Как найти работу силы лоренца

Определение

Сила Лоренца — сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Модуль силы Лоренца обозначается как FЛ. Единица измерения — Ньютон (Н).

Модуль силы Лоренца численно равен отношению модуля силы F, действующий на участок проводника длиной l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника:

FЛ=FN

Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля B можно считать неизменным в пределах этого отрезка проводника.

Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (число зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:

I=qnvS

Модуль силы, действующей со стороны магнитного поля на выбранные элемент тока, равен:

F=|I|ΔlBsinα

Подставляя сюда выражение, полученное для силы тока, получим:

F=|qnvS|ΔlBsinα=|q|nvSΔlBsinα

Учтем, что число заряженных частиц в рассматриваемом объеме равно произведению величины этого объема на концентрацию самих частиц:

N=nSΔlB

Тогда:

F=|q|vNBsinα

Следовательно, на каждый движущийся заряд действует сила Лоренца, равная:

FЛ=FN=|q|vNBsinαN=|q|vBsinα

α — угол между вектором скорости движущегося заряда и вектором магнитной индукции.

Пример №1. Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45o к вектору магнитной индукции.

FЛ=|q|vBsinα=0,005·200·0,3·220,2 (Н)

Направление силы Лоренца

Сила Лоренца перпендикулярна вектору магнитной индукции и вектору скорости движущегося заряда. Ее направление определяется с помощью правила левой руки:

Если левую руку расположить так, чтобы составляющая магнитной индукции B, перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Пример №2. Протон p имеет скорость v, направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на протон сила Лоренца?

В точке, в которой находится протон, вектор магнитной индукции направлен в сторону от наблюдателя. Это следует из правила буравчика. Теперь применим правило левой руки. Для этого четыре пальца левой руки направим в сторону движения протона — вправо. Ладонь развернем в сторону наблюдателя, чтобы линии магнитной индукции входили в нее перпендикулярно. Теперь отставим на 90 градусов большой палец. Он показывает вверх. Следовательно, сила Лоренца, действующая на протон, направлена вверх.

Работа силы Лоренца

Поскольку вектор силы Лоренца направлен перпендикулярно скорости движения заряда, угол между перемещением этого заряда и этой силы равен 90о. Работа любой силы определяется формулой:

A=Fscosα

Но так как косинус 90о равен 0, сила Лоренца не совершает работу. Это значит, что сила Лоренца не влияет на модуль скорости перемещения заряда. Но она может менять вектора его скорости.

Полная сила, действующая на заряд

При решении задач, в которых заряженная частица находится одновременно в электрическом и магнитном полях, нужно учитывать, что не нее действует сразу две силы. Со стороны магнитного поля — сила Лоренца. Со стороны электрического поля — сила Fэл, действующая на неподвижный заряд, помещенный в данную точку поля. Она равна произведению этого заряда на напряженность электрического поля:

Fэл=qE

Следовательно, полная сила, действующая на заряд, равна:

F=Fэл+Fл=qE+|q|vBsinα

Пример №3. В пространстве, где существует одновременно однородное и постоянное электрическое и магнитное поля, по прямолинейной траектории движется протон. Известно, что напряженность электрического поля равна E. Какова индукция B магнитного поля?

Прямолинейное движение протона возможно в двух случаях:

  • Вектор E направлен вдоль траектории движения протона. Тогда вектор B также должен быть направлен вдоль этой траектории, и его модуль может быть любым, так как магнитное поле на частицу действовать не будет.
  • Векторы E, B и v взаимно перпендикулярны, и сила, действующая на протон со стороны электрического поля, равна по модулю и противоположна по направлению силе Лоренца, действующей на протон со стороны магнитного поля (см. рисунок).

Заряд протона равен модулю заряда электрона — e. Сложим силы, действующие на протон по оси ОУ:

eE+FЛ=0

В скалярной форме:

eEevB=0

Следовательно:

B=Ev

Задание EF17621

Протон ускоряется постоянным электрическим полем конденсатора, напряжение на обкладках которого 2160 В. Затем он влетает в однородное магнитное поле и движется по дуге окружности радиуса 20 см в плоскости, перпендикулярной линиям магнитной индукции. Каков модуль вектора индукции магнитного поля? Начальной скоростью протона в электрическом поле пренебречь. Ответ выразить в мТл, округлив до десятых.


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения величин в СИ.

2.Записать формулу для определения силы Лоренца.

3.Выразить модуль вектора магнитной индукции.

4.Определить недостающие величины.

5.Выполнить решение в общем виде.

6.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 Напряжение на обкладках конденсатора: U = 2160 В.

 Радиус окружности, по которой движется протон в однородном магнитном поле: R = 20 см.

 Масса протона: m = 1,673·10–27 кг.

 Заряд протона: q = 1,6·10–19 Кл.

20 см = 0,2 м

Сила Лоренца определяется формулой:

FЛ=|q|vBsinα

По условию задачи протон движется перпендикулярно вектору магнитной индукции. Поэтому синус угла между вектором скорости и вектором магнитной индукции будет равен 1. А протон имеет положительный заряд. Тогда:

FЛ=qvB

Сила Лоренца сообщает протону центростремительное ускорение, равное:

a=v2R

Применим второй закон Ньютона:

F=ma

qvB=mv2R

Отсюда модуль вектора магнитной индукции равен:

B=mv2qvR=mvqR

Энергия заряда, движущегося в электрическом поле, определяется формулой:

W=qU

Но энергию заряда также можно выразить как кинетическую энергию движения:

W=Eк=mv22

Приравняем правые части выражений и получим:

qU=mv22

Отсюда ускорение протона равно:

v=2qUm

Конечная формула для определения модуля вектора магнитной индукции:

B=mvqR=mqR2qUm=2UmqR2

Ответ: 33,6

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17600

Протон движется в однородном магнитном поле со скоростью υ, направленной перпендикулярно вектору магнитной индукции B (см. рисунок). Как направлена сила Лоренца, действующая на протон?

а) влево

б) вправо

в) к нам

г) от нас


Алгоритм решения

  1. Определить, каким способом можно найти направлений силы Лоренца, действующей на протон.
  2. Применить правила и найти направление силы Лоренца.

Решение

Силу Лоренца, действующую на заряженную частицу, можно найти с помощью правила левой руки. Для этого мысленно расположим четыре пальца левой руки в сторону, совпадающей с направлением движения положительной частицы (протона). Относительно рисунка пальца будут направлены вниз. Теперь развернем ладонь так, чтобы в нее входили линии магнитной индукции. Теперь отклоним на 90 градусов большой палец. Он будет направлен от плоскости рисунка к нам. Это и есть направление силы Лоренца, действующей на протон.

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17749

Протон в однородном магнитном поле движется по окружности. Чтобы в этом поле двигалась по окружности с той же скоростью α-частица, радиус окружности, частота обращения и энергия α-частицы по сравнению с протоном должны:

  1. увеличиться
  2. уменьшиться
  3. не измениться

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Записать формулу для определения силы Лоренца.

