Как найти путь если известна длина

Содержание:

  • Определение и формула пути
  • Виды движения и формулы длины пути
  • Единицы измерения пути
  • Примеры решения задач

Определение и формула пути

Линия, которую описывает материальная точка при своем движении, называется траекторией.

Определение

Длиной пути называют сумму длин всех участков траектории, которые прошла точка за рассматриваемый промежуток времени
от t1 до t2.

В том случае, если уравнения движения представлены в прямоугольной декартовой системе координат, то длина пути (s) определяется как:

$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d x}{d t}right)^{2}+left(frac{d y}{d t}right)^{2}+left(frac{d z}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{x})^{2}+(dot{y})^{2}+(dot{z})^{2}} d t(1)$$

В цилиндрических координатах длина пути может быть выражена как:

$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d rho}{d t}right)^{2}+left(rho frac{d varphi}{d t}right)^{2}+left(frac{d z}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{rho})^{2}+(rho dot{varphi})^{2}+(dot{z})^{2}} d t(2)$$

В сферических координатах формулу длины пути запишем:

$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d r}{d t}right)^{2}+left(r frac{d theta}{d t}right)^{2}+left(r sin theta frac{d varphi}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{r})^{2}+(r dot{theta})^{2}+(r varphi sin theta)^{2}} d t(3)$$

Местоположение перемещающейся материальной точки в фиксированный момент времени, например t=t1 называют начальным положением.
Очень часто полагают t1=0. Длин пути, который прошла материальная точка из начального положения – скалярная функция времени: s=s(t).

Считают, что за промежуток времени $d t rightarrow 0$ материальная точка проходит путь ds,
который называют элементарным. При этом:

$$d s=|d bar{r}|=v d t$$

где $bar{r}$ – вектор элементарного перемещения материальной точки, v – модуль скорости ее движения.

Виды движения и формулы длины пути

Длина пути при равномерном движении (v=const) точки равна:

$$s=vleft(t_{2}-t_{1}right)(5)$$

где t1 – начало отсчета движения, t2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.

Если движение не является равномерным, то можно длину пути
$Delta s$ на отрезке времени от
$t$ до
$t + Delta t$ находят как:

$$Delta s=langle vrangle Delta t(6)$$

где $langle vrangle$ – средняя путевая скорость. При равномерном движении
$langle vrangle = v$ .

Путь, который проходит материальная тоска при равнопеременном движении (a=const)вычисляют как:

$$s=v_{0} t+frac{a t^{2}}{2}(7)$$

где a – постоянное ускорение, v0 – начальная скорость движения.

Единицы измерения пути

Основной единицей измерения пути в системе СИ является: [s]=м

В СГС: [s]=см

Примеры решения задач

Пример

Задание. Траектория движения материальной точки изображена на рис. 1. Каков путь, пройденный точкой,
чему равно перемещение, если точка двигалась 1-2-3-4.

Решение. Перемещение – кратчайшее расстояние между точками 1 и 4. Следовательно, перемещение точки равно:

$$6 — 2 = 4 (m)$$

Путь – длина траектории. Рассматривая график на рис.1 получаем, что путь материальной точки равен:

$$8 + 4 + 8 = 20 (m)$$

Ответ. Путь равен 20 м, перемещение равно 4 м.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Уравнение движения материальной точки в прямоугольной декартовой системе координат представлено функцией:
x=-0,2t2 (м) . Какой путь пройдет материальная точка за 5 с?

Решение. Так как уравнение движения задано только одной координатой, то в качестве основы для решения
задачи примем формулу пути в виде:

$$s=int_{t_{1}}^{t_{2}} sqrt{(dot{x})^{2}} d t(2.1)$$

Подставим в (2.1) функцию x=-0,2t2, учтем, что $0 c leq t leq 5 c$ имеем:

$$s=int_{0}^{5} sqrt{left(-0,2 frac{dleft(t^{2}right)}{d t}right)^{2}} d t=0,left.4 cdot frac{t^{2}}{2}right|_{0} ^{5}=5(m)$$

Ответ. s=5м.

Читать дальше: Формула равноускоренного движения.


Загрузить PDF


Загрузить PDF

Расстояние (обозначим как d) – это длина прямой между двумя точками. Расстояние можно найти между двумя неподвижными точками, а можно найти расстояние, пройденное движущимся телом. В большинстве случаев расстояние может быть вычислено по следующим формулам: d = s × t, где d — расстояние, s – скорость, t – время; d = √((x2 — x1)2 + (y2 — y1)2, где (x1, y1) и (x2, y2) – координаты двух точек.

  1. Изображение с названием Calculate Distance Step 1

    1

    Чтобы вычислить расстояние, пройденное движущимся телом, вам необходимо знать скорость тела и время в пути, чтобы подставить их в формулу d = s × t.

    • Пример. Автомобиль едет со скоростью 120 км/ч в течение 30 минут. Необходимо вычислить пройденное расстояние.
  2. Изображение с названием Calculate Distance Step 2

    2

    Перемножьте скорость и время и вы найдете пройденное расстояние.

