Как найти работу цикла по площади

На этой странице вы узнаете

  • В чем прелесть фазовых переходов?
  • Что лучше выбрать: Mercedes или BMW?

Люди научились летать в космос, покорять недра Земли и погружаться в глубины океана. Эти и другие достижения возможны благодаря способности извлекать максимум пользы из имеющихся ресурсов,а именно получать тепловую энергию различными доступными способами. Сегодня мы разберем задачи, которые заставят тепловые процессы играть на нашей стороне. 

Тепловые машины и их КПД

Рекомендация: перед тем как приступить к выполнению задач неплохо было бы повторить тему «Уравнение состояния идеального газа» . Но ключевую теорию, на которой основано решение задач, сейчас разберем вместе.

В чем прелесть фазовых переходов?

Вспомним, что фазовые переходы — это переход из одного агрегатного состояния в другое. При этом может выделяться большое количество теплоты.

Именно благодаря этому они и стали такими полезными для нас. Например, в ядерных реакторах воду используют в качестве рабочего тела, то есть она нагревается вследствие энергии, полученной из ядерных реакций, доходит до температуры кипения, а затем под большим давлением уже в качестве водяного пара воздействует на ротор генератора, который вращается и дает нам электроэнергию! На этом основан принцип работы атомных электростанций. 

А самый простой пример фазового перехода — образование льда на лужах в морозные ноябрьские дни. Правда о выделении тепла здесь речи не идет.

Мы не почувствуем, как испарится капелька у нас на руке, потому что это не требует много тепла от нашего тела. Но мы можем наблюдать, как горят дрова в мангале, когда мы жарим шашлык, потому что выделяется огромное количество теплоты. А зачем мы вообще рассматриваем эти фазовые переходы? Все дело в том, что именно фазовые переходы являются ключевым звеном во всех процессах, где нас просят посчитать КПД, от них нашему рабочему телу и подводится теплота нагревателя.

Человечество придумало такие устройства, которые могут переработать тепловую энергию в механическую.

Тепловые двигатели, или тепловые машины, — устройства, способные преобразовывать внутреннюю энергию в механическую. 

Их устройство довольно просто: они на входе получают какую-то энергию (в основном — энергию сгорания топлива), а затем часть этой теплоты расходуется на совершение работы механизмом. Например, в автомобилях часть энергии от сгоревшего бензина идет на движение. Схематично можно изобразить так:

Рабочее тело — то, что совершает работу — принимает от нагревателя количество теплоты Q1, из которой A уходит на работу механизма. Остаток теплоты Q2 рабочее тело отдает холодильнику, по сути — это потеря энергии.

Физика не была бы такой загадочной, если б все в ней было идеально. Как и в любом процессе или преобразовании, здесь возможны потери, зачастую очень большие. Поэтому «индикатором качества» машины является КПД, с которым мы уже сталкивались в механике:

Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.

(eta = frac{A}{Q_1}) , где

(eta) —  КПД,
A — работа газа (Дж),
Q1 — количество теплоты, полученное от нагревателя (Дж).

Мы должны понимать, что КПД на практике никогда не получится больше 1, поскольку всегда будут тепловые потери. 

Полезную работу можно расписать как Q1 — Q2 (по закону сохранения энергии). Тогда формула примет вид:

(eta = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1})

Давайте попрактикуемся в применении данной формулы на задаче номер 9 из ЕГЭ.

Задача. Тепловая машина, КПД которой равен 60%, за цикл отдает холодильнику 100 Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях).

Решение:

Давайте сначала вспомним нашу формулу для КПД:

(eta = frac{Q_1 — Q_2}{Q_1}),

где (Q_1) — это теплота, которую тело получает от нагревателя, (Q_2) — теплота, которая подводится к холодильнику.

Тогда отсюда можно вывести искомую теплоту нагревателя:

(eta Q_1 =Q_1-Q_2)
(eta Q_1 — Q_1= -Q_2)
(Q_1=frac{- Q_2}{eta-1}=frac{-100}{0,6-1}=250 Дж).

Ответ: 250 Дж

Цикл Карно

Мы знаем, что потери — это плохо, поэтому должны предотвращать их. Как это сделать? Нам ничего делать не нужно, за нас уже все сделал Сади Карно, французский физик, разработавший цикл, в котором машины достигают наивысшего КПД. Этот цикл носит его имя и состоит из двух изотерм и двух адиабат. Рассмотрим, как этот цикл выглядит в координатах p(V).

  • Температура верхней изотермы 1-2 — температура нагревателя (так как теплота в данном процессе подводится).
  • Температура нижней изотермы 3-4 — температура холодильника (так как теплота в данном процессе отводится).
  • 2-3 и 4-1 — это адиабатические расширение и сжатие соответственно, в них газ не обменивается теплом с окружающей средой.

Цикл Карно — цикл идеальной тепловой машины, которая достигает наивысшего КПД. 

Формула, по которой можно рассчитать ее КПД выражается через температуры:

(eta = frac{T_1 — T_2}{T_1} = 1 — frac{T_2}{T_1}), где 

T1 — температура нагревателя,  
T2 — температура холодильника.

Что лучше выбрать: Mercedes или BMW?

Не то круто, что красиво, а то, что по Карно работает! Поэтому присматривайте такой автомобиль, у которого высокий КПД.

Интересно, что максимальный уровень КПД двигателя внутреннего сгорания автомобилей на данный момент всего около 43%. По официальным заявлениям компания Nissan Motor с 2021 года испытывает прообраз двигателя нового поколения с планируемым КПД 50%.

Приступим к задачам

Задачи на данную тему достаточно часто встречаются в задании 27 из КИМа ЕГЭ. Давайте разберем некоторые примеры.

Задание 1. Одноатомный газ совершает циклический процесс, как показано на рисунке. На участке 1–2 газ совершает работу A12 = 1520 Дж. Участок 3–1 представляет собой адиабатный процесс. Количество теплоты, отданное газом за цикл холодильнику, равно |Qхол| = 4780 Дж. Найдите работу газа |A13| на адиабате, если количество вещества постоянно.

Решение:

Шаг 1. Первое, с чего лучше начинать задачи по термодинамике — исследование процессов. 

Посмотрим на участок 1-2 графика: продолжение прямой проходит через начало координат, поэтому график функционально можно записать, как p = aV, где a — какое-то число, константа. Графиком является не изотерма, поскольку график изотермы в координатах p-V — гипербола. Из уравнения Менделеева-Клапейрона следует: (frac{pV}{T} = const). Отсюда можно сделать вывод, что возрастает температура, так как растут давление и объем.  Температура и объем растут, значит, увеличивается и внутренняя энергия и объем соответственно.