2.Установить, от чего зависят перечисленные в таблице физические величины.

3.Определить характер их изменения при изменении заряда.

Решение

Сила Лоренца определяется формулой:

FЛ=|q|vBsinα

Если вместо протона взять альфа-частицу, то заряд увеличится вдвое, так как альфа-частица содержит 2 протона. Сила Лоренца прямо пропорционально зависит от величины заряда. Следовательно, она тоже увеличится вдвое. Скорость движения заряда по условию задачи остается постоянной, как и модуль вектора магнитной индукции.

Сила Лоренца будет сообщать альфа-частице центростремительное ускорение, равное:

a=v2R

Применим второй закон Ньютона:

F=ma

|q|vBsinα=mv2R

Отсюда:

|q|Bsinα=mvR

R=mv|q|Bsinα

Заряд альфа-частицы больше заряда протона вдвое. Она также содержит 2 нейтрона, поэтому ее масса примерно в 4 раза больше массы протона. Следовательно, радиус движения альфа-частицы увеличится примерно вдвое.

Частота обращения альфа-частицы связана с ее линейной скоростью формулой:

v=2πRν

Так как скорость остается постоянной, то при увеличении радиуса частота обращения должна уменьшиться.

Энергия альфа-частицы будет больше, чем у протона, вращающегося с той же скоростью. Это связано с тем, что ее кинетическая энергия будет примерно в 4 раза больше (так как во столько раз больше ее масса).

Ответ: 121

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 7k

Работа силы Лоренца

Механическая
работа А равна скалярному произведению
силы на перемещение, которое произошло
под действием этой силы:

А = (FS) = FScosα

где α -угол между направлением силы и
перемещения.

Если
этот угол равен 90
0, работа
силы равна нулю.

Поэтому полная работа силы Лоренца
всегда равна нулю

Движение заряженной частицы в магнитном поле

Введение

Виды движения материальной точки:

равномерное прямолинейное, а=0, F=0

равноускоренное, a=const,

равномерное движение по окружности,

Рассмотрим различные случаи движения
заряженной частицы в магнитном поле

  1. Частица влетает в магнитное поле
    перпендикулярно силовым линиям
    .

Определить направление силы Лоренца и
нарисовать траекторию движения частицы.

Сила, действующая на частицу,
перпендикулярна скорости, поэтому
траектория движения частицы

– окружность.

Определим радиус траектории частицы

По второму закону Ньютона
F = ma

равнодействующая сила — сила Лоренца,

угол α равен 90 0
F = BqVsinα = BqV

центростремительное ускорение

Подставляя F и а
в уравнение 2го закона Ньютона, получаем

откуда для радиуса:

размерность радиуса – метр

Задача: в камере Вильсона
получены треки α-частицы и протона.
Радиусы траекторий частиц одинаковы.
Сравнить скорости движения частиц.

Пояснение: α- частица – это ядро гелия.
В ее состав входит 2 протона и 2 нейтрона.
Поэтому заряд α – частицы в 2 раза больше
заряда протона, а масса – в 4 раза.

Дано

mα
= 4 mp

qα
= 2 qp

Rα
= Rp

Vα/Vp
— ?

Ответ:
Vp=2Vα

Период обращения частицы в магнитном поле

Период обращения частицы по окружности
определяется формулой
(1)

радиус окружности найден
(2)

подставляя
(2) в (1), получаем

откуда

Размерность периода

Вопрос: Как зависит период обращения
частицы в магнитном поле от ее скорости?

Ответ: Период обращения частицы в
магнитном поле не зависит от ее скорости

  1. Частица влетает в магнитное поле под углом к силовым линиям

Выберем оси координат как показано на
рисунке.

Обозначим на чертеже проекции скорости
частицы на направление магнитной
индукции и на ось Х

Сила Лоренца

направлена перпендикулярно чертежу,
от нас

Траектория движения частицы – спираль

радиус витка спирали

  1. Частица влетает в магнитное поле параллельно силовым линиям

равнодействующая сил, приложенных к
частице, равна нулю => движение
равномерное прямолинейное, траектория
движения частицы – прямая линия.

Вопрос А. Первоначально неподвижный
электрон помещен в магнитное поле с
индукцией В. Описать движение электрона.
Пояснить ответ
.

Электрон будет оставаться в покое,
потому что магнитное поле на покоющийся
заряд не действует

Вопрос В. Частица движется в
перекрывающихся магнитном и электрическом
полях. Может ли ее движение быть
равномерным прямолинейным?

Может, если векторная сумма силы
Лоренца и электрической силы равна
нулю. Это возможно, если поля перпендикулярны
друг другу (см чертеж)

Решение

Движение частицы будет равномерным

прямолинейным, если действующие на нее
силы

уравновешены. Это может произойти,
например,

при таком расположении полей.

Условие равновесия: FL
= FE;
BqV = Eq; V
= B/E

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Сила Лоренца

теория по физике 🧲 магнетизм

Сила Лоренца — сила, действующая на движущуюся заряженную частицу со стороны магнитного поля.

Модуль силы Лоренца обозначается как FЛ. Единица измерения — Ньютон (Н).

Модуль силы Лоренца численно равен отношению модуля силы F, действующий на участок проводника длиной l, к числу N заряженных частиц, упорядоченно движущихся на этом участке проводника:

Рассмотрим отрезок тонкого прямого проводника с током. Пусть длина отрезка ∆l и площадь поперечного сечения проводника S настолько малы, что вектор индукции магнитного поля → B можно считать неизменным в пределах этого отрезка проводника.

Сила тока I в проводнике связана с зарядом частиц q, концентрацией заряженных частиц (число зарядов в единице объема) и скоростью их упорядоченного движения v следующей формулой:

Модуль силы, действующей со стороны магнитного поля на выбранные элемент тока, равен:

F = | I | Δ l B sin . α

Подставляя сюда выражение, полученное для силы тока, получим:

F = | q n v S | Δ l B sin . α = | q | n v S Δ l B sin . α

Учтем, что число заряженных частиц в рассматриваемом объеме равно произведению величины этого объема на концентрацию самих частиц:

F = | q | v N B sin . α

Следовательно, на каждый движущийся заряд действует сила Лоренца, равная:

F Л = F N . . = | q | v N B sin . α N . . = | q | v B sin . α

α — угол между вектором скорости движущегося заряда и вектором магнитной индукции.

Пример №1. Определить силу, действующую на заряд 0,005 Кл, движущийся в магнитном поле с индукцией 0,3 Тл со скоростью 200 м/с под углом 45 o к вектору магнитной индукции.

