Как найти проводимость диэлектрика

1.2.1. Электропроводность твердых диэлектриков

1.2.2. Электропроводность жидкостей

1.2.3. Электропроводность газов

1.2.4. Поверхностная электропроводность диэлектриков

Все диэлектрические материалы под воздействием постоянного напряжения пропускают некоторый незначительный ток, называемый током утечки. Чем выше удельное сопротивление материала r, тем выше качество электроизоляционного материала. Электропроводность диэлектриков имеет ряд характерных особенностей.

Во-первых, ввиду очень большого удельного сопротивления диэлектрика, ток через объем участка изоляции — объемный сквозной ток IV — очень мал и сравнимым с ним оказывается ток по поверхности — поверхностный сквозной ток IS. Поэтому необходимо учитывать наряду с объемным и поверхностный ток, полагая общий ток участка изоляции равным:

. (1.3)

Следовательно проводимость G = I / U складывается из проводимостей объемной G = IV / U и поверхностной G = IS / U:

. (1.4)

Величины обратные указанным проводимостям, называют сопротивлениями участка изоляции — объемным RV и поверхностным RS. Общее сопротивление изоляции определяют как результирующее двух параллельно включенных сопротивлений:

. (1.5)

Под удельным сопротивлением диэлектрика ρ обычно понимают удельное объемное сопротивление, а для характеристики RS вводят понятие удельного поверхностного сопротивления r S.

Второй характерной особенностью электропроводности диэлектриков является постепенное спадание тока со временем после подключения постоянного напряжения. В начальный промежуток времени в цепи протекает быстро спадающий ток смещения Iсм, плотность которого Jсм = ∂D /∂t. Этот ток прекращается за время порядка постоянной времени RC схемы источник — образец, которое обычно мало. Однако ток продолжает изменяться и после этогочасто в течение минут и даже часов. Медленно меняющуюся составляющую тока, обусловленную перераспределением свободных зарядов в объеме диэлектрика, называют током абсорбции Iабс.

Ток абсорбции связан с поглощением носителей заряда объемом диэлектрика: часть носителей заряда встречает на своем пути дефекты решетки, захватывающие и удерживающие носители. Со временем, когда все дефекты заполнятся носителями, ток абсорбции прекращается и остается только не изменяющийся во времени сквозной ток Iскв, который обусловлен прохождением носителей заряда от одного электрода до другого и равен сумме объемного и поверхностного сквозных токов:

(1.6)

Ток абсорбции приводит к накоплению носителей заряда в определенных местах диэлектрика — дефектах решетки, границах раздела, неоднородностях. Вследствие появления объемных зарядов распределение напряженности поля в диэлектрике становится неоднородным.

1.2.1. Электропроводность твердых диэлектриков

Электропроводность твердых диэлектриков чаще всего носит не электронный а ионный характер. Это связано с тем, что ширина запрещенной зоны в диэлектриках D W >> kT и лишь ничтожное количество электронов может отрываться от своих атомов за счет теплового движения. Ионы же часто оказываются слабо связанными в узлах решетки, и энергия W, необходимая для их срыва, сравнима с kT. Поэтому, несмотря на меньшую подвижность ионов по сравнению с подвижностью электронов, ионная проводимость оказывается больше электронной за счет большей концентрации свободных ионов:

(1.7)

Носителями заряда в диэлектриках обычно оказываются ионы малых размеров, подвижность которых выше.

Удельная электрическая проводимость твердых диэлектриков, как и полупроводников, растет с ростом температуры по экспоненциальному закону:

. (1.8)

Однако зависимость g (Т) часто обусловлена не экспоненциальным ростом концентрации носителей, как в полупроводниках, а ростом подвижности.

Обычно в диэлектрике имеется несколько видов носителей заряда. Например, кроме ионов основного вещества могут иметься слабо связанные ионы примесей. В этом случае удельная проводимость складывается из собственной и примесной.

Ионная электропроводность сопровождается переносом вещества: положительные ионы движутся к катоду, а отрицательные к аноду. Электролиз особенно ярко выражен при повышенных температурах, когда r мало, и приложении высоких постоянных напряжений. По выделившемуся на электродах веществу можно определить характер носителей заряда. У диэлектриков с чисто ионным характером электропроводности строго выполняется закон Фарадея пропорциональности между количеством пропущенного электричества и количеством выделившихся веществ.

Некоторые диэлектрики обладают электронной или дырочной электропроводностью. Однако носителями часто являются электроны не основного вещества, а примесей и дефектов.

В кристаллах удельное сопротивление зависит от направления. Вдоль оптической оси оно ниже, чем поперек этой оси.

1.2.2. Электропроводность жидкостей

Электропроводность жидкостей обусловлена ионами, образующимися при диссоциации молекул самой жидкости или ее примесей. В связи с увеличением энергии хаотического теплового движения молекул степень ионизации и концентрация ионов растет с повышением температуры по экспоненциальному закону:

, (1.9)

где W- энергия диссоциации. Отсюда удельная проводимость:

. (1.10)

Здесь μ+ и μ — подвижности положительных и отрицательных ионов; q — заряд иона; n и А — константы.