Участок 2-3: процесс изохорный, поскольку объем постоянен, следовательно, работа газом не совершается. Рассмотрим закон Шарля: (frac{p}{T} = const). Давление в этом процессе растет, тогда растет и температура, поскольку дробь не должна менять свое значение. Делаем вывод, что внутренняя энергия тоже увеличивается.

Участок 3-1: адиабата по условию, то есть количество теплоты в этом переходе равна нулю из определения адиабатного процесса. Работа газа отрицательна, так как газ уменьшает объем. 

Оформим все данные в таблицу. 

Определим знаки Q, используя первый закон термодинамики: Q = ΔU + A.

Из этих данных сразу видно, что количество теплоты, отданное холодильнику — это количество теплоты в процессе 2-3.

Шаг 2. Первый закон термодинамики для процесса 1-2 запишется в виде: 

Q12 = ΔU12 + A12

Работа A12 — площадь фигуры под графиком процесса, то есть площадь трапеции: 

(A_{12} = frac{p_0 + 2p_0}{2} * V0 =frac{3p_0V_0}{2}). 

Запишем изменение внутренней энергии для этого процесса через давление и объем. Мы выводили эту формулу в статье «Первое начало термодинамики»:

(Delta U_{12} = frac{3}{2}(2p_0 * 2V_0 — p_0V_0) = frac{9p_0V_0}{2}). 

Заметим, что это в 3 раза больше работы газа на этом участке: 

(Delta U_{12} = 3A_{12} rightarrow Q_{12} = 4A_{12}).

Шаг 3. Работа цикла — площадь фигуры, которую замыкает график, тогда . A = A12 — |A31|. С другой стороны, работа цикла вычисляется как разность между энергиями нагревателя и холодильника: A = Q12 — |Q31|.

 Сравним эти формулы:

Q12 -|Q31| = A12 — |A31|,

подставим выражения из предыдущего пункта:

4A12 — |Q31| = A12 — |A31| (rightarrow) |A31| = -3A12 + |Q31| = -31520 + 4780 = 220 Дж.

Ответ: 220 Дж

Задание 2. Найти КПД цикла для идеального одноатомного газа.

Решение:

Шаг 1. КПД цикла определим по формуле: (eta = frac{A}{Q}), где Q — количество теплоты от нагревателя, а А — работа газа за цикл. Найдем А как площадь замкнутой фигуры: A = (2p1 — p1)(3V1 — V1) = 2p1V1.

Шаг 2. Найдем процесс, который соответствует получению тепла от нагревателя. Воспользуемся теми же приемами, что и в прошлой задаче:

Посмотрим на участок 1-2 графика: давление растет, объем не меняется. По закону Шарля (frac{p}{T} = const) температура тоже растет. Работа газа равна 0 при изохорном процессе, а изменение внутренней энергии положительное.

2-3: давление не меняется, растет объем, а значит, работа газа положительна. По закону Гей-Люссака (frac{V}{T} = const) температура тоже растет, растет и внутренняя энергия.

3-4: давление уменьшается, следовательно, и температура уменьшается. При этом процесс изохорный и работа газа равна 0.

4-1: давление не меняется, объем и температура уменьшаются — работа газа отрицательна и внутренняя энергия уменьшается.

Оформим данные в таблицу: 

Отметим, что  необходимое Q = Q12 + Q23.

Шаг 3. Запишем первый закон термодинамики для процессов 1-2 и 2-3:

(Q_{12} = U_{12} + A_{12} = Delta U_{12} = frac{3}{2}(2p_1V_1 -p_1V_1) = frac{3}{2}p_1V_1).
(Q_{23} = Delta U_{23} + A_{23}), работу газа найдем как площадь под графиком: A23 = 2p1(3V1 — V1) = 4p1V1.
(Delta U_{12} = frac{3}{2}(2p_1 * 3V_1 — 2p_1V_1) = 6p_1V_1).
(Q_{23} = Delta U_{23} + A_{23} = 10p_1V_1).

Шаг 4. Мы готовы считать КПД: (eta = frac{A}{Q} = frac{A}{Q_{12} + Q_{23}} = frac{2p_1V_1}{frac{3}{2}p_1V_1 + 10p_1V_1} = frac{4}{23} approx 0,17).

Ответ: 17%

Теперь вас не должно настораживать наличие графиков в условиях задач на расчет КПД тепловых машин. Продолжить обучение решению задач экзамена вы можете в статьях «Применение законов Ньютона» и «Движение точки по окружности».

Фактчек

  • Тепловые двигатели — устройства, способные преобразовывать внутреннюю энергию в механическую. 
  • Тепловая машина принимает тепло от нагревателя, отдает холодильнику, а рабочим телом совершает работу.
  • Коэффициент полезного действия (КПД) тепловой машины — это отношение полезной работы двигателя к энергии, полученной от нагревателя.
    (eta = frac{A}{Q_1} = frac{Q_1 — Q_2}{Q_1} = 1 — frac{Q_2}{Q_1})  
  • Цикл Карно — цикл с максимально возможным КПД: (eta = frac{T_1 — T_2}{T_1} = 1 — frac{T_2}{T_1})
  • Не забываем, что работа считается, как площадь фигуры под графиком.

Проверь себя

Задание 1. 
1 моль идеального газа переходит из состояния 1 в состояние 2, а потом — в состояние 3 так, как это показано графике. Начальная температура газа равна T0 = 350 К. Определите работу газа при переходе из состояния 2 в состояние 3, если k = 3, а n = 2.

  1. 5672 Дж
  2. 4731 Дж
  3. 5817 Дж
  4. 6393 Дж

Задание 2. 
1 моль идеального одноатомного газа совершает цикл, который изображен на pV-диаграмме и состоит из двух адиабат, изохоры, изобары. Модуль отношения изменения температуры газа при изобарном процессе ΔT12 к изменению его температуры ΔT34 при изохорном процессе равен 1,5. Определите КПД цикла.

  1. 0,6
  2. 0,5
  3. 0,8
  4. 1

Задание 3.
В топке паровой машины сгорело 50 кг каменного угля, удельная теплота сгорания которого равна 30 МДж/кг. При этом машиной была совершена полезная механическая работа 135 МДж. Чему равен КПД этой тепловой машины? Ответ дайте в процентах.

  1. 6%
  2. 100%
  3. 22%
  4. 9%

Задание 4.
С двумя молями одноатомного идеального газа совершают циклический процесс 1–2–3–1 (см. рис.). Чему равна работа, совершаемая газом на участке 1–2 в этом циклическом процессе?