F Л = | q | v B sin . α = 0 , 005 · 200 · 0 , 3 · √ 2 2 . . ≈ 0 , 2 ( Н )

Направление силы Лоренца

Сила Лоренца перпендикулярна вектору магнитной индукции и вектору скорости движущегося заряда. Ее направление определяется с помощью правила левой руки:

Если левую руку расположить так, чтобы составляющая магнитной индукции → B , перпендикулярная скорости заряда, входила в ладонь, а четыре пальца были направлены по движению положительного заряда (против движения отрицательного), то отогнутый на 90 градусов большой палец покажет направление действующей на заряд силы Лоренца.

Пример №2. Протон p имеет скорость → v , направленную горизонтально вдоль прямого длинного проводника с током I (см. рисунок). Куда направлена действующая на протон сила Лоренца?

В точке, в которой находится протон, вектор магнитной индукции направлен в сторону от наблюдателя. Это следует из правила буравчика. Теперь применим правило левой руки. Для этого четыре пальца левой руки направим в сторону движения протона — вправо. Ладонь развернем в сторону наблюдателя, чтобы линии магнитной индукции входили в нее перпендикулярно. Теперь отставим на 90 градусов большой палец. Он показывает вверх. Следовательно, сила Лоренца, действующая на протон, направлена вверх.

Работа силы Лоренца

Поскольку вектор силы Лоренца направлен перпендикулярно скорости движения заряда, угол между перемещением этого заряда и этой силы равен 90 о . Работа любой силы определяется формулой:

Но так как косинус 90 о равен 0, сила Лоренца не совершает работу. Это значит, что сила Лоренца не влияет на модуль скорости перемещения заряда. Но она может менять вектора его скорости.

Полная сила, действующая на заряд

При решении задач, в которых заряженная частица находится одновременно в электрическом и магнитном полях, нужно учитывать, что не нее действует сразу две силы. Со стороны магнитного поля — сила Лоренца. Со стороны электрического поля — сила → F э л , действующая на неподвижный заряд, помещенный в данную точку поля. Она равна произведению этого заряда на напряженность электрического поля:

Следовательно, полная сила, действующая на заряд, равна:

→ F = → F э л + → F л = q → E + | q | → v → B sin . α

Пример №3. В пространстве, где существует одновременно однородное и постоянное электрическое и магнитное поля, по прямолинейной траектории движется протон. Известно, что напряженность электрического поля равна → E . Какова индукция → B магнитного поля?

Прямолинейное движение протона возможно в двух случаях:

  • Вектор → E направлен вдоль траектории движения протона. Тогда вектор → B также должен быть направлен вдоль этой траектории, и его модуль может быть любым, так как магнитное поле на частицу действовать не будет.
  • Векторы → E , → B и → v взаимно перпендикулярны, и сила, действующая на протон со стороны электрического поля, равна по модулю и противоположна по направлению силе Лоренца, действующей на протон со стороны магнитного поля (см. рисунок).

Заряд протона равен модулю заряда электрона — e . Сложим силы, действующие на протон по оси ОУ:

В скалярной форме:

Протон ускоряется постоянным электрическим полем конденсатора, напряжение на обкладках которого 2160 В. Затем он влетает в однородное магнитное поле и движется по дуге окружности радиуса 20 см в плоскости, перпендикулярной линиям магнитной индукции. Каков модуль вектора индукции магнитного поля? Начальной скоростью протона в электрическом поле пренебречь. Ответ выразить в мТл, округлив до десятых.

Формула силы Лоренца

Определение и формула силы Лоренца

Сила $bar$ , действующая на движущуюся заряженную частицу в магнитном поле, равная:

называется силой Лоренца (магнитной силой).

Исходя из определения (1) модуль рассматриваемой силы:

$$F=q v B sin alpha(2)$$

где $bar$ – вектор скорости частицы, q – заряд частицы, $bar$ – вектор магнитной индукции поля в точке нахождения заряда, $alpha$ – угол между векторами $bar$ и $bar$. Из выражения (2) следует, что если заряд движется параллельно силовым линиям магнитного поля,то сила Лоренца равна нулю. Иногда силу Лоренца стараясь выделить, обозначают, используя индекс: $bar_L$

Направление силы Лоренца

Сила Лоренца (как и всякая сила) – это вектор. Ее направление перпендикулярно вектору скорости $bar$ и вектору $bar$ (то есть перпендикулярно плоскости, в которой находятся векторы скорости и магнитной индукции) и определяется правилом правого буравчика (правого винта) рис.1 (a). Если мы имеем дело с отрицательным зарядом, тонаправление силы Лоренца противоположно результату векторного произведения (рис.1(b)).

вектор $bar$ направлен перпендикулярно плоскости рисунков на нас.

Следствия свойств силы Лоренца

Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю. Получается, что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию.

Если магнитное поле однородно и направлено перпендикулярно скорости движения заряженной частицы, то заряд под воздействием силы Лоренца будет перемещаться по окружности радиуса R=const в плоскости, которая перпендикулярна вектору магнитной индукции. При этом радиус окружности равен:

где m – масса частицы,|q|- модуль заряда частицы, $gamma=frac<1><sqrt<1-frac>>>>$ – релятивистский множитель Лоренца, c – скорость света в вакууме.

Сила Лоренца — это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).

Формула силы Лоренца при наличии магнитного и электрического полей

Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и электрическое), то сила, которая действует на нее, равна:

где $bar$ – вектор напряженности электрического поля в точке, в которой находится заряд. Выражение (4) было эмпирически получено Лоренцем. Сила $bar$, которая входит в формулу (4) так же называется силой Лоренца (лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую $(bar = q bar)$ и магнитную $(bar=q[bar times bar])$ относительно, так как связано с выбором инерциальной системы отсчета. Так, если система отсчета будет двигаться с такой же скоростью $bar$, как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю.

Единицы измерения силы Лоренца

Основной единицей измерения силы Лоренца (как и любой другой силы) в системе СИ является: [F]=H

Примеры решения задач

Задание. Какова угловая скорость электрона, который движется по окружности в магнитном поле с индукцией B?

Решение. Так как электрон (частица имеющая заряд) совершает перемещение в магнитном поле, то на него действует сила Лоренца вида:

где q=qe – заряд электрона. Так как в условии сказано, что электрон движется по окружности, то это означает, что $bar perp bar$, следовательно, выражение для модуля силы Лоренца примет вид:

Сила Лоренцаявляется центростремительной и кроме того, по второму закону Ньютона будет в нашем случае равна:

Приравняем правые части выражений (1.2) и (1.3), имеем:

Из выражения (1.3) получим скорость:

Период обращения электрона по окружности можно найти как:

Зная период, можно найти угловую скорость как:

Ответ. $omega=frac B>$

Задание. Заряженная частица (заряд q, масса m) со скоростью vвлетает в область, где имеется электрическое поле напряженностью E и магнитное поле с индукцией B. Векторы $bar$ и $bar$ совпадают по направлению. Каково ускорение частицы в моментначалаперемещения в полях, если $bar uparrow bar uparrow bar$?

Решение. Сделаем рисунок.