Диссоциация молекул легче происходит в полярных жидкостях, чем в неполярных. Ввиду того, что энергия диссоциации полярных жидкостей значительно меньше, чем неполярных, их удельная проводимость существенно выше. Так, для сильно полярных жидкостей (дистиллированная вода, этиловый спирт) r = 103 — 105, для слабо полярных (касторовое масло) r = 108 — 1010, для неполярных (бензол, трансформаторное масло) r > 1010 — 1013 Ом× м. В неполярных жидкостях молекулы основного вещества практически не диссоциируют на ионы, и их электропроводность обусловлена примесями, особенно полярных веществ.

В жидкостях с примесями иногда наблюдается молионная электропроводность, характерная для коллоидных систем, которые представляют собой тесную смесь двух веществ (фаз), причем одна фаза в виде мелких частиц равномерно взвешена в другой. Наиболее часто встречаются в электроизоляционной технике эмульсии и суспензии. Стабильность эмульсий и суспензий объясняется наличием на поверхности частиц дисперсной фазы электрических зарядов. Такие заряженные частицы дисперсной фазы и называют молионами. При наложении на коллоидную систему электрического поля молионы приходят в движение, что выражается в виде электрофореза.

1.2.3. Электропроводность газов

Электропроводность газов обусловлена наличием в них некоторого количества заряженных частиц. В нормальных условиях число заряженных частиц в 1 м3 воздуха не превышает нескольких десятков миллионов.

Происхождение носителей заряда в газах объясняется различными факторами: радиоактивным излучением Земли; радиацией, проникающей из космического пространства; излучением Солнца; иногда тепловым движением молекул и т. п. При поглощении энергии бомбардирующей частицы молекула газа теряет электрон и превращается в положительный ион. Высвобождаемый при этом электрон «прилипает» к нейтральной молекуле, образуя отрицательный ион.

Заряженные ионы, так же как и окружающие их не имеющие электрического заряда молекулы газа, совершают беспорядочные тепловые движения, и вследствие диффузии происходит выравнивание концентрации ионов в газе. При встрече положительных и отрицательных ионов происходит их рекомбинация.

В стационарном случае, когда число ионов не изменяется с течением времени, между процессами генерации и рекомбинации устанавливается динамическое равновесие при котором число положительных ионов в газе равно числу отрицательных ионов N+ = N, а число рекомбинирующих ионовпостоянно Nр = a N+ N, где a — коэффициент рекомбинации ионов газа [м3/с].

При наложении внешнего электрического поля положительные и отрицательные ионы, преодолевая сопротивление трения газа, будут двигаться между электродами со скоростями u + = m +E и u = m E, где m + и m — подвижности положительного и отрицательного ионов.

Если напряженность поля Е очень мала, так что протекающий ток не меняет концентрации ионов в газе, плотность тока

. (1.11)

Принимая во внимание, что J = g Е, получаем выражение для удельной проводимости газа:

(1.12)

При малых значениях напряженности внешнего электрического поля, когда Nр, a , m + и m можно считать постоянными, плотность тока в газе прямо пропорциональна напряженности приложенного поля, т. е. в этих условиях соблюдается закон Ома.

Однако при дальнейшем возрастании напряженности поля закон Ома не выполняется. В этом случае все ионы будут уходить на электроды не рекомбинируя. Так как число ионов в газе при малых полях ограничена и не зависит от напряжения, то дальнейшее повышение напряжения не вызывает увеличения тока. Этот ток называют током насыщения. Значение плотности тока насыщения в газах не превышает 10-16 — 10-14 А/м2.

При дальнейшем повышении Е до значений, близких к электрической прочности Епр, возникает возможность генерации заряженных частиц в электрическом поле из-за появления ударной ионизации. В предпробивных полях создаются условия для возникновения «лавин», и ток очень резко возрастает, пока при J = Епр не наступает пробой газа.

1.2.4. Поверхностная электропроводность диэлектриков

Поверхностная электропроводность диэлектриков создается благодаря неизбежному увлажнению, окислению, загрязнению и т. д. поверхностных слоев электрической изоляции. Поэтому диэлектрик характеризуется значением удельного поверхностного сопротивления RS.

, (1.13)

где h — расстояние между параллельными друг другу кромками электродов, b — длина электродов.

У проводниковых материалов поверхностные токи исчезающе малы по сравнению с объемными, поэтому у этих материалов поверхностное сопротивление не учитывается. Не определяется поверхностное сопротивление и у жидких и газообразных диэлектриков. Не имеет смысла определение поверхностного сопротивления и у тонких слоев твердых диэлектриков так как в этом случае практически невозможно отделить поверхностные токи утечки от объемных.

Характер зависимости RS диэлектриков от различных факторов (температуры, влажности, величины приложенного напряжения) сходен с характером изменения R. Однако при изменениях влажности окружающей среды значения RS изменяются быстрее, чем значения R.

Рост поверхностной проводимости для растворимых диэлектриков объясняется наличием на их поверхности ионов, а для пористых — влаги. Кроме того, RS падает при загрязнении поверхности диэлектрика.

Для повышения поверхностного сопротивления электроизоляционных изделий их покрывают влагостойкими гидрофобными веществами с большим значением RS.

Электропроводность диэлектриков

Электропроводность

явление, обусловленное наличием свободных
и слабо связанных носителей заряда в
диэлектрике. Эти заряды под действием
постоянного приложенного напряжения
приобретают направленное движение,
вызывая тем самым электрический ток.