    • Обратите внимание на единицы измерения величин. Если они различны, вам необходимо конвертировать одну из них так, чтобы она соответствовала другой единице. В нашем примере скорость измеряется в километрах в час, а время – в минутах. Поэтому необходимо конвертировать минуты в часы; для этого значение времени в минутах необходимо разделить на 60 и вы получите значение времени в часах: 30/60 = 0,5 часов.
    • В нашем примере: 120 км/ч х 0,5 ч = 60 км. Обратите внимание, что единица измерения «час» сокращается и остается единица измерения «км» (то есть расстояние).
  3. Изображение с названием Calculate Distance Step 3

    3

    Описанную формулу можно использовать для вычисления входящих в нее величин. Для этого обособьте нужную величину на одной стороне формулы и подставьте в нее значения двух других величин. Например, для вычисления скорости используйте формулу s = d/t, а для вычисления времени – t = d/s.

    • Пример. Автомобиль проехал 60 км за 50 минут. В этом случае его скорость равна s = d/t = 60/50 = 1,2 км/мин.
    • Обратите внимание, что результат измеряется в км/мин. Чтобы конвертировать эту единицу измерения в км/ч, умножьте результат на 60 и получите 72 км/ч.
  4. Изображение с названием Calculate Distance Step 4

    4

    Данная формула вычисляет среднюю скорость, то есть предполагается, что в течение всего времени в пути тело имеет постоянную (неизменную) скорость. Это годится в случае абстрактных задач и моделирования движения тел. В реальной жизни скорость тела может меняться, то есть тело может ускоряться, замедляться, останавливаться или двигаться в обратном направлении.

    • В предыдущем примере мы нашли, что автомобиль, проехавший 60 км за 50 минут, ехал со скоростью 72 км/ч. Это справедливо только при условии, что с течением времени скорость автомобиля не менялась. Например, если в течение 25 минут (0,42 часов) автомобиль ехал со скорость 80 км/ч, а в течение еще 25 минут (0,42 часов) – со скоростью 64 км/час, он тоже проедет 60 км за 50 минут (80 х 0,42 + 64 х 0,42 = 60).
    • Для решения задач, включающих меняющуюся скорость тела, лучше использовать производные, а не формулу для вычисления скорости по расстоянию и времени.

    Реклама

  1. Изображение с названием Calculate Distance Step 5

    1

    Найдите две точки пространственных координат. Если вам даны две неподвижные точки, то, чтобы вычислить расстояние между этими точками, необходимо знать их координаты; в одномерном пространстве (на числовой прямой) вам понадобятся координаты x1 и x2, в двумерном пространстве – координаты (x1,y1) и (x2,y2), в трехмерном пространстве – координаты (x1,y1,z1) и (x2,y2,z2).

  2. Изображение с названием Calculate Distance Step 6

    2

    Вычислите расстояние в одномерном пространстве (точки лежат на одной горизонтальной прямой) по формуле: d = |x2 — x1|, то есть вы вычитаете «х» координаты, а затем находите модуль полученного значения.

    • Обратите внимание, что в формулу включены скобки модуля (абсолютного значения). Модуль числа – это неотрицательное значение этого числа (то есть модуль отрицательного числа равен этому числу со знаком плюс).
    • Пример. Машина находится между двумя городами. До города, который находится перед ней, 5 км, а до города за ней – 1 км. Вычислите расстояние между городами. Если взять машину за точку отсчета (за 0), то координата первого города x1 = 5, а второго x2 = -1. Расстояние между городами:
      • d = |x2 — x1|
      • = |-1 — 5|
      • = |-6| = 6 км.
  3. Изображение с названием Calculate Distance Step 7

    3

    Вычислите расстояние в двумерном пространстве по формуле: d = √((x2 — x1)2 + (y2 — y1)2). То есть вы вычитаете «х» координаты, вычитаете «у» координаты, возводите полученные значения в квадрат, складываете квадраты, а затем из полученного значения извлекаете квадратный корень.

    • Формула для вычисления расстояния в двумерном пространстве основана на теореме Пифагора, которая гласит, что гипотенуза прямоугольного треугольника равна квадратному корню из суммы квадратов обоих катетов.
    • Пример. Найдите расстояние между двумя точками с координатами (3, -10) и (11, 7) (центр окружности и точка на окружности, соответственно).
    • d = √((x2 — x1)2 + (y2 — y1)2)
    • d = √((11 — 3)2 + (7 — -10)2)
    • d = √(64 + 289)
    • d = √(353) = 18,79
  4. Изображение с названием Calculate Distance Step 8

    4

    Вычислите расстояние в трехмерном пространстве по формуле: d = √((x2 — x1)2 + (y2 — y1)2 + (z2 — z1)2). Эта формула является видоизмененной формулой для вычисления расстояния в двумерном пространстве с добавлением третьей координаты «z».