На заряженную частицу действует сила Лоренца:

Магнитная составляющая имеет направление перпендикулярное вектору скорости ($bar$) и вектору магнитной индукции ($bar$). Электрическая составляющая сонаправлена с вектором напряжённости ($bar$) электрического поля. В соответствии со вторым законом Ньютона имеем:

Получаем, что ускорение равно:

Если скорость заряда параллельна векторам $bar$ и $bar$, тогда $[bar times bar]=0$, получим:

Сила Лоренца

Сила Лоренца. Определение и формула

Сила Ампера, воздействующая на часть проводника длиной Δ l с некоторой силой тока I , находящийся в магнитном поле B , F = I · B · Δ l · sin α может выражаться через действующие на конкретные носители заряда силы.

Пускай заряд носителя обозначается как q , а n является значением концентрации носителей свободного заряда в проводнике. В этом случае произведение n · q · υ · S , в котором S представляет собой площадь поперечного сечения проводника, эквивалентно току, протекающему в проводнике, а υ – это модуль скорости упорядоченного движения носителей в проводнике:

Формула силы Ампера может записываться в следующем виде:

F = q · n · S · Δ l · υ · B · sin α .

По причине того, что полное число N носителей свободного заряда в проводнике сечением S и длиной Δ l равняется произведению n · S · Δ l , действующая на одну заряженную частицу сила равняется выражению: F Л = q · υ · B · sin α .

Найденная сила носит название силы Лоренца. Угол α в приведенной формуле эквивалентен углу между вектором магнитной индукции B → и скоростью ν → .

Направление силы Лоренца, которая воздействует частицу с положительным зарядом, таким же образом, как и направление силы Ампера, находится по правилу буравчика или же с помощью правила левой руки. Взаимное расположение векторов ν → , B → и F Л → для частицы, несущей положительный заряд, проиллюстрировано на рис. 1 . 18 . 1 .

Рисунок 1 . 18 . 1 . Взаимное расположение векторов ν → , B → и F Л → . Модуль силы Лоренца F Л → численно эквивалентен произведению площади параллелограмма, построенного на векторах ν → и B → и заряда q .

Сила Лоренца направлена нормально, то есть перпендикулярно, векторам ν → и B → .

Сила Лоренца не совершает работы при движении несущей заряд частицы в магнитном поле. Данный факт приводит к тому, что модуль вектора скорости в условиях движения частицы так же не меняет своего значения.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость ν → лежит в плоскости, которая направлена нормально по отношению к вектору B → , то частица будет совершать движение по окружности некоторого радиуса, рассчитывающегося с помощью следующей формулы:

Сила Лоренца в данном случае применяется в качестве центростремительной силы (рис. 1 . 18 . 2 ).

Рисунок 1 . 18 . 2 . Круговое движение заряженной частицы в однородном магнитном поле.

Для периода обращения частицы в однородном магнитном поле будет справедливо следующее выражение:

T = 2 π R υ = 2 π m q B .

Данная формула наглядно демонстрирует отсутствие зависимости заряженных частиц заданной массы m от скорости υ и радиуса траектории R .

Применение силы Лоренца

Приведенное снизу соотношение представляет собой формулу угловой скорости движения заряженной частицы, происходящего по круговой траектории:

ω = υ R = υ q B m υ = q B m .

Оно носит название циклотронной частоты. Данная физическая величина не имеет зависимости от скорости частицы, из чего можно сделать вывод, что и от ее кинетической энергии она не зависит.

Данное обстоятельство находит свое применение в циклотронах, а именно в ускорителях тяжелых частиц (протонов, ионов).

На рисунке 1 . 18 . 3 приводится принципиальная схема циклотрона.

Рисунок 1 . 18 . 3 . Движение заряженных частиц в вакуумной камере циклотрона.

Дуант – это полый металлический полуцилиндр, помещенный в вакуумную камеру между полюсами электромагнита в качестве одного из двух ускоряющих D -образного электрода в циклотроне.

К дуантам приложено переменное электрическое напряжение, чья частота эквивалентна циклотронной частоте. Частицы, несущие некоторый заряд, инжектируются в центре вакуумной камеры. В промежутке между дуантами они испытывают ускорение, вызываемое электрическим полем. Частицы, находящиеся внутри дуантов, в процессе движения по полуокружностям испытывают на себе действие силы Лоренца. Радиус полуокружностей возрастает с увеличением энергии частиц. Как и во всех других ускорителях, в циклотронах ускорение заряженной частицы достигается путем применения электрического поля, а ее удержание на траектории с помощью магнитного поля. Циклотроны дают возможность ускорять протоны до энергии, приближенной к 20 М э В .

Однородные магнитные поля используются во многих устройствах самых разных типов назначений. В частности, они нашли свое применение так называемых масс-спектрометрах.

Масс-спектрометры – это такие устройства, использование которых позволяет нам измерять массы заряженных частиц, то есть ионов или ядер различных атомов.

Данные приборы используются для разделения изотопов (ядер атомов с одинаковым зарядом, но разными массами, к примеру, Ne 20 и Ne 22 ). На рис. 1 . 18 . 4 изображен простейшая версия масс-спектрометра. Вылетающие из источника S ионы проходят через несколько малых отверстий, которые в совокупности формируют узкий пучок. После этого они попадают в селектор скоростей, где частицы движутся в скрещенных однородных электрическом, создающимся между пластинами плоского конденсатора, и магнитном, возникающим в зазоре между полюсами электромагнита, полях. Начальная скорость υ → заряженных частиц направлена перпендикулярно векторам E → и B → .

Частица, которая движется в скрещенных магнитном и электрическом полях, испытывает на себе воздействия электрической силы q E → и магнитной силы Лоренца. В условиях, когда выполняется E = υ B , данные силы полностью компенсируют воздействие друг друга. В таком случае частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, которые движутся со скоростью υ = E B .

После данных процессов частицы с одинаковыми значениями скорости попадают в однородное магнитное поле B → камеры масс-спектрометра. Частицы под действием силы Лоренца движутся в камере перпендикулярной магнитному полю плоскости. Их траектории представляют собой окружности с радиусами R = m υ q B ‘ . В процессе измерения радиусов траекторий при известных значениях υ и B ‘ , мы имеем возможность определить отношение q m . В случае изотопов, то есть при условии q 1 = q 2 , масс-спектрометр может разделить частицы с разными массами.

С помощью современных масс-спектрометров мы имеем возможность измерять массы заряженных частиц с точностью, превышающей 10 – 4 .

Рисунок 1 . 18 . 4 . Селектор скоростей и масс-спектрометр.

Магнитное поле

В случае, когда скорость частицы υ → имеет составляющую υ ∥ → вдоль направления магнитного поля, подобная частица в однородном магнитном поле будет совершать спиралевидное движение. Радиус такой спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ ┴ вектор υ → , а шаг спирали p – от модуля продольной составляющей υ ∥ (рис. 1 . 18 . 5 ).