  1. 4444 Дж
  2. 2891 Дж
  3. 4986 Дж
  4. 9355 Дж

Ответы:1 — 3; 2 — 1; 3 — 4; 4 — 3.

Речь в статье пойдет о КПД различных циклов, проводимых с газом. При этом давайте помнить, что внутренняя энергия изменяется тогда, когда изменяется температура, а в адиабатном процессе передачи тепла не происходит, то есть для совершения работы в таком процессе газ «изыскивает внутренние резервы». Кроме того, работа численно равна площади под кривой процесса, а работа за цикл — площади внутри цикла.

Задача 1.

На рисунке представлена диаграмма цикла с одноатомным идеальным газом. Участки Работа газа и КПД цикла и Работа газа и КПД цикла — адиабаты.  Вычислите КПД Работа газа и КПД цикла данной тепловой машины и максимально возможный КПД Работа газа и КПД цикла.

Интересные задачи_12

К задаче 1

КПД тепловой машины можно вычислить как

Работа газа и КПД цикла

Машина получает тепло только на участке AB, и, так как работы здесь не совершается, то можно вычислить количество теплоты, полученное газом, как увеличение его внутренней энергии:

Работа газа и КПД цикла

Работа численно равна площади, ограниченной циклом. Поэтому

Работа газа и КПД цикла

Участк Работа газа и КПД цикла и Работа газа и КПД цикла по условию – адиабаты, то есть передачи тепла газу на этих участках не происходит, следовательно, работа будет совершена за счет «внутренних резервов» — то есть внутренней энергии. Нужно, следовательно, найти, как она изменилась.

Задачу можно решить двумя способами. Во-первых, просто определить температуры в точках Работа газа и КПД цикла и Работа газа и КПД цикла, Работа газа и КПД цикла и Работа газа и КПД цикла, это легко сделать из данных графика с помощью уравнения Менделеева-Клапейрона, и затем посчитать Работа газа и КПД цикла. Но, так как Работа газа и КПД цикла, а Работа газа и КПД цикла,то изменение внутренней энергии будет равно

Работа газа и КПД цикла

Работа газа и КПД цикла

Работа газа и КПД цикла

Работа газа и КПД цикла

Определим максимальный КПД. Посчитаем его как КПД цикла Карно. Максимальная температура газа будет достигнута в точке Работа газа и КПД цикла, а минимальная – в точке Работа газа и КПД цикла:

Работа газа и КПД цикла

Работа газа и КПД цикла

Работа газа и КПД цикла

Ответ: Работа газа и КПД цикла, Работа газа и КПД цикла.

Задача 2.

Над идеальным одноатомным газом проводят цикл, включающий изобару, изохору, изотерму, при этом работа газа за цикл равна Работа газа и КПД цикла кДж.  В процессе изотермического сжатия (3-1) внешние силы совершают над газом положительную работу Работа газа и КПД цикла кДж. Найдите КПД данной тепловой машины.

Интересные задачи_13

К задаче 2

Работа газа в процессе 1-2– площадь под линией процесса 1-2. Работа внешних сил – площадь под циклом (под линией 3-1). Поэтому полная работа за цикл – это разность работы газа и работы внешних сил, площадь, ограниченная линиями цикла. Она будет равна 5 кДж.

Работа газа в процессе 1-2, таким образом, равна 8 кДж. А поскольку процесс изобарный, то Работа газа и КПД цикла кДж. Тогда КПД

Работа газа и КПД цикла

Ответ: Работа газа и КПД цикла.

Задача 3.

КПД  тепловой машины, работающей по циклу, включающему изотермический (1-2) и адиабатный (3-1) процессы, равен Работа газа и КПД цикла, причем работа, совершенная 2 моль одноатомного идеального газа в изотермическом процессе Работа газа и КПД цикла кДж. Найдите разность Работа газа и КПД цикла максимальной и минимальной  температур  газа в цикле.

Интересные задачи_14

К задаче 3

Полная площадь под кривой процесса 1-2 равна Работа газа и КПД цикла кДж. При этом, так как КПД машины 25%, то площадь внутри цикла равна Работа газа и КПД цикла, а под кривой 3-1  — Работа газа и КПД цикла.  В процессе 1-2 изменения внутренней энергии не было, так как температура не менялась, а в процессе 3-1 газу не передавали тепло, следовательно, работа совершена за счет внутренней энергии. Т.е.

Работа газа и КПД цикла

Работа газа и КПД цикла

Работа газа и КПД цикла

Ответ: 500 K.

.

04

Термодинамические циклы. КПД тепловых машин

Вспоминай формулы по каждой теме

Решай новые задачи каждый день

Вдумчиво разбирай решения

ШКОЛКОВО.

Готовиться с нами — ЛЕГКО!

Подтемы раздела

№9 термодинамика

Решаем задачи

На p-V диаграмме изображен цикл, проводимый с одноатомным идеальным газом. Чему равен
коэффициент полезного действия этого цикла? Ответ дайте в процентах и округлите до
десятых.

PIC

Показать ответ и решение

КПД цикла η  будем находить по формуле:

η = -A-(1)
    Q н

Работу цикла A  численно равна площади фигуры цикла в координатах p − V  , при этом если цикл
обходится по часовой стрелке, то работа цикла будет положительной (как у нас). Фигура цикла
представляет собой прямоугольный треугольник, поэтому:

     1-
A =  2 (2p0 − p0)(2V0 − V0 )

     p0V0
A =  -2--(2)

Теперь нужно определить процессы в цикле, в которых теплота подводилась к газу. Запишем первый
закон термодинамики:

Q  = ΔU  + A (3)

Также запишем формулу для определения изменения внутренней энергии одноатомного идеального газа
ΔU  :

ΔU  =  3νR ΔT  (4)
       2

Запишем уравнение Клапейрона-Менделеева для точек 1–3:

(
|| p V =  νRT
|{  0 0       1
  2p0V0 = νRT2
|||
( 2p0 ⋅ 2V0 = νRT3

Рассмотрим изохорный процесс 1-2 (V  = const  ), работа газа A12   в таком процессе равна нулю. Тогда
количество теплоты Q12   по формуле (3), учитывая формулу (4), равно:

      3
Q12 = --νR ΔT12 (8 )
      2

Так
как давление в процессе 1-2 растёт, значит растёт и температура, то есть ΔT12  > 0  . Поэтому, согласно
формуле (8) Q12 > 0  , то есть теплота в процессе 1-2 подводилась к газу. Учитывая формулы (5) и (6),
формула (8) примет вид:

Q12 =  3(2p0V0 − p0V0 ) = 3p0V0(9)
       2                  2

Теперь рассмотрим изобарный процесс 2-3 (p = const)  . Работа газа A23   в таком процессе
равна:

A23 =  2p0(2V0 − V0) = 2p0 ⋅ 2V0 − 2p0V0

Учитывая уравнения (6) и (7), имеем:

A23 = νR ΔT23

Количество теплоты Q23   по формуле (3), учитывая формулу (4), равно:

      3
Q23 = --νR ΔT23 + νR ΔT23
      2

       5
Q23 =  -νR ΔT23 (10)
       2

Так
как объем в процессе 2-3 увеличивается, то по закону Гей-Люссака увеличивается и температура
(ΔT23  > 0  ). Поэтому, согласно формуле (10) Q23 >  0  , то есть теплота в процессе 2-3 к газу
подводилась. Учитывая формулы (6) и (7), формула (10) примет вид:

Q23 = 5-(2p0 ⋅ 2V0 − 2p0V0) = 5p0V0(11 )
      2

Так
как в процессах 1-2 и 2-3 теплота подводится, значит в процессе 3-1 она отводится, так как хотя бы в
одном из процессов цикла она должна отводится. Поэтому количество теплоты Q н   , полученное от
нагревателя, равно:

Q   = Q   + Q
  н     12    23

Подставим в эту формулу выражения (9) и (11), тогда:

      3                13
Q н = --p0V0 + 5p0V0 = ---p0V0(12)
      2                 2

В
формулу (1) для определения КПД η  подставим выражения (2) и (12):

      p V
      -0--0
η =  ---2--- = -1-=  0,0769 = 7, 7%
     13-p V    13
      2  0 0

Критерии оценки

3 балла ставится если:

_________________________________________________________________________________________________________________
I) Записаны положения теории и физические законы, закономерности, применение которых необходимо
для решения задачи выбранным способом ( в данном случае: форму расчета КПД цикла, формула
работы газа в циклическом процессе, первый закон термодинамики, формула внутренней энергии
одноатомного идеального газа. Сказано, на каких участках газ получает тепло, описан каждый
изопроцесс)

II) Описаны все вводимые буквенные обозначения величин, кроме тех, которые приведены в условии
задачи или представлены в виде констант в КИМ, стандартных обозначений величин, используемых при
написании физических законов. (введены обозначения для всех величин, которых нет в
КИМах)

III) Представлены математические образования, приводящие к верному ответу (в данном случае
последовательное выражение величин с пояснением действий).

IV) Получен верный ответ.

2 балла ставится если:

_________________________________________________________________________________________________________________
Верно записаны все положения теории, физические законы, закономерности, и проведены необходимые
преобразования, но имеются один или несколько из следующих недостатков:

I) В решении имеются лишние записи, не входящие в решение, которые не отделены от решения и не
зачёркнуты.

II) В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в
математических преобразованиях/вычислениях пропущены логически важные шаги. (Получение
конечной формулы сразу, без последовательного, логического вывода. Пропуск преобразований в
формулах.)

III) Отсутствуют описания вновь вводимых в решение буквенных обозначений физических величин.

IV) Ответ получен неверный или в нём допущена ошибка. (В ответе обязательно указываются единицы
измерений.)

1 балл ставится если:

_________________________________________________________________________________________________________________
Представлены записи, соответствующие одному из следующих случаев.

Записаны только положения и формулы, выражающие физические законы, применение которых
необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их
использованием, направленных на решение задачи.

В решении отсутствует ОДНА из исходных формул, необходимая для решении задачи (или утверждение,
лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися
формулами, направленные на решение задачи.

В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в
основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися
формулами, направленные на решение задачи.

Во всех остальных случаях за задачу выставляется 0 баллов.

Тепловая машина с КПД 30% за цикл работы получает от нагревателя количество теплоты, равное
5 кДж. Какое количество теплоты машина отдаёт за цикл холодильнику? Ответ дайте в
кДж.

Показать ответ и решение

КПД цикла можно найти по формуле:

         Qх-
η =  1 − Q
          н

Выразим количество теплоты, которое машина отдаёт за цикл холодильнику:

Q х = Q н(1 − η ) = 5 к Дж (1 − 0,3) = 3,5 кД ж

Найдите КПД тепловой машины совершающей процесс 1-2-3, график цикла которой показан на рисунке.
Рабочим телом является одноатомный идеальный газ. Ответ дайте в процентах

PIC

Показать ответ и решение

КПД цикла можно найти по формуле η =  Aц-
     Qн   . Здесь A ц   — работа цикла, находится как площадь
ограниченная графиком функции, Q н   — теплота полученная газом за все процессы, находится как
сумма теплот на участках с подводом теплоты, то есть процесс 1-2.

Найдем работу цикла:

A  = S =  1-⋅ 3V ⋅ 3P =  9P0v0-
 ц        2    0     0     2

Найдем теплоту подведенную к газу. Выразим теплоту на участке 1-2 через первый закон
термодинамики, работу найдем как площадь под графиком процесса, а изменение внутренней энергии
выразим из формулы        3-
ΔU  =  2(ΔP  V )

Q  =  A + ΔU  =  13V  (P  +  4P ) + 3(4P  4V −  P V ) = 15P0V0- + 45P0V0- = 30P  V
  н              2   0  0     0    2    0  0    0 0       2         2          0 0

Тогда КПД цикла равен:

η =  --9P0V0---= 0, 15
     2 ⋅ 30P0V0

В
процентах

η = 15%

КПД идеальной тепловой машины, работающей по циклу Карно, равен η = 60%  . Если температуру
нагревателя увеличить в два раза, а температуру холодильника уменьшить в 2 раза, чему будет равен
КПД тепловой машины? (Ответ дайте в процентах.)

Показать ответ и решение

КПД идеальной тепловой машины в первом случае:

         Tхo-
ηo = 1 − T
          нo

Выразим отсюда отношение температуры холодильника к температуре нагревателя:

T-хo-
T   =  1 − 0, 6 = 0,4
  нo

Найдем КПД тепловой машины во втором случае:

         Tх-
η = 1 −  T ,
          н

где
температура холодильника уменьшилась в два раза       Tхo-
T х =  2  , а температура нагревателя увеличилась в
2 раза T н = 2Tнo  .

        1  Tхo
η = 1 − --⋅----
        4  Tнo

        1
η = 1 − --⋅ 0,4 = 0,9 = 90%
        4

Тепловая машина с КПД 60%  за цикл работы отдает холодильнику количество теплоты, равное 100
Дж. Какое количество теплоты за цикл машина получает от нагревателя? (Ответ дайте в
джоулях.)