    • Пример. Космонавт находится в открытом космосе недалеко от двух астероидов. Первый из них расположен в 8 километрах перед космонавтом, в 2 км справа от него и в 5 км ниже него; второй астероид находится в 3 км позади космонавта, в 3 км слева от него, и в 4 км выше него. Таким образом, координаты астероидов (8,2,-5) и (-3,-3,4). Расстояние между астероидами вычисляется следующим образом:
    • d = √((-3 — 8) 2 + (-3 — 2)2 + (4 — -5)2)
    • d = √((-11)2 + (-5)2 + (9)2)
    • d = √(121 + 25 + 81)
    • d = √(227) = 15,07 км

    Реклама

Похожие статьи

Об этой статье

Эту страницу просматривали 61 245 раз.

Была ли эта статья полезной?

Содержание:

Путь и перемещение:

Вы знаете, что любой вид движения совершается по определенной траектории.

Траектория — это линия, которую описывает материальная точка при своем движении в данной системе отсчета. Эта линия может быть и невидима, например, траектория движения рыбы в воде, самолета в небе, пчелы в воздухе и др., которые можно только вообразить. По форме траектории механическое движение делится на прямолинейное и криволинейное.

Движение, траектория которого представляет собой прямую линию относительно данной системы отсчета, называется прямолинейным движением (b), а движение, траектория которого кривая линия, — криволинейным (с).

Длина траектории движения материальной точки, называется пройденным путем. Пройденный путь является положительной скалярной величиной, обозначается буквой Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Для полного описания движения материальной точки необходимо определить изменение его положения в пространстве с течением времени, т.е. определить изменение координат материальной точки, или же изменение его радиус-вектора.

Изменение любой физической величины равно разности его конечного и начального значений и обозначается знаком Путь и перемещение в физике - формулы и определения с примерами (буква греч. алфавита) перед этой величиной.

Изменение координат материальной точки во время движения

Изменение координат материальной точки во время движения может быть, как положительным, так и отрицательным. Например, предположим, что муравей, двигаясь по показанной на рисунке траектории, попадает из точки М в точку N (d). Так как координата муравья по оси X увеличивается Путь и перемещение в физике - формулы и определения с примерами то изменение координаты по этой оси будет положительным: Путь и перемещение в физике - формулы и определения с примерами Координата же муравья по оси У уменьшается Путь и перемещение в физике - формулы и определения с примерами поэтому изменение его координаты по этой оси будет отрицательным: Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Изменение радиус-вектора материальной точки во время движения

На следующем рисунке представлены радиус-векторы Путь и перемещение в физике - формулы и определения с примерами и Путь и перемещение в физике - формулы и определения с примерами начального и конечного положения, материальной точки (муравья) соответственно (е). Вектор Путь и перемещение в физике - формулы и определения с примерами соединяющий концы этих радиус-векторов Путь и перемещение в физике - формулы и определения с примерами называют перемещением данной материальной точки за промежуток времени Путь и перемещение в физике - формулы и определения с примерами Согласно правилу сложения векторов: Путь и перемещение в физике - формулы и определения с примерами Из последнего выражения получается, Путь и перемещение в физике - формулы и определения с примерами или Путь и перемещение в физике - формулы и определения с примерами где Путь и перемещение в физике - формулы и определения с примерами — перемещение материальной точки.

Путь и перемещение в физике - формулы и определения с примерами

Перемещение — это направленный отрезок прямой, соединяющий начальное положение движущейся материальной точки с ее конечным положением. Перемещение — векторная величина.

Векторная величина — это величина, определяемая, кроме числового значения (модуля), также и направлением.

К вектору перемещения, как векторной величине, можно применить известные действия над векторами — сложение и вычитание векторов, определение результирующего вектора методом треугольника и параллелограмма.

Единицей измерения перемещения, как и пути, в СИ является метр, однако, перемещение имеет отличающийся физический смысл: перемещение показывает, на какое расстояние и в каком направлении изменилось начальное положение материальной точки за данный промежуток времени.

Внимание! Только при прямолинейном движении без изменения направлении, модуль перемещения равен пройденному пути, во всех остальных случаях (при изменении направления прямолинейного движения, криволинейном движении) пройденный путь больше модуля перемещения (е).

Путь и перемещение в физике - формулы и определения с примерами

Материальная точка прошла расстояние Путь и перемещение в физике - формулы и определения с примерами от точки М до точки N по прямой линии. В этом случае пройденный путь равен модулю перемещения: Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Материальная точка прошла расстояние Путь и перемещение в физике - формулы и определения с примерами от точки М до точки N по прямой линии, а затем по этой же линии вернулась назад в точку Путь и перемещение в физике - формулы и определения с примерами В этом случае материальная точка прошла путь, равный Путь и перемещение в физике - формулы и определения с примерами а модуль перемещения равен нулю:

Путь и перемещение в физике - формулы и определения с примерами

Если при движении материальной точки на плоскости известны его начальные координаты и вектор перемещения, то можно определить координаты конечного положения точки. Например, предположим, что материальная точка совершила перемещение Путь и перемещение в физике - формулы и определения с примерами Опуская перпендикуляры на оси ОХ и OY из начала и конца этого вектора, получаем проекции перемещения Путь и перемещение в физике - формулы и определения с примерами и Путь и перемещение в физике - формулы и определения с примерами (h). Как видно из рисунка, эти проекции равны разности начальных и конечных координат материальной точки: 

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Одинаковы ли путь и перемещение

Задача:

Велосипедист движется по круговому велотреку радиусом 80 м. Он стартует из точки А. Определите путь и перемещение велосипедиста при первом прохождении точки В (i).