Рисунок 1 . 18 . 5 . Движение заряженной частицы по спирали в однородном магнитном поле.

Исходя из этого, можно сказать, что траектория заряженной частицы в каком-то смысле «навивается» на линии магнитной индукции. Данное явление используется в технике для магнитной термоизоляции высокотемпературной плазмы — полностью ионизированного газа при температуре порядка 10 6 K . При изучении управляемых термоядерных реакций вещество в подобном состоянии получают в установках типа «Токамак». Плазма не должна касаться стенок камеры. Термоизоляция достигается путем создания магнитного поля специальной конфигурации. На рисунке 1 . 18 . 6 в качестве примера проиллюстрирована траектория движения несущей заряд частицы в магнитной «бутылке» (или ловушке).

Рисунок 1 . 18 . 6 . Магнитная «бутылка». Заряженные частицы не выходят за ее пределы. Необходимое магнитное поле может быть создано с помощью двух круглых катушек с током.

Такое же явление происходит в магнитном поле Земли, которое защищает все живое от потока несущих заряд частиц из космического пространства.

Быстрые заряженные частицы из космоса, по большей степени от Солнца, «перехватываются» магнитным полем Земли, вследствие чего образуются радиационные пояса (рис. 1 . 18 . 7 ), в которых частицы, будто в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за доли секунды.

Исключением являются полярные области, в которых часть частиц прорывается в верхние слои атмосферы, что может приводить к возникновению таких явлений, как «полярные сияния». Радиационные пояса Земли простираются от расстояний около 500 к м до десятков радиусов нашей планеты. Стоит вспомнить, что южный магнитный полюс Земли находится поблизости с северным географическим полюсом на северо-западе Гренландии. Природа земного магнетизма до сих пор не изучена.

Рисунок 1 . 18 . 7 . Радиационные пояса Земли. Быстрые заряженные частицы от Солнца, в основном электроны и протоны, попадают в магнитные ловушки радиационных поясов.

Возможно их вторжение в верхние слои атмосферы, служащее причиной возникновения «северных сияний».

Рисунок 1 . 18 . 8 . Модель движения заряда в магнитном поле.

Рисунок 1 . 18 . 9 . Модель Масс-спектрометра.

Рисунок 1 . 18 . 10 . Модель селектора скоростей.

источники:

http://www.webmath.ru/poleznoe/formules_21_29_sila_lorenca.php

http://zaochnik.com/spravochnik/fizika/magnitnoe-pole/sila-lorentsa/

На чтение 8 мин. Просмотров 27.3k. Опубликовано 18 ноября
Обновлено 18 ноября

Нигде еще школьный курс физики так сильно не перекликается с большой наукой, как в электродинамике. В частности, ее краеугольный камень – воздействие на заряженные частицы со стороны электромагнитного поля, нашло широкое применение в электротехнике.

Содержание

  1. Формула силы Лоренца
  2. Определение и формула силы Лоренца
  3. Направление силы Лоренца
  4. Следствия свойств силы Лоренца
  5. Формула силы Лоренца при наличии магнитного и электрического полей
  6. Единицы измерения силы Лоренца
  7. Понятие напряженности электрического поля
  8. Напряженность электрического поля
  9. Примеры задачи
  10. Задача 1
  11. Задача 2
  12. Задача 3

Формула силы Лоренца

Формула описывает взаимосвязь магнитного поля и основных характеристик движущегося заряда. Но сперва нужно разобраться, что же оно собой представляет.

Определение и формула силы Лоренца

В школе очень часто показывают опыт с магнитом и железными опилками на бумажном листе. Если расположить его под бумагой и слегка потрясти, то опилки выстроятся по линиям, которые принято называть линиями магнитной напряженности. Говоря простыми словами, это силовое поле магнита, которое окружает его подобно кокону. Оно замкнуто само на себя, то есть не имеет ни начала, ни конца. Это векторная величина, которая направлена от южного полюса магнита к северному.

сила Лоренца пример

Если бы в него влетела заряженная частица, то поле воздействовало бы на него очень любопытным образом. Она бы не затормозилась и не ускорилась, а всего лишь отклонилась в сторону. Чем она быстрее и чем сильнее поле, тем больше на нее действует эта сила. Ее назвали силой Лоренца в честь ученого-физика, впервые открывшего это свойство магнитного поля.

Вычисляют ее по специальной формуле:

FЛ=qvB,

здесь q – величина заряда в Кулонах, v – скорость, с которой движется заряд, в м/с, а B – индукция магнитного поля в единице измерения Тл (Тесла).

Направление силы Лоренца

Ученые заметили, что есть определенная закономерность между тем, как частица влетает в магнитное поле и тем, куда оно ее отклоняет. Чтобы ее было легче запомнить, они разработали специальное мнемоническое правило. Для его запоминания нужно совсем немного усилий, ведь в нем используется то, что всегда под рукой – рука. Точнее, левая ладонь, в честь чего оно носит название правила левой руки.

пример силы Лоренца

Итак, ладонь должна быть раскрыта, четыре пальца смотрят вперед, большой палец оттопырен в сторону. Угол между ними составляет 900. Теперь необходимо представить, что магнитный поток представляет собой стрелу, которая впивается в ладонь с внутренней стороны и выходит с тыльной. Пальцы при этом смотрят туда же, куда летит воображаемая частица. В таком случае большой палец покажет, куда она отклонится.

Интересно!

Важно отметить, что правило левой руки действует только для частиц со знаком «плюс». Чтобы узнать, куда отклонится отрицательный заряд, нужно четыре пальца направить в сторону, откуда летит частица. Все остальные манипуляции остаются прежними.

Следствия свойств силы Лоренца

Тело влетает в магнитном поле под каким-то определённым углом. Интуитивно понятно, что его величина имеет какое-то значение на характер воздействия на него поля, здесь нужно математическое выражение, чтобы стало понятнее. Следует знать, что как сила, так и скорость являются векторными величинами, то есть имеют направление. То же самое относится и к линиям магнитной напряженности. Тогда формулу можно записать следующим образом:

FЛ=qvBsinα,

sin α здесь – это угол между двумя векторными величинами: скоростью и потоком магнитного поля.

Как известно, синус нулевого угла также равен нулю. Получается, что если траектория движения частицы проходит вдоль силовых линий магнитного поля, то она никуда не отклоняется.

полная формула

В однородном магнитном поле силовые линии имеют одинаковое и постоянное расстояние друг от друга. Теперь представим, что в таком поле перпендикулярно этим линиям движется частица. В этом случае сила Лоуренса заставит двигаться ее по окружности в плоскости, перпендикулярной силовым линиям. Чтобы найти радиус этой окружности, нужно знать массу частицы:

R=mvqB

Значение заряда не случайно взято как модуль. Это означает, что неважно, отрицательная или положительная частица входит в магнитное поле: радиус кривизны будет одинаков. Изменится только направление, в котором она полетит.