Идеальный
диэлектрик должен иметь бесконечно
большое электрическое сопротивление
и не должен пропускать электрический
ток. Однако реальные диэлектрики обладают
некоторой электропроводностью (током
утечки), и их удельное сопротивление
составляет величину, лежащую в пределах
от 106
(практически 109)
до 1017
Ом·м и выше. Поэтому, в диэлектрике при
подведении к нему электрического поля
наряду с поляризационными процессами,
возникает также явление электропроводности.

Поляризационные
процессы смещения связанных зарядов в
веществе до момента установления
равновесного состояния протекают во
времени, создавая токи смещения, в
диэлектриках. Токи смещения упругосвязанных
зарядов при электронной и ионной
поляризациях столь кратковременны, что
их обычно не удается зафиксировать
прибором. Токи смещения различных видов
замедленной поляризации, наблюдаемые
у большого числа технических диэлектриков,
называют абсорбционными токами. При
постоянном напряжении абсорбционные
токи, меняя свое направление, протекают
только в моменты включения и выключения
напряжения; при переменном напряжении
они протекают в течение всего времени
нахождения материала в электрическом
поле.

Наличие
в технических диэлектриках небольшого
числа свободных зарядов приводит к
возникновению слабых по величине
сквозных
токов.

Ток утечки в техническом диэлектрике
представляет собой сумму сквозного
тока и тока абсорбции. Для плотностей
токов можно записать:

+
.

Плотность
тока смещения определяется скоростью
изменения вектора электрического
смещенияD:

=
,

обусловленного
мгновенными (электронными, ионными) и
замедленными смещениями зарядов.

Как
видно из рисунка 3.3., после завершения
процессов поляризации через диэлектрик
протекает только сквозной ток. Токи
смещения необходимо принимать во
внимание при измерениях проводимости
диэлектриков ввиду того, что при небольшой
выдержке образца диэлектрика под
напряжением обычно регистрируется не
только сквозной ток, но и сопровождающий
его ток абсорбции, вследствие чего может
быть формироваться неправильное
представление о проводимости.

Проводимость
диэлектрика при постоянном напряжении
определяется по сквозному току,
сопровождающемуся выделением и
нейтрализацией зарядов на электродах.
При переменном напряжении активная
проводимость определяется не только
сквозным током, но и активными составляющими
абсорбционных токов.

Истинной
сопротивление изоляции, определяющее
сквозной ток, моет быть вычислено по
следующей формуле:

.

Поскольку
при определении абсорбционных токов
даже замедленных видов поляризации
возникают некоторые трудности,
сопротивление диэлектрика рассчитывают
обычно как частное от деления напряжения
на ток, измеренный через одну минуту
после включения напряжения и принимаемый
за сквозной ток.

Соседние файлы в папке Лекции_2010

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Увеличить/уменьшить масштаб

Скопировать текст страницы

(работает в Chrome 42+,
Microsoft Internet Explorer и Mozilla FireFox
c установленным Adobe Flash Player)

Справка

Текущие страницы выделены рамкой.

Содержание

Обращаясь к сайту «История Росатома — Электронная библиотека»,
я соглашаюсь с условиями использования представленных там материалов.

Правила сайта (далее – Правила)