Показать ответ и решение

КПД тепловой машины можно найти по формуле:

         Qх-
η =  1 − Q
          н

Выразим отсюда количество теплоты, которое машина получает от нагревателя за цикл:

      --Qх--
Q н = 1 − η

      100 Д ж
Qн =  --------=  250 Дж
      1 − 0,6

Тепловая машина за цикл совершает работу 50 Дж и отдает холодильнику количество теплоты, равное
100 Дж. Чему равен КПД тепловой машины? (Ответ дайте в долях единицы и округлите до
сотых.)

Показать ответ и решение

КПД тепловой машины:

         Qх-
η =  1 − Q
          н

Зная
работу тепловой машины за цикл и количество теплоты, отданное холодильнику, можно найти
количество теплоты, принятое нагревателем:

A = Q н − Q х

Qн = A +  Q х

Q н = 50 Д ж + 100 Д ж  = 150 Д ж

Найдем КПД тепловой машины:

         100-Дж--
η = 1 −  150 Дж  ≈ 0, 33

Тепловая машина за цикл работы получает от нагревателя количество теплоты, равное 100 Дж, и отдает
холодильнику количество теплоты, равное 40 Дж. Чему равен КПД тепловой машины? (Ответ дайте в
процентах.)

Показать ответ и решение

КПД тепловой машины можно найти по формуле:

         Qх-
η =  1 − Q
          н

         40 Д ж
η = 1 −  --------= 0, 6 = 60%
         100 Дж

Идеальная тепловая машина с КПД 55%  за цикл работы получает от нагревателя 100 Дж. Какую
полезную работу машина совершает за цикл? (Ответ дайте в джоулях.)

Показать ответ и решение

Под полезной работой понимается работа, которую совершила тепловая машина за цикл.
КПД тепловой машины можно найти по формуле:

η =  Aц-
     Qн

Выразим работу, совершенную тепловой машиной за цикл:

A ц = η ⋅ Q н

Aц = 0,55 ⋅ 100 Д ж = 55 Д ж

Тепловая машина с КПД 30%  за цикл работы отдаёт холодильнику количество теплоты, равное 50 Дж.
Какое количество теплоты машина получает за цикл от нагревателя? (Ответ дайте в джоулях, округлив
до десятых.)

Показать ответ и решение

КПД тепловой машины можно найти по формуле:

         Qх-
η =  1 − Q
          н

Выразим количество теплоты, которое машина получает за цикл от нагревателя:

      --Qх--
Q н = 1 − η

      50 Дж
Q н = -------=  71,4 Дж
       0, 7

Температура холодильника тепловой машины 800 К, температура нагревателя на 200 К
больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в
процентах.)

Показать ответ и решение

Из условия:

Tн = T х + 200 К

Tн = 800  К + 200 К  = 1000 К

КПД
цикла Карно можно найти по формуле:

        Tх-
η = 1 − Tн

η = 1 −  800-Д-ж--=  0,2
         1000 Дж

Тепловая машина за один цикл совершает работу 20 Дж и отдаёт холодильнику количество теплоты 80
Дж. Температура нагревателя этой машины 600 К, а температура холодильника 300 К. Во сколько раз
КПД идеальной тепловой машины, работающей при тех же температурах нагревателя и холодильника,
больше КПД рассматриваемой тепловой машины?

Показать ответ и решение

КПД идеальной тепловой машины в цикле Карно можно найти по формуле:

            Tх-
ηmax = 1 −  T
             н

            300 К
ηmax = 1 −  ------=  1 − 0,5 = 0,5
            600 К

КПД рассматриваемой тепловой машины:

    A-цикл
η =   Q
       н

Зная
работу тепловой машины за цикл и количество теплоты, отданное холодильнику, можно найти
количество теплоты, принятое нагревателем:

Aцикл = Q н − Qх

Qн = A цикл + Qх

Q н = 20 Дж  + 80 Д ж =  100 Дж

Найдем КПД рассматриваемой машины:

    -20-Дж--
η = 100 Д ж  = 0,2

Найдем, во сколько раз КПД идеальной тепловой машины, работающей при тех же температурах
нагревателя и холодильника, больше КПД рассматриваемой тепловой машины:

ηmax- = 0,5-=  2,5
  η     0,2

Температура холодильника тепловой машины 400 К, температура нагревателя на 600 К
больше, чем у холодильника. Каков максимально возможный КПД машины? (Ответ дайте в
процентах.)

Показать ответ и решение

Из условия:

Tн = T х + 400 К

Tн = 600  К + 400 К  = 1000 К

КПД в цикле Карно можно найти по формуле:

        Tх-
η = 1 − Tн

η = 1 − 400--К- = 0,6 = 60%
        1000 К

Тепловая машина с КПД 40%  за цикл работы отдает холодильнику 100 Дж. Какое количество
теплоты за цикл машина получает от нагревателя? (Ответ дайте в джоулях, округлив до
целых.)

Показать ответ и решение

КПД цикла можно найти по формуле:

         Qх-
η =  1 − Q
          н

Выразим количество теплоты, которое машина получает от нагревателя за цикл:

      --Qх--
Q н = 1 − η

      100 Д ж
Qн =  --------≈  167 Дж
      1 − 0,4

В цикле Карно абсолютная температура нагревателя в 2,5 раза выше абсолютной температуры
холодильника. Какая доля теплоты, полученной рабочим телом от нагревателя, передается
холодильнику? (Ответ дайте в процентах.)

Показать ответ и решение

Из условия:

Tн = 2,5Tх

КПД в цикле Карно:

        Tх
η = 1 − ---
        Tн

η =  1 − -1Tх--=  -1--= 0,6
         2,5Tх    2,5

Следовательно, холодильнику передается теплоты:

1 − η = 1 − 0,6 =  0,4

Газ, совершающий цикл Карно, отдаёт холодильнику 70%  теплоты, полученной от нагревателя.
Температура нагревателя T  = 400  K. Найдите температуру холодильника. (Ответ дайте в кельвинах.)

Если идеальная тепловая машина за цикл совершает полезную работу 50 Дж и отдает холодильнику 50
Дж, то каков ее КПД? (Ответ дайте в процентах.)

Досрочная волна 2019

Показать ответ и решение

КПД:

    ---A----   -----50-к-Дж-------
η = A  + Q   = 50 кД ж +  50 кД ж =  0,5
           x

В некотором циклическом процессе КПД двигателя 50%, за цикл газ отдаёт холодильнику 50 Дж. Чему
равна теплота, отданная от нагревателя рабочему телу? Ответ дайте в Дж.