Во всех остальных случаях, когда заряд имеет определенный угол α с магнитным полем, он будет двигаться по траектории, напоминающей спираль с постоянным радиусом R и шагом h. Его можно найти по формуле:

R=mvsinαqB

h=2mvcosαqB

Еще одним следствием свойств этого явления является тот факт, что она не совершает никакой работы. То есть она не отдает и не забирает энергию у частицы, а лишь меняет направление ее движения.

сила Лоренца

Самая яркая иллюстрация этого эффекта взаимодействия магнитного поля и заряженных частиц – это северное сияние. Магнитное поле, окружающее нашу планету, отклоняет заряженные частицы, прилетающие от Солнца. Но так как оно слабее всего на магнитных полюсах Земли, то туда проникают электрически заряженные частицы, вызывая свечение атмосферы.

Центростремительное ускорение, которое придается частицам, используется в электрических машинах – электродвигателях. Хотя уместнее здесь говорить о силе Ампера – частном проявлении силы Лоуренса, которая воздействует на проводник.

Принцип действия ускорителей элементарных частиц также основан на этом свойстве электромагнитного поля. Сверхпроводящие электромагниты отклоняют частицы от прямолинейного движения, заставляя их двигаться по кругу.

работа силы Лоренца

Самое любопытное заключается в том, что сила Лоренца не подчиняется третьему закону Ньютона, который гласит, что всякому действию есть свое противодействие. Связано это с тем, что Исаак Ньютон верил, что всякое взаимодействие на любом расстоянии происходит мгновенно, однако это не так. На самом деле оно происходит с помощью полей. К счастью, конфуза удалось избежать, так как физикам удалось переработать третий закон в закон сохранения импульса, который выполняется в том числе и для эффекта Лоуренса.

Формула силы Лоренца при наличии магнитного и электрического полей

Магнитное поле имеется не только у постоянных магнитов, но и у любого проводника электричества. Только в данном случае помимо магнитной составляющей, в ней присутствует еще и электрическая. Однако даже в этом электромагнитном поле эффект Лоуренса продолжает свое воздействие и определяется по формуле:

FЛ=qE+vB

где v – скорость электрически заряженной частицы, q – ее заряд, B и E – напряженности магнитного и электрических полей поля.

Единицы измерения силы Лоренца

Как и большинство других физических величин, которые действуют на тело и изменяют его состояние, она измеряется в ньютонах и обозначается буквой Н.

Понятие напряженности электрического поля

Электромагнитное поле на самом деле состоит из двух половин – электрической и магнитной. Они точно близнецы, у которых все одинаково, но вот характер разный. А если приглядеться, то во внешности можно заметить небольшие различия.

сила Лоренца формула

То же самое касается и силовых полей. Электрическое поле тоже обладает напряженностью – векторной величиной, которая является силовой характеристикой. Она воздействует на частицы, которые в неподвижности находятся в нем. Само по себе оно не является силой Лоренца, ее просто нужно принимать во внимание, когда вычисляется воздействие на частицу в условиях наличия электрического и магнитного полей.

Напряженность электрического поля

Напряженность электрического поля воздействует только на неподвижный заряд и определяется по формуле:

E=Fq

Единицей измерения является Н/Кл или В/м.

Примеры задачи

Задача 1

На заряд в 0,005 Кл, который движется в магнитном поле с индукцией 0,3 Тл, действует сила Лоренца. Вычислить ее, если скорость заряда 200 м/с, а движется он под углом 450 к линиям магнитной индукции.

Дано:

q = 0,005 Кл

B = 0,3 Тл

v = 200 м/с

α = 450

Решение:

В условиях задачи нет упоминания электрического поля, поэтому силу Лоренца можно найти по следующей формуле:

FЛ=qvBsinα=0,005×200×0,3×sin 450 =0,3×22=0,21 Н

Задача 2

Определить скорость тела, имеющего заряд и которое движется в магнитном поле с индукцией 2 Тл под углом 900. Величина, с которой поле воздействует на тело, равна 32 Н, заряд тела – 5 × 10-3 Кл.

Дано:

q = 0,005 Кл

B = 2 Тл

FЛ = 32 Н

α = 900

Решение:

Чтобы найти скорость заряда, необходимо несколько видоизменить формулу для нахождения силы Лоренца:

FЛ=qvBsinαv=FЛqBsinα

v=320,005×2×sin900=320,01×1=32000мс=32 км/с

Задача 3

Электрон движется в однородном магнитном поле под углом 900 ее силовым линиям. Величина, с которой поле воздействует на электрон, равна 5 × 10-13 Н. Величина магнитной индукции равна 0,05 Тл. Определить ускорение электрона.

Дано:

q = -1,6 × 10-19 Кл

B = 0,05 Тл

FЛ = 5 × 10-13 Н

α = 900

Решение:

В этой задаче сила Лоренца ко всему прочему еще и заставляет двигаться электрон по окружности. Поэтому здесь под ускорением следует понимать центростремительное ускорение:

aц=v2R

На данный момент неизвестны ни скорость электрона, ни радиус окружности, по которой он движется.

v=FЛqBsinα=5×10-13-1,6×10-19×0,05∙sin900=6×107мс

R=mvqB=9×10-31×6×107-1,6×10-19×0,05=6,8×10-3мс

aц=v2R=6×10726,8×10-3=5×1017мс2

Электродинамика оперирует такими понятиями, которым трудно подобрать аналогию в обычном мире. Но это совсем не значит, что их невозможно постичь. С помощью различных наглядных экспериментов и природных явлений процесс познания мира электричества может стать по настоящему захватывающим.

Определение

Сила Лоренца представляет собой комбинацию магнитной и электрической силы на точечном заряде, который вызван электромагнитными полями. Или другими словами, сила Лоренца – это сила, действующая на всякую заряженную частицу, которая падает в магнитном поле с определенной скоростью. Ее величина зависит от величины магнитной индукции В, электрического заряда частицы q и скорости, с которой частица падает в поле – V. О том какая формула расчета силы Лоренца, а также ее практическое значение в физике читайте далее.

Следствия свойств силы Лоренца

Так как сила Лоренца направлена всегда перпендикулярно направлению скорости заряда, то ее работа над частицей равна нулю. Получается, что воздействуя на заряженную частицу при помощи постоянного магнитного поля нельзя изменить ее энергию.

Если магнитное поле однородно и направлено перпендикулярно скорости движения заряженной частицы, то заряд под воздействием силы Лоренца будет перемещаться по окружности радиуса R=const в плоскости, которая перпендикулярна вектору магнитной индукции. При этом радиус окружности равен:

$$R=frac{m gamma v}{|q| B}(3)$$

где m – масса частицы,|q|- модуль заряда частицы, $gamma=frac{1}{sqrt{1-frac{v^{2}}{c^{2}}}}$ – релятивистский множитель Лоренца, c – скорость света в вакууме.