  1. Общие положения
    1. Настоящие правила определяют порядок и условия использования материалов, размещенных на сайте www.biblioatom.ru (далее именуется Сайт), а также правила использования материалов Сайтом и порядок
      взаимодействия с Администрацией Сайта.
    2. Любые материалы, размещенные на Сайте, являются объектами интеллектуальной собственности (объектами авторского права или смежных прав, а также прав на средства индивидуализации). Права Администрации
      Сайта на указанные материалы охраняются законодательством о правах на результаты интеллектуальной деятельности.
    3. Использование материалов, размещенных на Сайте, допускается только с письменного согласия Администрации Сайта или иного правообладателя, прямо указанного на конкретном материале, размещенном на
      Сайте, или в непосредственной близости от указанного материала.
    4. Права на использование и разрешение использования материалов, размещенных на Сайте, принадлежащих иным правообладателям, нежели Администрация Сайта, допускается с разрешения таких правообладателей
      или в соответствии с условиями, установленными такими правообладателями. Никакое из положений настоящих Правил не дает прав третьим лицам на использование материалов правообладателей, прямо указанных на
      конкретном материале, размещенном на Сайте, или в непосредственной близости от указанного материала.
    5. Настоящие Правила распространяют свое действие на следующих пользователей: информационные агентства, электронные и печатные средства массовой информации, любые физические и юридические лица, а также
      индивидуальные предприниматели (далее — «Пользователи»).
  2. Использование материалов. Виды использования
    1. Под использованием материалов Сайта понимается воспроизведение, распространение, публичный показ, сообщение в эфир, сообщение по кабелю, перевод, переработка, доведение до всеобщего сведения и иные
      способы использования, предусмотренные действующим законодательством Российской Федерации.
    2. Использование материалов Сайта без получения разрешения от Администрации Сайта не допустимо.
    3. Внесение каких-либо изменений и/или дополнений в материалы Сайта запрещено.
    4. Использование материалов Сайта осуществляется на основании договоров с Администрацией Сайта, заключенных в письменной форме, или на основании письменного разрешения, выданного Администрацией Сайта.
    5. Запрещается любое использование (бездоговорное/без разрешения) фото-, графических, видео-, аудио- и иных материалов, размещенных на Сайте, принадлежащих Администрации Сайта и иным правообладателям
      (третьим лицам).
    6. Стоимость использования каждого конкретного материала или выдача разрешения на его использование согласуется Пользователем и Администрацией Сайта в каждом конкретном случае.
    7. В случае необходимости использования материалов Сайта, права на которые принадлежат третьим лицам (иным правообладателям, нежели Администрация Сайта, о чем прямо указано на таких материалах либо в
      непосредственной близости от них), Пользователи обязаны обращаться к правообладателям таких материалов для получения разрешения на использование материалов.
  3. Обязанности Пользователей при использовании материалов Сайта
    1. 3.1. При использовании материалов Сайта в любых целях при наличии разрешения Администрации Сайта, ссылка на Сайт обязательна и осуществляется в следующем виде:
      1. в печатных изданиях или в иных формах на материальных носителях Пользователи обязаны в каждом случае использования материалов указать источник – электронная библиотека «История Росатома»
        (www.biblioatom.ru)
      2. в интернете или иных формах использования в электронном виде не на материальных носителях, Пользователи в каждом случае использования материалов обязаны разместить гиперссылку на Сайт —
        электронная
        библиотека «История Росатома» (www.biblioatom.ru), гиперссылка должна являться активной и прямой, при нажатии на которую Пользователь переходит на конкретную страницу Сайта, с которой заимствован
        материал.
      3. Ссылка на источник или гиперссылка, указанные в пп. 3.1.1 и 3.1.2. настоящих Правил, должны быть помещены Пользователем в начале используемого текстового материала, а также непосредственно
        под используемым аудио-, видео-, фотоматериалом, графическим материалом Администрации Сайта.
    2. Размеры шрифта ссылки на источник или гиперссылки не должны быть меньше размера шрифта текста, в котором используются материалы Сайта, либо размера шрифта текста Пользователя, сопровождающего аудио-,
      видео-, фотоматериалы и графические материалы Сайта, а также цвет ссылки должен быть идентичен цветам ссылок на Сайте и должен быть видимым Пользователю.
    3. Использование материалов с Сайта, полученных из вторичных источников (от иных правообладателей, нежели Администрация Сайта, о чем прямо указано на таких материалах либо в непосредственной близости от
      них), возможно только со ссылкой на эти источники и, в случае необходимости, установленной такими источниками (правообладателями), — с их разрешения.
    4. Не допускается переработка оригинального материала (произведения), взятого с Сайта, в том числе сокращение материала, иная его переработка, в том числе приводящая к искажению его смысла.
  4. Права на материалы третьих лиц, урегулирование претензий
    1. Материалы, права на которые принадлежат третьим лицам, размещенные на Сайте, размещены либо с разрешения правообладателя, полученного Администрацией Сайта, либо, в случае, если таковое использование
      прямо не запрещено правообладателем, в соответствии с Законодательством РФ в информационных целях с обязательным указанием имени автора, материал которого используется, и источника заимствования.
    2. В случае, если в обозначении авторства материалов в соответствии с п. 4.1. настоящих Правил содержится ошибка, или в случае использования материала с предполагаемым или реальным нарушением прав
      третьих лиц, или в иных спорных случаях использования объектов интеллектуальной собственности, размещенных на Сайте, в том числе в случае, когда права третьего лица тем или иным образом нарушаются с
      использованием Сайта, применяется следующая схема урегулирования претензий третьих лиц к Администрации Сайта:

      1. в адрес Администрации Сайта по электронной почте на адрес info@biblioatom.ru направляется претензия, содержащая информацию об объекте интеллектуальной собственности, права на который
        принадлежат
        заявителю и который используется незаконно посредством Сайта или с нарушением правил использования, или иным образом права заявителя как обладателя исключительного права на объект интеллектуальной
        собственности, размещенный на Сайте, нарушены посредством Сайта, с приложением документов, подтверждающих правомочия заявителя, данные о правообладателе и копия доверенности на действия от лица
        правообладателя, если лицо, направляющее претензию, не является руководителем компании правообладателя или непосредственно физическим лицом — правообладателем. В претензии также указывается адрес
        страницы
        Сайта, которая содержит данные, нарушающие права, и излагается полное описание сути нарушения прав;
      2. Администрация Сайта обязуется рассмотреть надлежаще оформленную претензию в срок не менее 5 (пяти) рабочих дней с даты ее получения по электронной почте. Администрация Сайта обязуется
        уведомить
        заявителя о результатах рассмотрения его заявления (претензии) посредством отправки письма по электронной почте на адрес, указанный заявителем, а также направить ответ в письменном виде на адрес,
        указанный заявителем (в случае неуказания такового адреса отправки, обязательство по предоставлению письменного ответа на претензию с Администрации Сайта снимается). В том числе, Администрация
        Сайта
        вправе запросить дополнительные документы, свидетельства, данные, подтверждающие законность предъявляемой претензии. В случае признания претензии правомерной, Администрация Сайта примет все
        возможные
        меры, необходимые для прекращения нарушения прав заявителя и урегулирования претензии;
      3. Администрация Сайта в любом случае предпринимает все возможные меры к скорейшему удовлетворению обоснованных претензий третьих лиц и стремиться к максимально скорому урегулированию всех
        спорных
        вопросов.
  5. Прочие условия
    1. Администрация Сайта оставляет за собой право изменять настоящие Правила в одностороннем порядке в любое время без уведомления Пользователей. Любые изменения будут размещены на Сайте. Изменения
      вступают в силу с момента их опубликования на Сайте.
    2. По всем вопросам использования материалов Сайта Пользователи могут обращаться к Администрации Сайта по следующим координатам: info@biblioatom.ru
    3. Во всем, что не урегулировано настоящими Правилами в отношении вопросов использования материалов на Сайте, стороны руководствуются положениями Законодательства РФ.