Путь и перемещение в физике - формулы и определения с примерами

Дано:

Путь и перемещение в физике - формулы и определения с примерами

Решение:

Пройденный путь Путь и перемещение в физике - формулы и определения с примерами равен длине дуги: Путь и перемещение в физике - формулы и определения с примерами

Модуль перемещения же равен диаметру окружности: Путь и перемещение в физике - формулы и определения с примерами

Вычисление:

Путь и перемещение в физике - формулы и определения с примерами

Что такое путь и перемещение

Путь и перемещение в физике - формулы и определения с примерами

Автобус отправился из Москвы в 9 часов утра. Можно ли определить, где находился автобус в 11 часов, если известно, что он проделал путьПуть и перемещение в физике - формулы и определения с примерами

Конечно, нет. Ясно лишь, что в 11 часов он находился в месте, удаленном от Минска не более чем на 100 км (т. е. внутри окружности, изображенной на рисунке 37). Не исключено, что к 11 часам автобус вернулся в Москву.

Значит, для определения конечного положения тела недостаточно знать его начальное положение и пройденный им путь.

Мы нашли бы местонахождение автобуса в 11 часов, если бы знали траекторию его движения (зеленая линия на рисунке 38). Отсчитав 100 км от начальной точки маршрута вдоль траектории, найдем, что в 11 часов автобус прибыл в Борисов.

А можно поступить иначе. Конечное положение автобуса можно определить, зная его начальное положение и всего одну векторную величину, называемую перемещением.

Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением (для данного промежутка времени).

Обозначим перемещение символом Путь и перемещение в физике - формулы и определения с примерами На рисунке 38 вектор Путь и перемещение в физике - формулы и определения с примерами — это перемещение автобуса из Минска в Мытищи, вектор Путь и перемещение в физике - формулы и определения с примерами — из Мытищь в Балашиху, а вектор Путь и перемещение в физике - формулы и определения с примерами — из Минска в Борисов.

Теперь, даже не зная траектории, по начальной точке и перемещению мы можем найти конечную точку для каждого из участков движения автобуса и для всего маршрута в целом.

Путь и перемещение в физике - формулы и определения с примерами

Можно ли сравнивать путь S, пройденный телом, с его перемещением Путь и перемещение в физике - формулы и определения с примерами Нельзя, поскольку путь S — скаляр, а перемещение Путь и перемещение в физике - формулы и определения с примерами — вектор.

Сравнивать путь S можно с модулем перемещения Путь и перемещение в физике - формулы и определения с примерами который является скалярной величиной. Равен ли путь модулю перемещения?

В рассматриваемом примере путь, пройденный автобусом за два часа, Путь и перемещение в физике - формулы и определения с примерами Он равен длине траектории движения автобуса от Москвы через Мытищи до Балашихи (см. рис. 38). А модуль перемещения автобуса за это время равен расстоянию от Минска до Борисова: Путь и перемещение в физике - формулы и определения с примерами Путь автобуса больше модуля его перемещения: Путь и перемещение в физике - формулы и определения с примерами

Пройденный путь был бы равен модулю перемещения, если бы автобус все время двигался по прямой, не изменяя направления движения.

Следовательно, путь всегда не меньше модуля перемещения:

Путь и перемещение в физике - формулы и определения с примерами

Как складывают между собой пути и как — перемещения? Из рисунка 38 находим:

Путь и перемещение в физике - формулы и определения с примерами

Пройденные пути складывают арифметически, а перемещения — по правилам сложения векторов.

Равен ли при этом модуль Путь и перемещение в физике - формулы и определения с примерами сумме модулей Путь и перемещение в физике - формулы и определения с примерами Ответьте самостоятельно.

Мы выяснили, что путь и траектория относительны. Покажите на примерах, что перемещение тоже относительно, т. е. зависит от выбора системы отсчета.

Путь и перемещение в физике - формулы и определения с примерами

При решении задач важно уметь находить проекции перемещения. Построим вектор перемещения куска мела по школьной доске из точки А в точку С (рис. 39). Из рисунка видно, что проекции вектора Путь и перемещение в физике - формулы и определения с примерами на координатные оси Ох и Оу равны разности координат конца и начала этого вектора:

Путь и перемещение в физике - формулы и определения с примерами

Главные выводы:

  1. Путь — это длина участка траектории, пройденного телом за данный промежуток времени. Путь — положительная скалярная величина.
  2. Перемещение тела — это вектор, соединяющий начальное положение тела с его конечным положением (для данного промежутка времени).
  3. Путь не меньше модуля перемещения тела за то же время.
  4. Пройденные пути складываются арифметически, а перемещения — по правилам сложения векторов.