Сила Лоренца — это центростремительная сила. По направлению отклонения элементарной заряженной частицы в магнитном поле делают вывод о ее знаке (рис.2).

Немного истории

Первые попытки описать электромагнитную силу были сделаны еще в XVIII веке. Ученые Генри Кавендиш и Тобиас Майер высказали предположение, что сила на магнитных полюсах и электрически заряженных объектах подчиняется закону обратных квадратов. Однако экспериментальное доказательство этого факта не было полным и убедительным. Только в 1784 году Шарль Августин де Кулон при помощи своего торсионного баланса смог окончательно доказать это предположение.

В 1820 году физиком Эрстедом был открыт факт, что на магнитную стрелку компаса действует ток вольта, а Андре-Мари Ампер в этом же году смог разработать формулу угловой зависимости между двумя токовыми элементами. По сути, эти открытия стали фундаментом современной концепции электрических и магнитных полей. Сама же концепция получила свое дальнейшее развитие в теориях Майкла Фарадея, особенно в его представлении о силовых линиях. Лорд Кельвин и Джеймс Максвелл дополнили теории Фарадея подробным математическим описанием. В частности Максвеллом было создано так званное, «уравнение поля Максвелла» – представляющее собой систему дифференциальных и интегральных уравнений, описывающих электромагнитное поле и его связь с электрическими зарядами и токами в вакууме и сплошных средах.

Джей Джей Томпсон был первым физиком, кто попытался вывести из уравнения поля Максвелла электромагнитную силу, которые действует на движущийся заряженный объект. В 1881 году он опубликовал свою формулу F = q/2 v x B. Но из-за некоторых просчетов и неполного описания тока смещения она оказалась не совсем правильной.

И вот, наконец, в 1895 году голландский ученый Хендрик Лоренц вывел правильную формулу, которая используется и поныне, а также носит его имя, как и та сила, что действует на летящую частицу в магнитном поле, отныне называется «силой Лоренца».

Хендрик Лоренц.

1.18. Сила Лоренца

Сила Ампера, действующая на отрезок проводника длиной Δl с силой тока I, находящийся в магнитном поле B,

может быть выражена через силы, действующие на отдельные носители заряда.
Пусть концентрация носителей свободного заряда в проводнике есть n, а q – заряд носителя. Тогда произведение n q υ S, где υ – модуль скорости упорядоченного движения носителей по проводнику, а S – площадь поперечного сечения проводника, равно току, текущему по проводнику:

Выражение для силы Ампера можно записать в виде:

Так как полное число N носителей свободного заряда в проводнике длиной Δl и сечением S равно n S Δl, то сила, действующая на одну заряженную частицу, равна

Эту силу называют силой Лоренца. Угол α в этом выражении равен углу между скоростью и вектором магнитной индукции Направление силы Лоренца, действующей на положительно заряженную частицу, так же, как и направление силы Ампера, может быть найдено по правилу левой руки или по правилу буравчика. Взаимное расположение векторов , и для положительно заряженной частицы показано на рис. 1.18.1.

Рисунок 1.18.1.
Взаимное расположение векторов , и Модуль силы Лоренца численно равен площади параллелограмма, построенного на векторах и помноженной на заряд q

Сила Лоренца направлена перпендикулярно векторам и

При движении заряженной частицы в магнитном поле сила Лоренца работы не совершает. Поэтому модуль вектора скорости при движении частицы не изменяется.

Если заряженная частица движется в однородном магнитном поле под действием силы Лоренца, а ее скорость лежит в плоскости, перпендикулярной вектору то частица будет двигаться по окружности радиуса

Сила Лоренца в этом случае играет роль центростремительной силы (рис. 1.18.2).

Рисунок 1.18.2.
Круговое движение заряженной частицы в однородном магнитном поле

Период обращения частицы в однородном магнитном поле равен

Это выражение показывает, что для заряженных частиц заданной массы m период обращения не зависит от скорости υ и радиуса траектории R.

Угловая скорость движения заряженной частицы по круговой траектории

называется циклотронной частотой. Циклотронная частота не зависит от скорости (следовательно, и от кинетической энергии) частицы. Это обстоятельство используется в циклотронах – ускорителях тяжелых частиц (протонов, ионов). Принципиальная схема циклотрона приведена на рис. 1.18.3.

Рисунок 1.18.3.
Движение заряженных частиц в вакуумной камере циклотрона

Между полюсами сильного электромагнита помещается вакуумная камера, в которой находятся два электрода в виде полых металлических полуцилиндров (дуантов). К дуантам приложено переменное электрическое напряжение, частота которого равна циклотронной частоте. Заряженные частицы инжектируются в центре вакуумной камеры. Частицы ускоряются электрическим полем в промежутке между дуантами. Внутри дуантов частицы движутся под действием силы Лоренца по полуокружностям, радиус которых растет по мере увеличения энергии частиц. Каждый раз, когда частица пролетает через зазор между дуантами, она ускоряется электрическим полем. Таким образом, в циклотроне, как и во всех других ускорителях, заряженная частица ускоряется электрическим полем, а удерживается на траектории магнитным полем. Циклотроны позволяют ускорять протоны до энергии порядка 20 МэВ.

Однородные магнитные поля используются во многих приборах и, в частности, в масс-спектрометрах – устройствах, с помощью которых можно измерять массы заряженных частиц – ионов или ядер различных атомов. Масс-спектрометры используются для разделения изотопов, то есть ядер атомов с одинаковым зарядом, но разными массами (например, 20Ne и 22Ne). Простейший масс-спектрометр показан на рис. 1.18.4. Ионы, вылетающие из источника S, проходят через несколько небольших отверстий, формирующих узкий пучок. Затем они попадают в селектор скоростей, в котором частицы движутся в скрещенных однородных электрическом и магнитном полях. Электрическое поле создается между пластинами плоского конденсатора, магнитное поле – в зазоре между полюсами электромагнита. Начальная скорость заряженных частиц направлена перпендикулярно векторам и

На частицу, движущуюся в скрещенных электрическом и магнитном полях, действуют электрическая сила и магнитная сила Лоренца. При условии E = υB эти силы точно уравновешивают друг друга. Если это условие выполняется, частица будет двигаться равномерно и прямолинейно и, пролетев через конденсатор, пройдет через отверстие в экране. При заданных значениях электрического и магнитного полей селектор выделит частицы, движущиеся со скоростью υ = E / B.

Далее частицы с одним и тем же значением скорости попадают в камеру масс-спектрометра, в которой создано однородное магнитное поле Частицы движутся в камере в плоскости, перпендикулярной магнитному полю, под действием силы Лоренца. Траектории частиц представляют собой окружности радиусов R = mυ / qB’. Измеряя радиусы траекторий при известных значениях υ и B’ можно определить отношение q / m. В случае изотопов (q1 = q2) масс-спектрометр позволяет разделить частицы с разными массами.