Общие понятия

По сравнению с электропроводностью проводников (см. разд. 2) и полупроводников (см. разд. 3) электропроводность диэлектриков имеет ряд характерных особенностей.

Все диэлектрики под воздействием не изменяющегося во времени напряжения пропускают некоторый, хотя и весьма незначительный ток, называемый током утечки (I), который складывается из двух составляющих: объемного тока () и поверхностного тока () (рис. 4.1).

                                                           (4.1)

Следовательно, общая проводимость диэлектрика () складывается из объемной () и поверхностной () проводимостей:

                                                          (4.2)

Величины, обратные указанным проводимостям, соответственно называют объемным () и поверхностным () сопротивлениями.

Следующей характерной особенностью электропроводности диэлектриков является постепенное спадание тока со временем (рис. 4.2). При подключении диэлектрика к не изменяющемуся во времени напряжению в начальный промежуток времени в цепи протекает быстро спадающий ток смещения (Iсм) плотность которого равна:

.

Этот ток спадает за время 1013…1015 с порядка постоянной времени () схемы «источник-образец». То есть в первом приближении можно сказать, что этот ток обусловливается зарядкой геометрической емкости. Однако общий ток продолжает изменяться и после этого. Это спадание может продолжаться в течение нескольких минут и даже часов и обусловлено перераспределением объемных зарядов, а также установлением медленных (в основном) и быстрых видов поляризации. Эту спадающую часть тока называют током абсорбции ().

Со временем, когда произойдет зарядка геометрической емкости, т.е. установятся все виды поляризации, произойдет перераспределение объемных зарядов, и в диэлектрике останется не изменяющийся во времени электрический ток – сквозной ток (), который обусловлен поверхностной и объемной электропроводимостями:

.                 (4.3)

При изменении удельного сопротивления диэлектриков ток абсорбции необходимо исключить, выдерживая образец под напряжением в течение некоторого времени.

Для сравнительной оценки различных диэлектриков в отношении их объемной и поверхностной электропроводности пользуются значениями удельного объемного сопротивления (), и удельного поверхностного сопротивления (). По удельному, объемному сопротивлению может быть определена удельная объемная проводимость:

,

а по удельному поверхностному сопротивлению – удельная поверхностная проводимость:

.

Объемное удельное сопротивление образца диэлектрика произвольной формы может быть найдено из выражения:

                                                        (4.4)

где  – объемное сопротивление образца произвольной формы, Ом;  – геометрический параметр, м.

Так, для плоского образца, у которого  (см. разд. 1), удельное сопротивление равно:

,                                                      (4.5)

где  – площадь поперечного сечения образца (площадь измерительного электрода), м2;  – толщина образца, м.

Объемная удельная проводимость () измеряется в сименсах на метр ().

Удельное поверхностное сопротивление (в омах) может быть найдено из выражения:

,                                     ………………..(4.6)

где  – поверхностное сопротивление образца, Ом;  – длина электродов, м;  – расстояние между электродами, м.

Удельная поверхностная проводимость  измеряется в сименсах.

Электропроводность газов

Электропроводность газов обусловлена наличием в них некоторого количества заряженных частиц. В нормальных условиях число заряженных частиц (ионов газа или твердых и жидких примесей, находящихся во взвешенном состоянии) в 1 м3 атмосферного воздуха не превышает нескольких десятков миллионов.

Происхождение носителей заряда в газах объясняется различными факторами:

· радиоактивным излучением Земли;

· радиацией, проникающей из космического пространства;

· излучением Солнца;

· иногда тепловым движением молекул и т.п.

При поглощении энергии бомбардирующей частицы молекула газа теряет электрон и превращается в положительный ион. Высвобождаемый при этом электрон «прилипает» к нейтральной молекуле, образуя отрицательный ион.

В ряде случаев концентрация свободных носителей заряда может достигать очень больших значений. Это обычно связано с фотоионизацией молекул газа. Такая ионизация может происходить, например, при воздействии ионизирующих излучений: рентгеновских и гамма-лучей, потоков нейтронов и т.п. Заряженные ионы так же, как и окружающие их не имеющие электрического заряда молекулы газа, совершают беспорядочные тепловые движения, и вследствие диффузии происходит выравнивание концен

трации ионов в газе. При встрече положительных и отрицательных ионов происходит их рекомбинация. В стационарном случае, когда число ионов не изменяется с течением времени, между процессами генерации и рекомбинации заряженных частиц устанавливается динамическое равновесие.

Вычислим удельную проводимость газа. При наложении внешнего электрического поля положительные и отрицательные ионы, преодолевая сопротивление трения газа, будут двигаться между электродами со скоростями соответственно:

;

,

где  и  – подвижности положительного и отрицательного ионов.

Зависимость между числом имеющихся в 1 м3 газа положительных () и отрицательных () ионов и числом ионов, рекомбинирующих в 1 м3 газа за время 1 с (), можно представить так:

,                                                  (4.7)

где  – коэффициент рекомбинации ионов газа, м3/с. Для воздуха, например,  м3/с.

В стационарном случае

,

так что .

