, что дроби у которых были разные

Мы пришли к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример до конца:

Получили ответ 

Получили ответ Попробуем изобразить наше решение с помощью рисунк

Попробуем изобразить наше решение с помощью рисунка. Если от  пиццы отрезать  пиццы, то получится  пиццы

Это подробная версия решения. Находясь в школе, на

Это подробная версия решения. Находясь в школе, нам пришлось бы решить этот пример покороче. Выглядело бы такое решение следующим образом:

Приведение дробей  и  к общему знаменателю также м

Приведение дробей  и  к общему знаменателю также может быть изображено с помощью рисунка. Приведя эти дроби к общему знаменателю, мы получили дроби  и . Эти дроби будут изображаться теми же кусочками пицц, но в этот раз они будут разделены на одинаковые доли (приведены к одинаковому знаменателю):

Первый рисунок изображает дробь  (восемь кусочков

Первый рисунок изображает дробь Пример 2. Найти значение выражения  (восемь кусочков из двенадцати), а второй рисунок — дробь Пример 2. Найти значение выражения  (три кусочка из двенадцати). Отрезав от восьми кусочков три кусочка мы получаем пять кусочков из двенадцати. Дробь Пример 2. Найти значение выражения  и описывает эти пять кусочков.

Пример 2. Найти значение выражения У этих дробей разные знаменатели, поэтому сначала

У этих дробей разные знаменатели, поэтому сначала нужно привести их к одинаковому (общему) знаменателю.

Найдём НОК знаменателей этих дробей.

Знаменатели дробей это числа 10, 3 и 5. Наименьшее общее кратное этих чисел равно 30

НОК (10, 3, 5) = 30

Теперь находим дополнительные множители для каждой дроби. Для этого разделим НОК на знаменатель каждой дроби.

Найдём дополнительный множитель для первой дроби. НОК это число 30, а знаменатель первой дроби — число 10. Делим 30 на 10, получаем первый дополнительный множитель 3. Записываем его над первой дробью:

Теперь находим дополнительный множитель для второй

Теперь находим дополнительный множитель для второй дроби. Разделим НОК на знаменатель второй дроби. НОК это число 30, а знаменатель второй дроби — число 3. Делим 30 на 3, получаем второй дополнительный множитель 10. Записываем его над второй дробью:

Теперь находим дополнительный множитель для третье

Теперь находим дополнительный множитель для третьей дроби. Разделим НОК на знаменатель третьей дроби. НОК это число 30, а знаменатель третьей дроби — число 5. Делим 30 на 5, получаем третий дополнительный множитель 6. Записываем его над третьей дробью:

Теперь всё готово для вычитания. Осталось умножить

Теперь всё готово для вычитания. Осталось умножить дроби на свои дополнительные множители:

Мы пришли  к тому, что дроби у которых были разные

Мы пришли  к тому, что дроби у которых были разные знаменатели, превратились в дроби у которых одинаковые (общие) знаменатели. А как вычитать такие дроби мы уже знаем. Давайте дорешаем этот пример.

Продолжение примера не поместится на одной строке, поэтому переносим продолжение на следующую строку. Не забываем про знак равенства (=) на новой строке:

В ответе получилась правильная дробь, и вроде бы н

В ответе получилась правильная дробь, и вроде бы нас всё устраивает, но она слишком громоздка и некрасива. Надо бы сделать её проще. А что можно сделать? Можно сократить эту дробь.

Чтобы сократить дробь Итак, находим НОД чисел 20 и 30:, нужно разделить её числитель и знаменатель на наибольший общий делитель (НОД) чисел 20 и 30.

Итак, находим НОД чисел 20 и 30:

Теперь возвращаемся к нашему примеру и делим числи

Теперь возвращаемся к нашему примеру и делим числитель и знаменатель дроби  на найденный НОД, то есть на 10

Получили ответ 

Получили ответ Теги

Теги

Найди пропущенный множитель и закончи вычисления 48061 * ?

= 05, 72902 * ?

= 14, 52004 * ?

= 32.

На этой странице сайта вы найдете ответы на вопрос Найди пропущенный множитель и закончи вычисления 48061 * ?,
относящийся к категории Математика. Сложность вопроса соответствует базовым
знаниям учеников 10 — 11 классов. Для получения дополнительной информации
найдите другие вопросы, относящимися к данной тематике, с помощью поисковой
системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и
задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям.
Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы
помогут найти нужную информацию.

Х — меньшее  число  
(198 — х) — большее число  
6,25% = 0,0625
Уравнение  
х/6 = 0,0625(198 — х) 
<span>х = 6 * 0,0625(198 — х) 
</span><span>х = 0,375(198 — х) </span>
х = 0,375 * 198 — 0,375х  
х + 0,375х = 74,25  
1,375х = 74,25  
х = 54  меньшее число  
198 — 54 = 144 — второе число

6 * 1/3 = 2 (см) — второе звено

100*4=400 кг
50*4=200 кг
дальше складываем
400+200=600 кг
Ответ: 600 кг

1 неделя — 4 мешка
2 неделя — 5 мешков
Всего — 540 кг
Сколько в 1-ю — ?
Сколько во 2-ю — ?

4+5=9 (мешков) всего
540 кг:9=60 кг (1 мешок)
60 кг*4=240 кг (в 1-ю)
60 кг*5=300 кг (во 2-ю)
Ответ: в первую неделю привезли 240 кг крупы, во вторую — 300 кг

4/7 x 8=37.6 вес 8 золотых слитков

Понравилась статья? Поделить с друзьями:
  • Как найти объем раствора серной кислоты
  • Аккумулятор поменял полярность как исправить
  • Презентация как составить режим дня
  • Как найти reels в инстаграм который понравился
  • Ошибка ф12 на стиральной машине индезит как исправить