Пример:

Путь и перемещение в физике - формулы и определения с примерамиПуть и перемещение в физике - формулы и определения с примерами
Конькобежец пересек прямоугольную ледовую площадку по диагонали АВ, а пешеход прошел из точки А в точку В по краю площадки (рис. 40). Размеры площадки 60 х 80 м. Определите модули перемещения конькобежца и пешехода и пути, пройденные ими.

Решение

Из рисунка 40 видно, что перемещения пешехода и конькобежца одинаковы. Модуль перемещения:

Путь и перемещение в физике - формулы и определения с примерами

Путь конькобежца: Путь и перемещение в физике - формулы и определения с примерами

Путь пешехода: Путь и перемещение в физике - формулы и определения с примерами

Ответ: Путь и перемещение в физике - формулы и определения с примерами

  • Заказать решение задач по физике

Траектория движения

Возьмите лист бумаги и карандаш. Поставьте на листе точки А и В и соедините их кривой линией (рис. 7.1). Эта линия совпадает с траекторией движения кончика карандаша, то есть линией, в каждой точке которой последовательно побывал кончик карандаша во время своего движения.

Траектория движения — это воображаемая линия, которую описывает в пространстве движущаяся точка. Обычно мы не видим траектории движения тел, но иногда бывают исключения.

Так, в без­облачную погоду высоко в небе можно увидеть белый след, который во время своего движения оставляет самолет*. По этому следу можно определить траекторию движения самолета. Траектории движения каких тел можно восстановить по следам, изображенным на рис. 7.2? В каких случаях траекторию движения «заготавливают» заранее? Форма траектории может быть разной: прямая, окружность, дуга, ломаная и т. д. В зависимости от формы траектории разли­чают прямолинейное и криволинейное движе­ния тел (рис. 7.3).

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Форма траектории движения тела зависит от того, относительно какой системы отсчета рассматривают движение. Приведем пример. У мальчика, едущего в автобусе, упало из рук яблоко (рис. 7.4). Для девочки, сидящей напротив, траектория движения яблока — короткий отрезок прямой. В этом случае система отсчета, относительно которой рассматривается движение яблока, связана с салоном автобуса. Но все время, пока яблоко падало, оно «ехало» вместе с автобусом, поэтому для человека, стоящего на обочине дороги, траектория движения яблока абсолютно другая. Система отсчета в таком случае связана с дорогой.

Чем путь отличается от перемещения

Вернемся к началу (см. рис. 7.1). Чтобы найти путь, который прошел конец карандаша, рисуя кривую линию, необходимо измерить длину этой линии, то есть найти длину траектории (рис. 7.5). Путь — это физическая величина, равная длине траектории. Путь обозначают символом l. Единица пути в СИ — метр: [l]= м. Используют также дольные и кратные единицы пути, например миллиметр (мм), сантиметр (см), километр (км):

Путь и перемещение в физике - формулы и определения с примерами

Путь, пройденный телом, будет разным относительно разных систем отсчета. Вспомним яблоко в автобусе (см. рис. 7.4): для пассажиров яблоко прошло путь около полуметра, а для человека на обочине дороги — несколько метров. Вернемся к рис. 7.1. Соединив точки А и В отрезком прямой со стрелкой, получим направленный отрезок, который покажет, в каком направлении и на какое расстояние переместился конец карандаша (рис. 7.6).

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Путь и перемещение в физике - формулы и определения с примерами

Направленный отрезок прямой, соединяющий начальное и конечное положения тела, называют перемещением. Перемещение обозначают символом Путь и перемещение в физике - формулы и определения с примерами . Стрелка над символом показывает, что перемещение — это векторная физическая величина*. Чтобы правильно задать перемещение, необходимо указать не только его значение (модуль), но и направление.

Модуль перемещения, то есть расстояние, на которое переместилось тело в определенном направлении, также обозначают символом s, но без стрелки. Единица перемещения в СИ такая же, как и единица пути, — метр: [s]= м. В общем случае перемещение не совпадает с траекторией движения тела (рис. 7.7, а, б), поэтому путь, пройденный телом, обычно больше модуля перемещения. Путь и модуль перемещения равны только в том случае, когда тело движется вдоль прямой в неизменном направлении (рис. 7.7, в).

Итоги:

Воображаемая линия, которую описывает в пространстве движущаяся точка, называется траекторией. В зависимости от формы траектории различают прямолинейное и криволинейное движения тел. Путь l — это физическая величина, равная длине траектории. Перемещение Путь и перемещение в физике - формулы и определения с примерами — это направленный отрезок прямой, соединяющий начальное и конечное положения тела. Единица пути и перемещения в СИ — метр (м).