Если напряженность поля (Е) очень мала, так что протекающий ток не меняет концентрацию ионов в газе, плотность тока может быть определена из выражения:

.                                 (4.8)

Принимая во внимание, что , получим выражение для удельной проводимости газа:

.                 (4.9)

Удельная проводимость воздуха в слабых полях составляет около 10-15 См/м.

Из формулы (4.8) видно, что при малых значениях напряженности внешнего электрического поля, когда , ,  и  можно считать постоянными, плотность тока в газе прямо пропорциональна напряженности приложенного поля, т.е. в этих условиях соблюдается закон Ома (рис. 4.3, участок 0А). Однако при дальнейшем возрастании напряженности приложенного поля из-за возрастания скорости дрейфа ионов вероятность их рекомбинации уменьшается, и в основном все ионы устремятся к электродам. Это ток насыщения (участок АВ).

Для воздуха при расстоянии между электродами 0,01 м насыщение достигается при напряженности поля 0,5 В/м. Плотность тока насыщения в воздухе (при обычных условиях) весьма мала и достигает 10-14 А/м2.

Участок 0АВ называют областью несамостоятельной электропроводности, так как электропроводность (концентрация свободных носителей зарядов) определяется мощностью внешних ионизаторов.

Значение удельного сопротивления воздуха () составляет порядка 1018 Ом∙м. При дальнейшем повышении напряженности поля  В/м (рис. 4.3, участок ВС) происходит значительное повышение плотности тока вследствие процессов ударной ионизации молекул электронами в сильном электрическом поле вплоть до пробоя газового промежутка. Участок ВС – называют областью самостоятельной электропроводности.

Электропроводность жидкостей

Электропроводность жидкостей обусловлена ионами, образующимися при диссоциации молекул самой жидкости или ее примесей. В связи с увеличением энергии хаотического теплового движения молекул степень ионизации и концентрации ионов растет с повышением температуры по экспоненциальному закону:

,                                               (4.10)

где W – энергия диссоциации. Отсюда удельная проводимость равна:

,                                       (4.11)

где n – заряд иона;  и  – подвижности положительных и отрицательных ионов соответственно; А – константа.

Логарифм проводимости жидкости линейно уменьшается с увеличением обратной абсолютной температуры 1/Т (рис.

4.4), как и в собственных полупроводниках. Однако в отличие от полупроводников, для которых , ( – ширина запрещенной зоны), показатель экспоненты в жидкостях определяется энергией их диссоциации:

.

Удельное сопротивление жидкостей равно:

,                (4.12)

где В – константа.

По аналогичному закону изменяется вязкость жидкостей (). Зависимость  жидкостей объясняется как изменением , так и изменением температурной диссоциации молекул .

Диссоциация молекул легче происходит в полярных жидкостях, чем в неполярных. Ввиду того что энергия диссоциации полярных жидкостей значительно меньше, чем неполярных, их удельная проводимость существенно выше. Так, для сильно полярных жидкостей (дистиллированной воды, этилового спирта, ацетона) , для слабо полярных (совола, касторового масла) , для неполярных (бензола, трансформаторного масла)  Ом∙м. В неполярных жидкостях молекулы основного вещества практически не диссоциируют на ионы, и их электропроводность обусловлена примесями особенно полярных веществ.

В жидкостях (и газах) с примесями иногда наблюдается молионная электропроводность, характерная для коллоидных систем, которые представляют собой тесную смесь двух фаз веществ; причем одна фаза в виде мелких частиц (капель, зерен, пылинок и т.п.) равномерно взвешена в другой. Из коллоидных систем наиболее часто встречаются в электроизоляционной технике эмульсии (обе фазы – жидкости) и суспензии (дисперсная фаза – твердое вещество, дисперсионная среда – жидкость). Ста

бильность эмульсий и суспензий, т.е. способность их длительно сохраняться без оседания дисперсной фазы на дно сосуда (или всплывания ее на поверхность) вследствие различия плотностей обеих фаз, объясняется наличием на поверхности частиц дисперсной фазы электрических зарядов (при одноименном заряде частицы взаимно отталкиваются). Такие заряженные частицы дисперсной фазы и называют молионами. При наложении на коллоидную систему электрического поля молионы приходят в движение, что выражается в виде электрофореза.

Примеры практического использования электрофореза – покрытие металлических предметов каучуком и смолами из их суспензий, обезвоживание различных материалов в электрическом поле и др. В отличие от электролиза при электрофорезе не наблюдается образования новых веществ, а лишь меняется относительная концентрация дисперсной фазы в различных частях объема вещества. Молионная электропроводность присуща жидким лакам и компаундам, увлажненным маслам и т.п. Ее вклад в проводимость, как и вклад ионной электропроводности, зависит от вязкости жидкости.

Электропроводность твердых диэлектриков

Электропроводность диэлектриков в отличие от электропроводности полупроводников чаще всего носит не электронный, а ионный характер. Это связано с тем, что ширина запрещенной зоны в диэлектриках , лишь ничтожное количество электронов может отрываться от своих атомов за счет теплового движения. Ионы же часто оказываются слабо связанными в узлах решетки, и энергия W, необходимая для их срыва, сравнима с kT, Например, в кристалле NaCl  эВ, а энергия отрыва иона натрия  эВ. Поэтому, несмотря на меньшую подвижность ионов () по сравнению с подвижностью электронов (), ионная проводимость оказывается больше электронной за счет значительно большей концентрации свободных ионов:

.                                           (4.13)

Носителями заряда в диэлектриках обычно оказываются ионы малых размеров, подвижность которых выше:

· протоны в водородсодержащих соединениях (в полимерах, кристаллах типа KH2PO4 и других с водородными связями);

· ионы натрия (в NaCl и в содержащем натрий стекле) и т.д.