Досрочная волна 2019

Показать ответ и решение

КПД вычисляется по формуле:

        -Qx-
η = 1 − Q
           н

Откуда теплота:

       -Qx---   50-Д-ж--
Q  н = 1 − η =  1 − 0, 5 = 100 Д ж

Спецвыпуск

Г. А.
Белуха

Работа газа в термодинамике

··· Орловский выпуск ···

Г.А.БЕЛУХА,
школа № 4, г. Ливны, Орловская обл.

Работа газа в термодинамике

Методические рекомендации по
изучению темы, 10-й класс

При изучении работы газа в
термодинамике учащиеся неизбежно сталкиваются с
трудностями, обусловленными слабыми навыками
вычисления работы переменной силы. Поэтому к
восприятию этой темы необходимо готовиться,
начиная уже с изучения работы в механике и решая
с этой целью задачи на работу переменной силы
путём суммирования элементарных работ на всём
пути с помощью интегрирования.

Например, при вычислениях работы силы
Архимеда, силы упругости, силы всемирного
тяготения и т.п. надо учиться суммировать
элементарные величины с помощью простейших
дифференциальных соотношений типа dA = Fds.
Опыт показывает, что старшеклассники легко
справляются с этой задачей, – дугу траектории, на
которой сила увеличивается или уменьшается,
нужно разбить на такие промежутки ds, на
которых силу F можно считать постоянной
величиной, а затем, зная зависимость F = F(s),
подставить её под знак интеграла. Например,

Работа этих сил вычисляется с помощью
простейшего табличного интеграла

Такая методика облегчает адаптацию
будущих студентов к восприятию курса физики в
вузе и устраняет методические сложности,
связанные с умением находить работу переменной
силы в термодинамике и др.

После того как учащиеся усвоили, что
такое внутренняя энергия и как найти её
изменение, целесообразно дать обобщающую схему:

Усвоив, что работа – это один из
способов изменения внутренней энергии,
десятиклассники легко рассчитывают работу газа
в изобарном процессе. На данном этапе необходимо
подчеркнуть, что сила давления газа на всём пути
не меняется, и по третьему закону Ньютона |F2| = |F1|,
знак работы находим из формулы A = Fs cos. Если  = 0°, то A > 0,
если  = 180°,
то A < 0. На графике зависимости р(V)
работа численно равна площади под графиком.

Пусть газ расширяется или сжимается
изотермически. Например, газ сжимается под
поршнем, давление изменяется, и в любой момент
времени

При бесконечно малом перемещении
поршня на dl мы получим бесконечно малое
изменение объёма dV, а давление р можно
считать постоянным. По аналогии с нахождением
механической работы переменной силы, составим
простейшее дифференциальное соотношение dA = pdV,
тогда и, зная
зависимость р (V), запишем   Это табличный интеграл
типа   Работа
газа в этом случае отрицательна, т.к. = 180°:

т.к. V2 < V1.

Полученную формулу можно переписать,
используя соотношение

Для закрепления решим задачи.

1. Газ переходит из состояния 1
(объём V1, давление р1) в
состояние 2 (объём V2, давление р2)
в процессе, при котором его давление зависит от
объёма линейно. Найдите работу газа.

Решение. Построим примерный
график зависимости p от V. Работа равна
площади под графиком, т.е. площади трапеции:

06-13.gif (3864 bytes)

2. Один моль воздуха, находящийся при
нормальных условиях, расширяется от объёма V0
до 2V0 двумя способами – изотермически
и изобарно. Сравните работу, совершённую
воздухом в этих процессах.

Решение

При изобарном процессе Ap = р0V, но р0 = RT0/V0,
VV0,
следовательно, Ap = RT0.

При изотермическом процессе:

Сравним:

Изучив первый закон термодинамики и
его применение к изопроцессам и закрепив
решением задач тему о работе в термодинамике,
учащиеся подготовились к восприятию наиболее
сложной части термодинамики «Работа циклов и КПД
тепловых машин». Этот материал я излагаю в
следующей последовательности: работа циклов –
цикл Карно – КПД тепловых машин – круговые
процессы.

06-16.gif (2693 bytes)Круговым
процессом (или циклом) называется
термодинамический процесс, в результате
которого тело, пройдя ряд состояний,
возвращается в исходное состояние. Если все
процессы в цикле равновесные, то цикл считается
равновесным. Его можно изобразить графически в
виде замкнутой кривой.

На рисунке показан график зависимости
давления p от объёма V (диаграмма p, V)
для некоторого цикла 1–2–3–4–1. На участках 1–2
и 4–1 газ расширяется и совершает
положительную работу А1, численно
равную площади фигуры V1412V2.
На участке 2–3–4 газ сжимается и совершает
работу А2, модуль которой равен
площади фигуры V2234V1. Полная
работа газ за цикл А = А1 + А2,
т.е. положительна и равна площади фигуры 12341.

Если равновесный цикл изображается
замкнутой кривой на р, V-диаграмме,
которая обходится по часовой стрелке, то работа
тела положительна, а цикл накзывается прямым.
Если замкнутая кривая на р, V-диаграмме
обходится против часовой стрелки, то газ
совершает отрицательную работу за цикл, а цикл
называется обратным. В любом случае модуль
работы газа за цикл равен площади фигуры,
ограниченной графиком цикла на р, V-диаграмме.

В круговом процессе рабочее тело
возвращается в исходное состояние, т.е. в
состояние с первоначальной внутренней энергией.
Это значит, что изменение внутренней энергии за
цикл равно нулю: U = 0.
Так как, по первому закону термодинамики, для
всего цикла Q = U + A, то Q = A.
Итак, алгебраическая сумма всех количеств
теплоты, полученных за цикл, равна работе тела за
цикл: Aц = Qн + Qх = Qн
– |Qх|.

Рассмотрим один из круговых процессов
– цикл Карно. Он состоит из двух изотермических и
двух адиабатических процессов. Пусть рабочим
телом является идеальный газ. Тогда на участке 1–2
изотермического расширения, согласно первому
закону термодинамики, всё получаемое газом тепло
идёт на совершение положительной работы: Q12 = A12.
То есть нет никаких потерь тепла в окружающее
пространство и никакого изменения внутренней
энергии: U = 0,
т.к. T12 = const (потому что газ –
идеальный).

На участке 2–3 адиабатного
расширения газ совершает положительную работу
за счёт изменения внутренней энергии, т.к. Qад = 0
U23 + Aг23  Aг23 = –U23.
Здесь также нет потерь тепла, по определению
адиабатного процесса.