Физические величины, имеющие значение и направление, называется векторными а имеющие только значение — скалярными.

  • Равномерное прямолинейное движение
  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Физический и математический маятники
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
Автор статьи

Андрей Геннадьевич Блохин

Эксперт по предмету «Физика»

Задать вопрос автору статьи

В физике следует различать траекторию, путь и перемещение.

Определение 1

Траектория — форма линии, описываемая телом. Ее длина представляет собой путь и является скалярной величиной. Перемещением же называется вектор, соединяющий точки начала и конца пути, и направленный от начала к концу.

Длина пути измеряется в системе СИ в метрах, в СГС (сантиметр, грамм, секунда) — в сантиметрах. Применяются и другие единицы измерения длины, в том числе внесистемные (дюйм, фут, ярд, миля и т.д.).

При движении без ускорения путь равен произведению скорости на расстояние:

$S = v cdot (t_2 — t_1) = v cdot Delta t$,

где $v_0$ – скорость тела, $t_2$ — момент времени окончания движения, $t_1$ — момент времени начала движения, $Delta t$ — время движения. График зависимости пути от времени на координатной плоскости в случае такого, называемого равномерным, движения является прямой линией.

Замечание 1

Поскольку скорость — векторная величина, равномерным можно считать только движение по прямой, т.к. при изменении направления движения вектор не остается неизменным даже при сохранении его длины.

Если равноускоренное движение начато с нулевой скорости и известно ускорение, то формула пути имеет вид

$S = frac{a cdot t^{2}}{2}$

где $a$ – ускорение тела.

Объединив два условия, получим общую формулу нахождения пути при равноускоренном движении с произвольной начальной скоростью:

$S = frac{a cdot t^2}{2} + v_0 cdot Delta t$.

Если движение не равномерное и известна средняя скорость движения, то путь можно выразить и другим способом:

$S = v_{ср.} cdot Delta t$,

где $v_{ср.}$ — средняя скорость движения.

На практике движение бывает равномерным или равноускоренным лишь на небольших фрагментах пути, поэтому для вычисления его длины траекторию разбивают на участки, где тело движется по простым закономерностям, вычисляют длину каждого из них и суммируют. Если известна траектория, то ее разбивают на фрагменты, каждый из которых имеет простую геометрическую форму. Сложив их длины, можно найти путь.

Пример 1

Найти путь, пройденный при движении с ускорением 2 $м/с^2$ в течение 20 с, если скорость на момент начала измерения была равна 10 м/с.

Подставим в формулу численные значения:

$S = frac{a cdot t^2}{2} + v_0 cdot Delta t$

$S = frac{2 cdot 20^2}{2} + 10 cdot 20 = 600 м$.

Ответ: длина пути составила 600 метров.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Существует формула, с помощью которой можно посчитать путь, пройденный телом, когда нам известны его начальная скорость, ускорение и конечная скорость.

Сокращенно эту формулу называют «путь без времени». Так ее называют потому, что в правой ее части время t движения отсутствует (рис. 1).

Формула, по которой можно вычислить путь тела без учета времени движения

Рис.1. Так выглядит формула, по которой можно вычислить путь тела, не зная, сколько времени занимало движение

Формула пути без времени помогает упростить решение некоторых задач кинематики. Особенно, задач, части C.

Однако, не торопитесь на ЕГЭ записывать эту формулу в готовом виде. Сначала в решении задачи нужно записать вывод этой формулы. И только потом ее можно использовать.

Формулу выводят из выражений для равнопеременного движения. Сейчас я помогу вам вывести эту формулу с помощью нескольких простых шагов.

Выводим формулу пути без времени

Для определенности будем считать, что тело движется по прямой все быстрее и быстрее. То есть, скорость тела увеличивается, так как появляется ускорение.

В таком случае векторы ускорения и скорости тела будут сонаправленными (параллельными и направленными в одну и ту же сторону).

Сонаправленные или противоположно направленные векторы называют коллинеарными векторами. Прочитайте подробнее о коллинеарных векторах.

Чтобы вычислить путь тела, когда скорость его увеличивается, нужно использовать две формулы:

[ large begin{cases} S  = v_{0} cdot t + displaystylefrac{a}{2} cdot t^{2} \ v  = v_{0} + a cdot t end{cases} ]

( large v_{0} left( frac{text{м}}{c} right)) – начальная скорость тела;

( large v left( frac{text{м}}{c} right)) – конечная скорость;

( large a left( frac{text{м}}{c^{2}} right)) – ускорение тела;

( large S left( text{м} right)) – путь, пройденный телом;

(large t left( c right)) – время, за которое тело прошло этот путь.

В формуле для пути S присутствует время t. Получим из нее формулу для пути, в которой время будет отсутствовать.

Что сделать, чтобы получить формулу пути, в которой отсутствует время:

  • сначала получить выражение для времени t из уравнения для скорости;
  •  затем в формулу пути подставить полученное выражение вместо времени t.