При этом следует отметить, что число диссоциированных (сорванных) ионов () с изменением температуры изменяется по экспоненциальному закону:

,                                            (4.14)

где  – общее число ионов i-го типа;  – энергия диссоциации иона i-го типа; кТ – тепловая энергия.

Удельная электрическая проводимость твердыхдиэлектриков, как и полупроводников, растет с ростом температуры по экспоненциальному за­кону:

.                                          (4.15)

Однако зависимость  часто обусловлена не только экспоненциальным ростом концентрации носителей (рис. 4.5, б)

n~exp(-Wg/kT),

но и ростом подвижности:

µ~exp(-Wn/kT),

где Wn – энергия перемещения иона, определяющая переход его из одного равновесного состояния в другое). Это связано с тем, что дрейфовая подвижность ионов мала и осуществляется путем их перескока с ловушки на ловушку, разделенных потенциальным барьером Wn (так называемая «прыжковая» электропроводность). Вероятность таких тепловых перескоков прямо пропорциональна exp(-Wn/kT) (рис. 4.5, а).

Обычно в диэлектрике имеется несколько видов носителей заряда. Например, кроме ионов основного вещества могут быть слабо связанные ионы примесей. В этом случае удельная проводимость складывается из собственной проводимости с энергией активации (W) и примесной проводимости с энергией активации (Wnp):

;                                                 (4.16)

,

где  — коэффициент, объединяющий постоянные ( – заряд i-го носителя;  – концентрацию i-го носителя;  – подвижность i-го носителя); Wi —  энергия активации.

В широком диапазоне температур зависимость логарифма удельной проводимости (γ) от обратной величины абсолютной температуры (Т) должна состоять из двух прямолинейных участков с различными значениями угла наклона к оси абсцисс (рис. 4.6). При температуре выше точки излома А электропроводность определяется в основном собственными дефектами – это область высокотемпературной, или собственной электропроводности. Ниже излома, в области низкотемпературной, или примесной электропроводности, зависимость более пологая.

В отличие от трудно воспроизводимой низкотемпературной области электропроводности, определяемой в основном природой и концентрацией примесей, значение собственной удельной проводимости не зависит от удельной проводимости и не зависит от примесей, хорошо воспроизводимо и является физическим параметром данного соединения.

Температура, при которой наблюдается излом зависимости , сильно зависит от степени чистоты и совершенства материала. При увеличении содержания примесей и дефектов примесная удельная проводимость растет и оказывается существенной при более высоких температурах (рис. 4.6). По наклонам участков прямых зависимости  можно определить энергию активации носителей заряда и их природу.

Ионная электропроводность сопровождается переносом вещества: положительные ионы движутся к катоду, а отрицательные к аноду. Электролиз особенно ярко выражен при повышенных температурах, когда ρ мало, и при приложении высоких постоянных напряжений. По выделившемуся на электродах веществу можно определить характер носителей заряда. У диэлектриков с чисто ионным характером электропроводности строго выполняется закон Фарадея – закон пропорциональности между количеством пропущенного электричества и количеством выделившихся веществ.

Некоторые диэлектрики (например,  и другие титансодержащие керамические материалы) обладают электронной или дырочной электропроводностью. Однако носителями часто являются электроны не основного  вещества, а примесей и дефектов. В титансодержащей керамике при высокотемпературном синтезе появляются в значительном количестве кислородные вакансии, отдающие слабо связанные электроны или дырки. От них и зависит наблюдаемая электропроводность.

Твердые пористые диэлектрики при наличии в них влаги, даже в ничтожных количествах, резко увеличивают свою электропроводность (рис 4.7). На участке кривой АВ значение сопротивления снижается в результате изменения степени диссоциации молекул воды и молекул диэлектрика в водном растворе на ионы. Участок ВС обусловлен процессами сушки, а на участке СД происходит диссоциация молекул диэлектрика на ионы.

Мы рассматривали электропроводимость твердых диэлектриков при относительно невысоких значениях напряженности электрического поля. При достаточно больших напряженностях электрического поля в диэлектриках появляется электронная составляющая электропроводности, быстро возрастающая с увеличением напряженности электрического поля, в связи с чем наблюдается нарушение закона Ома. При напряженностях электрического поля  В/м, т.е. близких к пробивным напряженностям поля, зависимость электропроводности от величины напряженности поля подчиняется закону Пуля:

,                   (4.17)

Для ряда диэлектриков более точным оказывается закон Френкеля:

,                       (4.18)

где  – электропроводность в слабых электрических полях;  – коэффициенты нелинейности, характеризующие свойства диэлектрика; Е – напряженность электрического поля.