На участке 3–4 над газом
совершается положительная работа внешней силой,
но он не нагревается (изотермический процесс).
Благодаря достаточно медленно протекающему
процессу и хорошему контакту с холодильником газ
успевает отдавать получаемую за счёт работы
энергию в виде тепла холодильнику. Сам же газ
совершает при этом отрицательную работу: Q34 = Aг34
< 0.

На участке 4–1 газ адиабатно (без
теплообмена) сжимается до исходного состояния.
При этом он совершает отрицательную работу, а
внешние силы – положительную: 0 = U41 + Aг41
Aг41 = –U41.

Таким образом, за цикл газ получает
тепло только на участке 1–2, изотермически
расширяясь:

Холодильнику тепло отдаётся только
при изотермическом сжатии газа на участке 3–4:

Согласно первому закону термодинамики

Aц = Qн – |Qx|;

поэтому

КПД машины, работающей по циклу Карно,
найдём по формуле

Согласно закону Бойля–Мариотта для
процессов 1–2 и 3–4, а также уравнению
Пуассона для процессов 2–3 и 4–1, легко
доказать, что

(Хорошо бы увидеть, как автор это
делает: ведь уравнение Пуассона для диабаты
идеального газа надо ещё получить. – Ред.)

После сокращений получим формулу КПД
тепловой машины, работающей по циклу Карно:

Работу тепловых машин, работающих по
обратному циклу, методически правильно, как
показывает опыт, изучать на примере работы
обратного цикла Карно, т.к. он обратим и его можно
провести в обратном направлении: расширять газ
при понижении температуры от Tн до Tx
(процесс 1–4) и при низкой температуре Tx
(процесс 4–3), а затем сжимать (процессы 3–2
и 2–1). Теперь двигатель совершает работу,
чтобы привести в действие холодильную машину.
Рабочее тело отнимает количество теплоты Qx
у продуктов внутри при низкой температуре Tх,
а отдаёт количество теплоты Qн
окружающим телам, за пределами холодильника, при
более высокой температуре Tн. Таким
образом, машина, работающая по обратному циклу
Карно, уже не тепловая, а идеальная холодильная.
Роль нагревателя (отдающего тепло) выполняет
тело с более низкой температурой. Но, сохранив
названия элементов, как в тепловой машине,
работающей по прямому циклу, мы можем
представить блок-схему холодильника в следующем
виде:

Обратим внимание, что тепло от
холодного тела переходит в холодильной машине к
телу с более высокой температурой не
самопроизвольно, а за счёт работы внешней силы.

Важнейшей характеристикой
холодильника является холодильный коэффициент , определяющий
эффективность работы холодильника и равный
отношению количества теплоты, отнятого от
холодильной камеры Qх к затраченной
энергии внешнего источника

За один обратный цикл рабочее тело
получает от холодильника количество теплоты Qх
и отдаёт в окружающее пространство количество
теплоты Qн, что больше Qх на
работу Aдв, совершаемую
электродвигателем над газом за цикл: |Qн| = |Qх| + Адв.

Энергия, затраченная двигателем
(электроэнергия в случае компрессорных
электрических холодильников), идёт на полезную
работу над газом, а также на потери при
нагревании обмоток двигателя электрическим
током QR и на трение в схеме Атр.

Если пренебречь потерями на трение и
джоулево тепло в обмотках двигателя, то
холодильный коэффициент

Учитывая, что в прямом цикле

после несложных преобразований
получим:

Последнее соотношение между
холодильным коэффициентом и КПД тепловой машины,
которая может работать и по обратному циклу,
показывает, что холодильный коэффициент может
быть больше единицы. В этом случае тепла
отнимается от холодильной камеры и возвращается
в комнату больше, чем для этого используется
энергии двигателем.

В случае идеальной тепловой машины,
работающей по обратному циклу Карно (идеального
холодильника), холодильный коэффициент имеет
максимальное значение:

В реальных холодильниках   т.к. не вся получаемая
двигателем энергия идёт на работу над рабочим
телом, о чём написано выше.

Решим задачу:

• Оцените стоимость изготовления 1 кг
льда в домашнем холодильнике, если температура
испарения фреона –tх °С,
температура радиатора tн °С.
Стоимость одного киловатт-часа электроэнергии
равна Ц. Температура в комнате t.

Дано:

m, c, t, tн, tх,
, Ц.
____________
Д – ?

Решение

Стоимость Д изготовления льда равна
произведению работы электродвигателя на тариф Ц:
Д = ЦА.

Для превращения воды в лёд с
температурой 0 °С необходимо отвести от неё
количество теплоты Q = m(ct + ). Считаем
приближённо, что над фреоном совершается
обратный цикл Карно с изотермами при
температурах Tн и Tх.
Используем формулы для холодильного
коэффициента: по определению,  = Q/A и для
идеального холодильника ид = Tх/(Tн – Tх).
Из условия следует, что   ид.

Решаем совместно три последних
уравнения:

Разбирая с учащимися эту задачу,
необходимо обратить внимание на то, что основная
работа холодильного устройства идёт не на
охлаждение продуктов, а на поддержание
температуры внутри холодильного шкафа путём
периодической откачки тепла, проникающего
сквозь стенки холодильника.

Для закрепления темы можно решить
задачу:

• КПД тепловой машины, работающей по
циклу, состоящему из изотермического процесса 1–2,
изохорического 2–3 и адиабатического 3–1,
равен , а
разность максимальной и минимальной температур
газа в цикле равна T. Найдите работу, совершённую моль одноатомного
идеального газа в изотермическом процессе.

Решение

При решении задач, в которых
фигурирует КПД цикла, полезно предварительно
проанализировать все участки цикла, используя
первый закон термодинамики, и выявить участки,
где тело получает и отдаёт тепло. Проведём
мысленно ряд изотерм на р, V-диаграмме.
Тогда станет ясно, что максимальная температура
в цикле на изотерме, а минимальная – в т. 3.
Обозначим их через T1 и T3
соответственно.

На участке 1–2 изменение
внутренней энергии идеального газа U2 – U1 = 0.
По первому закону термодинамики, Q12 = (U2 – U1) + А12.
Так как на участке 1–2 газ расширялся, то
работа газа А12 > 0. Значит, и
подведённое к газу количество теплоты на этом
участке Q12 > 0, причём Q12 = А12.

На участке 2–3 работа газа равна
нулю. Поэтому Q23 = U3 – U2.

Воспользовавшись выражениями U2=
cVT1
и тем, что T1 – T3 = T, получим Q23 = –cV T < 0.
Это означает, что на участке 2–3 газ получает
отрицательное количество теплоты, т.е. отдаёт
тепло.