Выражаем время из формулы для скорости

Выпишем формулу, связывающую начальную и конечную скорость тела:

[ large v  = v_{0} + a cdot t ]

Избавимся в правой части от начальной скорости, обозначенной символом ( v_{0}). Для этого из обеих частей уравнения вычтем число ( v_{0}). Получим такую запись:

[ large v — v_{0} = a cdot t ]

Теперь, чтобы справа в формуле оставалось только время «t», избавимся от ускорения «a». Для этого разделим обе части уравнения на «a»:

[ large frac{ v — v_{0}}{a} = t ]

Это выражение нам пригодится для дальнейшего вывода формулы «путь без времени».

В формулу пути подставим выражение для времени

Запишем теперь формулу для пути S и полученную формулу для времени t, объединив их в систему:

[ large begin{cases} S  = v_{0}cdot t + displaystyle frac{a}{2}cdot t^{2}\ displaystyle frac{v — v_{0}}{a} = t end{cases} ]

В первом уравнении системы будем заменять символ t дробью из второго уравнения. Тогда система из двух уравнений превратится в единственное уравнение. И в этом уравнении не будет символа t времени:

[large S = v_{0} cdot frac{ v — v_{0}}{a} + frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Осталось теперь упростить полученное выражение. Будем производить упрощение по частям.

Упрощаем выражение, расположенное до знака «плюс» в правой части

Выпишем отдельно все, что располагается до знака «плюс» в правой части уравнения:

[large v_{0} cdot frac{ v — v_{0}}{a} ]

Умножим числитель дроби на число (v_{0}).

Для этого:

  • сначала числитель обособим скобками;
  • затем запишем число (v_{0}) перед скобками;
  • а потом внесем это число внутрь скобок.

В числитель дроби, обособленный с помощью скобок помещаем число (v_{0}):

[large v_{0} cdot frac{ (v — v_{0})}{a} = frac{ v_{0} cdot (v — v_{0})}{a} ]

Теперь необходимо умножить скобку на число (v_{0}).  На рисунке 2 указано, как правильно выражение в скобках умножить на число, стоящее за скобками.

Правильно умножить скобку на число можно так

Рис. 2. Чтобы умножить скобку на число, нужно умножить каждое слагаемое в скобке на это число

Нужно к каждой скорости в скобках дописать число (v_{0}), умножая его на эти скорости. Получим такое выражение:

[large frac{ v_{0} cdot (v — v_{0})}{a} = frac{ (v_{0} cdot v — v_{0} cdot v_{0})}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} ]

То есть, вместо первоначальной записи, мы получили такую запись:

[large v_{0} cdot frac{ (v — v_{0})}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} ]

Возводим в квадрат дробь

После знака «плюс» в правой части уравнения располагается дробь, которую нужно возвести в квадрат. Обратим внимание на эту дробь:

[large left( frac{ v — v_{0}}{a} right)^{2}]

Правильно возвести дробь в степень поможет рисунок 3.

Чтобы дробь возвести в степень, нужно отдельно возвести в эту степень ее числитель и знаменатель отдельно

Рис. 3. Дробь возводим в степень, отдельно возводя в эту степень ее числитель и знаменатель

В результате возведения в квадрат дробь приобретет такой вид:

[large left( frac{ v — v_{0}}{a} right)^{2} = frac{ (v — v_{0})^{2}}{a^{2}}]

В числителе этой дроби находится выражение в скобках, которое нужно возвести в квадрат. И нам придется применить одну из формул сокращенного умножения. Запоминать формулы сокращенного умножения удобно в виде, приведенном на рисунке 4.

Вид формул сокращенного умножения, удобный для запоминания

Рис. 4. Удобный для запоминания вид формул сокращенного умножения

Используем для этого формулу сокращенного умножения, которая содержит знак «минус». Она называется «Квадрат разности». Тогда числитель дроби превратится в такую запись:

[large ( v — v_{0})^{2} = (v^{2} + v^{2}_{0} — 2vv_{0})]

Теперь можем записать полученную дробь:

[large frac{ (v — v_{0})^{2}}{a^{2}} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}} ]

Упрощаем правую часть, записанную после знака «плюс»

Обратим внимание на все, что располагается в правой части уравнения после знака «плюс»:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Мы уже провели некоторые преобразования и можем теперь заменить дробь, возводимую в квадрат более подробной записью:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2} = frac{a}{2} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}}]

Примечание: Когда мы умножаем одну дробь на другую, то можем менять местами знаменатели этих дробей.

Итак, поменяем местами знаменатели дробей:

[large frac{a}{2} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{a^{2}} = frac{a}{a^{2}} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2}]

Теперь видно, что мы можем сократить ускорение и еще немного упростить выражение:

[large frac{a}{a^{2}} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2} = frac{1}{a} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2}]

А перемножив числители и знаменатели двух дробей, получим такую запись:

[large frac{1}{a} cdot frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Теперь, первоначальную дробь можно заменить дробью, полученной в ходе преобразований:

[large frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2} = frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Мы закончили преобразовывать выражения, содержащиеся в правой части уравнения после знака «плюс».