Все диэлектрики, хотя и в незначительной степени, обладают электропроводностью.
В отличие от проводников у диэлектриков наблюдается изменение тока со временем (рис. 5-9) вследствие спадания тока абсорбции. Последний обусловлен наличием релаксационных поляризаций в диэлектрике. С некоторого момента под воздействием постоянного тока в диэлектрике устанавливается только ток проводимости. Величина последнего определяет проводимость диэлектрика.
В газообразных диэлектриках (воздух, азот, водород и др.) ток проводимости обусловлен направленным перемещением положительно и отрицательно заряженных ионов и электронов (см. разд. 3).
В жидких диэлектриках ток проводимости создается ионами и электрически заряженными коллоидными частицами (молионы). Источником ионов являются различные примеси в диэлектрике: вода, органические кислоты и т. п. В полярных электроизоляционных жидкостях на ионы могут диссоциировать молекулы самого жидкого диэлектрика. Электропроводность полярных электроизоляционных жидкостей всегда несколько выше электропроводности нейтральных жидких диэлектриков.
В электроизоляционных технических жидкостях наблюдается также молионная или электрофоретическая (электрофорез) электропроводность. В этом случае ток проводимости обусловлен направленным перемещением электрически заряженных коллоидных частиц различных примесей: воды, смолистых веществ и др. Коллоидные частицы различных загрязнений перемещаются в электроизоляционной жидкости под действием электрического поля. С повышением температуры жидкого диэлектрика его вязкость падает и направленное перемещение ионов и молионов облегчается. Электропроводность жидких диэлектриков возрастает (рис. 5-10) по экспоненциальному закону



где j0 и А — постоянные величины, зависящие от состава жидкого диэлектрика; Т — абсолютная температура.
С ростом напряжения, приложенного к жидкому диэлектрику, изменение тока проводимости (рис. 5-11) носит приблизительно такой же характер, как и у газообразных диэлектриков. В тщательно очищенных электроизоляционных жидкостях отчетливо наблюдается область насыщения. Понижение электропроводности жидких диэлектриков достигается их тщательной очисткой (фильтрование, сушка, обработка адсорбентами и др.).
В твердых диэлектриках электропроводность складывается из ионной и электронной электропроводностей, причем электронная электропроводность, как правило, наблюдается в сильных электрических полях.
Ток проводимости в твердых диэлектриках обусловливается направленным перемещением ионов примесей и ионов самого диэлектрика. В диэлектриках с атомными и молекулярными решетками ток проводимости обусловлен только ионами различных примесей. У таких диэлектриков (парафин, полиэтилен, политетрафторэтилен и др.) электропроводность весьма мала, и эти материалы обладают большими значениями удельного объемного и поверхностного сопротивлений:
. Такими же большими удельными сопротивлениями обладают высокополимерные аморфные диэлектрики, например, полистирол, полипропилен, у которых ток проводимости обусловлен преимущественно ионами примесей.
С течением времени ионная проводимость твердого диэлектрика понижается в связи с уменьшением количества ионов примесей, которые, дойдя до электродов, нейтрализуют свои заряды. В ионных кристаллических диэлектриках (слюда и др.) ток проводимости составляют не только ионы примесей, но ионы самой кристаллической решетки. Последние могут быть сорваны электрическим полем с мест, где они были слабо закреплены (междуузлия), а также из узлов кристаллической решетки при одновременном воздействии на нее электрического поля и высокой температуры.
В аморфных диэлектриках (неорганические стекла) ионная электропроводность обусловлена электролизом различных окислов, входящих в состав самих стекол. Особенно сильно повышается электропроводность стекол при содержании в них окислов одновалентных металлов (Na
20; К2О и др.). Введение же окислов двухвалентных металлов (ВаО; СаО и др.) приводит к снижению электропроводности в стеклах.
Проводимость стекол и других твердых диэлектриков показывает заметную зависимость от температуры:

где А и В — постоянные, зависящие от состава и структуры твердого диэлектрика; величина В для твердых диэлектриков находится в пределах 10 000-22 000; Т — абсолютная температура, К.
Проводимость твердых кристаллических диэлектриков с ионными связями хорошо описывается двучленной формулой

Первый член этой формулы исчезающе мал при низких температурах, а второй — исчезающе мал при высоких температурах!
В ионных кристаллических диэлектриках ток проводимости обусловлен перемещением ионов одного знака. Так, в кристалле NaCl под действием электрического поля движутся только положительно заряженные ионы натрия (Na+). При высоких температурах в токе проводимости принимают участие и ионы другого знака. В этом предположении зависимость

дает ломаную прямую (рис. 5-12). Более крутой подъем указывает на то, что ток проводимости (в области высоких температур) создается ионами обоих знаков.
В области сильных электрических полей в твердых диэлектриках наблюдается также электронная проводимость, которая изменяется согласно выражению

где — проводимость в конце области насыщения; b — коэффициент, зависящий от температуры.
В области очень сильных электрических полей (предпробойная область) электропроводность твердых кристаллических диэлектриков более точно описывается формулой Я. И. Френкеля

где k-постоянная Больцмана; е — заряд электрона; — диэлектрическая проницаемость материала; Е — напряженность электрического поля.
При высоких температурах может наблюдаться также вхождение электронов в твердый диэлектрик с поверхности металлических электродов.

Рис. 5-9. Зависимость величины тока в диэлектрике от времени.

Рис. 5-10. Зависимость проводимости жидкого диэлектрика от температуры.

Рис. 5-11. Зависимость величины тока от напряжения в жидком диэлектрике.

Зависимость для ионных кристаллических диэлектриков.

Рис.5-12

Понравилась статья? Поделить с друзьями:
  • Бизнес план как составить для школьников
  • Как найти девушку в макеевке
  • Как правильно составить срочный трудовой договор для то
  • Как найти музыку для трейлера
  • Как найти мощность потребляемую электродвигателем