На участке 3–1 теплообмена нет,
т.е. Q31 = 0 и, по первому закону
термодинамики, 0 = (U1 – U3) + A31.
Тогда работа газа
A31 = U3 – U1 = cV(T3 –T1) = –cV T.

Итак, за цикл газ совершил работу A12 + А31 = А12 – cV T и получил
тепло только на участке 1–2. КПД цикла

Так как то работа газа на изотерме равна

Геннадий Антонович Белуха
заслуженный учитель РФ, педагогический стаж 20
лет, ежегодно его ученики занимают призовые
места на различных этапах всероссийской
олимпиады по физике. Хобби – компьютерная
техника.

Определение

Тепловые машины — устройства, в которых за счет внутренней энергии топлива совершается механическая работа. Чтобы тепловая машина работала циклически, необходимо, чтобы часть энергии, полученной от нагревателя, она отдавала холодильнику.

Второе начало термодинамики

В циклически действующем тепловом двигателе невозможно преобразовать все количество теплоты, полученное от нагревателя, в механическую работу.

В тепловых машинах тепловые процессы замыкаются в цикле Карно. Так называют цикл, или идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов. В цикле Карно термодинамическая система выполняет механическую работу за счет обмена теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры.

На графике цикл Карно представляется как две адиабаты и две изотермы:

  • 1–2 — изотермическое расширение;
  • 2–3 — адиабатное расширение;
  • 3–4 — изотермическое сжатие;
  • 4–1 — адиабатное сжатие.

КПД тепловой машины

Максимальный КПД соответствует циклу Карно.

Второе начало термодинамики

η=QнQхQн100%=QнPхtQн100%

Преобразовывая формулу, получим:

η=AQн100%

η=NtQн100%

η=AA+Qх100%

η=TнTхTн100%

  1. Qн (Дж) — количество теплоты, полученное от нагревателя (полученное количество теплоты);
  2. Qх (Дж) — количество теплоты, отданное холодильнику (отданное количество теплоты);
  3. A’ (Дж) — работа, совершенная газом;
  4. N (Вт) — полезная мощность;
  5. t (с) — время;
  6. Tн (К) — температура нагревателя;
  7. Tх (К) — температура холодильника.

Важно! Температуру следует выражать только в кельвинах (К) и КПД не бывает больше 100%.

Алгоритм решения задач на определение КПД теплового процесса

Рассмотрим решение на примере конкретной задачи:

На p-V-диаграмме изображен цикл, проводимый с одноатомным идеальным газом. Определите КПД этого цикла.

  • Определить работу газа.

Если тепловой процесс представлен в осях (p, V), то можно определить работу, вычислив площадь фигуры, ограниченной замкнутым циклом:

A=p0V0

Если тепловой процесс представлен в других осях координат, то сначала следует его перестроить в осях (p, V) и только потом определять работу.

  • Выяснить, на каких этапах повышается температура газа. Именно здесь газ получает энергию:

1–2: V = const, давление увеличивается, температура увеличивается.

2–3: p = const, объем увеличивается, температура увеличивается.

3–4: V = const, давление понижается, температура понижается.

4–1: p = const, объем уменьшается, температура уменьшается.

Отсюда следует, что газ получает энергию только на первом и втором этапах.

  • Определить с помощью первого начала термодинамики количество теплоты, полученное газом:

1–2: V = const, A12’ = 0,

Q12=ΔU12=32ΔpV=32Δp0V0=1,5p0V0

1–2: p = const,

ΔU23=Q23A23; 

ΔU23=32ΔpV=322Δp0V0=3p0V0

A23=pΔV=2p0V0

Q23=3p0V0+2p0V0=5p0V0

Общее количество теплоты:

Qполуч=Q12+Q23=6,5p0V0

  • Вычислить КПД, используя основную формулу:

η=AQполуч100%

η=p0V06,5p0V0100%=15,4%

Задание EF17648

За цикл, показанный на рисунке, газ получает от нагревателя количество теплоты Qнагр = 5,1кДж. КПД цикла равен 4/17. Масса газа постоянна. На участке 1–2 газ совершает работу

Ответ:

а) 1,2 кДж

б) 1,8 кДж

в) 2,6 кДж

г) 3,9 кДж


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Определить работу газа на заданном участке.

3.Выполнить решение в общем виде.

4.Выполнить вычисления, подставив известные данные.

Решение

Запишем исходные данные:

 Количество теплоты, переданное газу от нагревателя: Qнагр = 5,1 кДж.

 Масса постоянна: m = const.

5,1 кДж = 5,1∙103 Дж

Согласно графику, на участке 1–2 газ совершает работу, равную:

A=3p0(4V0V0)=9p0V0

Полезная работа ограничивается площадью фигуры внутри циклического графика. Она равна:

Aползн=9p0V0p0(4V0V0)=6p0V0

Отсюда:

A=9Aползн6

КПД тепловой машины есть отношение полезной работы к количеству теплоты, полученному от нагревателя:

η=AползнQ

Отсюда:

Aползн=ηQ

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18295

Температура нагревателя идеального теплового двигателя, работающего по циклу Карно, равна T1, а температура холодильника равна T2. За цикл двигатель получает от нагревателя количество теплоты Q1. Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.


Алгоритм решения

1.Определить, от чего зависит КПД двигателя. Выбрать верную формулу.

2.Определить, как вычисляется работа, совершаемая за цикл. Выбрать верную формулу.

Решение

КПД двигателя определяется отношением разности температур нагревателя и холодильника к температуре нагревателя:

η=T1T2T1=1T2T1

Верный ответ для «А» — 1.

Работа, совершаемая за цикл, определяется произведением КПД на количество теплоты, полученного от нагревателя:

A=Qη=Q(T1T2T1)

Верный ответ для «Б» — 2.

Ответ: 12

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18994

Рабочее тело идеальной тепловой машины с КПД, равным 0,25, за цикл своей работы получает от нагревателя количество теплоты, равное 8 Дж. Какова работа, совершаемая за цикл этой машиной?


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу КПД тепловой машины.

3.Записать решение в общем виде.

4.Выполнить вычисление искомой величины.

Решение

Запишем исходные данные:

 КПД тепловой машины: η = 0,25.

 Количество теплоты, полученное газом от нагревателя за цикл: Q = 8 Дж.

Формула КПД тепловой машины:

η=AQ

Отсюда:

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 4.6k

Понравилась статья? Поделить с друзьями:
  • Как найти мощность атомной электростанции
  • Как найти спутниковый канал нтв
  • Как найти сегодня бой
  • Как найти человека если нет номера телефона
  • Как найти корень с заданной точностью до