Теперь, осталось сложить две дроби в правой части – дробь, записанную до знака «плюс» с дробью, записанной после знака «плюс». А чтобы эти дроби можно было сложить, нужно будет привести их к общему знаменателю.

Приводим к общему знаменателю дроби в правой части уравнения

Вернемся еще раз к первоначальному уравнению:

[large S = v_{0} cdot frac{ v — v_{0}}{a} + frac{a}{2} cdot left( frac{ v — v_{0}}{a} right)^{2}]

Заменим правую часть этого уравнения выражениями, которые мы получили:

[large S = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} + frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Сравним знаменатели дробей.

Первая дробь обладает знаменателем «a», а вторая – «2a». Выберем число «2a» в качестве общего знаменателя обеих дробей.

Чтобы первую дробь привести к общему знаменателю «2a», умножим ее на единицу:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot 1]

Примечания:

  1. Нам известно, что если какое-либо число умножить на единицу, то после умножения это число не изменится. Значит, если какое-либо выражение умножить на единицу, то полученное выражение останется равным самому себе. На единицу можно умножать все, что угодно – дроби, выражения в скобках и т. п.
  2. Математики часто применяют прием умножения на единицу. А после этого единицу записывают в виде некоторой дроби. При этом используют правило: Единица – это дробь, у которой числитель и знаменатель равны (одинаковые).

Так как снизу в первой дроби не хватает числа 2, то единицу представим в виде дроби 2/2:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot 1 = frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot frac{2}{2}]

Получим такую дробь:

[large frac{ (v_{0} cdot v – v^{2}_{0} )}{a} cdot frac{2}{2} = frac{ 2(v_{0} cdot v – v^{2}_{0} )}{2a} ]

Поместим ее в выражение для пути:

[large S = frac{ 2(v_{0} cdot v – v^{2}_{0} )}{2a} + frac{(v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Дроби с одинаковыми знаменателями складываем

Теперь знаменатели дробей равны. И мы можем записать эти дроби под общим знаменателем:

[large S = frac{ 2(v_{0} cdot v – v^{2}_{0} ) + (v^{2} + v^{2}_{0} — 2vv_{0})}{2a}]

Раскроем скобки в числителе полученного выражения:

[large S = frac{ 2v_{0} v – 2v^{2}_{0} + v^{2} + v^{2}_{0} — 2vv_{0}}{2a}]

Примечание: Обратим внимание на то, что в числителе дважды встречается член (2v_{0} v), обладающий различными знаками. В начале числителя – знаком «плюс», а в конце числителя – знаком «минус». Это означает, что из числа (2v_{0}v) вычитается такое же число (2vv_{0}). В конце концов, это число покидает нашу запись и, она упрощается:

[large S = frac{ – 2v^{2}_{0} + v^{2} + v^{2}_{0}}{2a}]

Перепишем выражение, записав все, что содержит знак «плюс» в начало числителя:

[large S = frac{ v^{2} + v^{2}_{0} – 2v^{2}_{0}}{2a}]

Вычтем подобные члены, содержащие ( v^{2}_{0}):

[large v^{2}_{0} – 2v^{2}_{0} = – v^{2}_{0} ]

В результате получим короткую запись. Именно о ней говорят, когда имеется ввиду формула пути без времени:

[large boxed{ S = frac{ v^{2} — v^{2}_{0}}{2a} }]

Примечания:

  1. Это формула, с помощью которой можно рассчитать путь тела, когда известны его начальная и конечная скорость, а, так же, ускорение.
  2. Видно, что время t в правой части этого выражения отсутствует.
  3. Мы выводили эту формулу для случая, когда тело увеличивало скорость.

Как выглядит формула пути без времени, когда скорость тела уменьшается

Если скорость тела будет уменьшаться, формулу для вычисления пути нужно будет переписать в таком виде:

[large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Получить такую формулу можно, проделав все шаги, описанные выше. Попробуйте самостоятельно ее получить. Выводить формулу нужно, используя формулы для уменьшающейся скорости:

[ large begin{cases} S  = v_{0} cdot t — displaystyle frac{a}{2} cdot t^{2} \ v  = v_{0} — a cdot t end{cases} ]

Выводы

Пусть нам известны начальная и конечная скорость тела и его ускорение. Тогда путь, пройденный телом, можно рассчитать так:

  1. Когда движение равноускоренное и скорость тела увеличивается: [large boxed{ S = frac{ v^{2} — v^{2}_{0}}{2a} }]
  2. А когда движение равнозамедленное и скорость уменьшается: [large boxed{ S = frac{ v^{2}_{0} — v^{2}}{2a} }]

Понравилась статья? Поделить с друзьями:
  • Как найти завод на улице
  • Как правильно составить коммерческое предложение на транспортные услуги образец
  • Как найти вторичку в ипотеку
  • Как найти производителей молока
  • Почему вылазит синий экран на windows 10 как исправить