Современные масс-спектрометры позволяют измерять массы заряженных частиц с точностью выше 10–4.

Рисунок 1.18.4.
Селектор скоростей и масс-спектрометр

Если скорость частицы имеет составляющую вдоль направления магнитного поля, то такая частица будет двигаться в однородном магнитном поле по спирали. При этом радиус спирали R зависит от модуля перпендикулярной магнитному полю составляющей υ┴ вектора а шаг спирали p – от модуля продольной составляющей υ|| (рис. 1.18.5).

Рисунок 1.18.5.
Движение заряженной частицы по спирали в однородном магнитном поле

Таким образом, траектория заряженной частицы как бы навивается на линии магнитной индукции. Это явление используется в технике для магнитной термоизоляции высокотемпературной плазмы, то есть полностью ионизированного газа при температуре порядка 106 K. Вещество в таком состоянии получают в установках типа «Токамак» при изучении управляемых термоядерных реакций. Плазма не должна соприкасаться со стенками камеры. Термоизоляция достигается путем создания магнитного поля специальной конфиругации. В качестве примера на рис. 1.18.6 изображена траектория движения заряженной частицы в магнитной «бутылке» (или ловушке).

Рисунок 1.18.6.
Магнитная «бутылка». Заряженные частицы не выходят за пределы «бутылки». Магнитное поле «бутылки» может быть создано с помощью двух круглых катушек с током

Аналогичное явление происходит в магнитном поле Земли, которое является защитой для всего живого от потоков заряженных частиц из космического пространства. Быстрые заряженные частицы из космоса (главным образом от Солнца) «захватываются» магнитным полем Земли и образуют так называемые радиационные пояса (рис. 1.18.7), в которых частицы, как в магнитных ловушках, перемещаются туда и обратно по спиралеобразным траекториям между северным и южным магнитными полюсами за времена порядка долей секунды. Лишь в полярных областях некоторая часть частиц вторгается в верхние слои атмосферы, вызывая полярные сияния. Радиационные пояса Земли простираются от расстояний порядка 500 км до десятков земных радиусов. Следует вспомнить, что южный магнитный полюс Земли находится вблизи северного географического полюса (на северо-западе Гренландии). Природа земного магнетизма до сих пор не изучена.

Рисунок 1.18.7.
Радиационные пояса Земли. Быстрые заряженные частицы от Солнца (в основном электроны и протоны) попадают в магнитные ловушки радиационных поясов. Частицы могут покидать пояса в полярных областях и вторгаться в верхние слои атмосферы, вызывая полярные сияния

Модель. Движение заряда в магнитном поле

Модель. Селектор скоростей

Формула

Формула для расчета силы Лоренца выглядит следующим образом:

Где q – электрический заряд частицы, V – ее скорость, а B – величина магнитной индукции магнитного поля.

При этом поле B выступает в качестве силы, перпендикулярной к направлению вектора скорости V нагрузок и направлению вектора B. Это можно проиллюстрировать на диаграмме:

Сила Лоренца

Формула силы Лоренца при наличии магнитного и электрического полей

Если заряженная частица перемещается в пространстве, в котором находятся одновременно два поля (магнитное и электрическое), то сила, которая действует на нее, равна:

$$bar{F}=q bar{E}+q[bar{v} times bar{B}](4)$$

где $bar{E}$ – вектор напряженности электрического поля в точке, в которой находится заряд. Выражение (4) было эмпирически получено Лоренцем. Сила $bar{F}$, которая входит в формулу (4) так же называется силой Лоренца (лоренцевой силой). Деление лоренцевой силы на составляющие: электрическую $(bar{F} = q bar{E})$ и магнитную $(bar{F}=q[bar{v} times bar{B}])$ относительно, так как связано с выбором инерциальной системы отсчета. Так, если система отсчета будет двигаться с такой же скоростью $bar{v}$, как и заряд, то в такой системе сила Лоренца, действующая на частицу, будет равна нулю.

Правило левой руки

Правило левой руки позволяет физикам определять направление и возврат вектора магнитной (электродинамической) энергии. Представьте себе, что наша левая рука расположена таким образом, что линии магнитного поля направлены перпендикулярно внутренней поверхности руки (так, что они проникают внутрь руки), а все пальцы за исключением большого указывают на направление протекания положительного тока, отклоненный большой палец указывает на направление электродинамической силы, действующий на положительный заряд, помещенный в это поле.

Вот так это будет выглядеть схематически.

Есть также и второй способ определения направления электромагнитной силы. Он заключается в расположении большого, указательного и среднего пальцев под прямым углом. В этом случае указательный палец будет показывать направление линий магнитного поля, средний – направление движение тока и большой – направление электродинамической силы.

Сила Лоренца. Движение зарядов в магнитном поле

Электрические заряды, движущиеся в определенном направлении, создают вокруг себя магнитное поле, скорость распространения которого в вакууме равно скорости света, а в других средах чуть меньше. Если движение заряда происходит во внешнем магнитном поле, то между внешним магнитным полем и магнитным полем заряда возникает взаимодействие. Так как электрический ток – это направленное движение заряженных частиц, то сила, которая будет действовать в магнитном поле на проводник с током, будет являться результатом отдельных (элементарных) сил, каждая из которых прикладывается к элементарному носителю заряда.

Процессы взаимодействия внешнего магнитного поля и движущихся зарядов исследовались Г. Лоренцом, который в результате многих своих опытов вывел формулу для расчета силы, действующей на движущуюся заряженную частицу со стороны магнитного поля. Именно поэтому силу, которая действует на движущийся в магнитном поле заряд, называют силой Лоренца.

Сила, действующая на проводник стоком (из закона Ампера), будет равна:

По определению сила тока равна I = qn (q – заряд, n – количество зарядов, проходящее через поперечное сечение проводника за 1 с). Отсюда следует:

Где: n0 – содержащееся в единице объема количество зарядов, V – их скорость движения, S – площадь поперечного сечения проводника. Тогда:

Подставив данное выражение в формулу Ампера, мы получим:

Данная сила будет действовать на все заряды, находящиеся в объеме проводника: V = Sl. Количество зарядов, присутствующих в данном объеме будет равно:

Тогда выражение для силы Лоренца будет иметь вид:

Отсюда можно сделать вывод, что сила Лоренца, действующая на заряд q, который двигается в магнитном поле, пропорциональна заряду, магнитной индукции внешнего поля, скорости его движения и синусу угла между V и В, то есть:

За направление движения заряженных частиц принимают направление движения положительных зарядов. Поэтому направление данной силы может быть определено с помощью правила левой руки.

Сила, действующая на отрицательные заряды, будет направлена в противоположную сторону.

Сила Лоренца всегда направлена перпендикулярно скорости V движения заряда и поэтому работу она не совершает. Она изменяет только направление V, а кинетическая энергия и величина скорости заряда при его движении в магнитном поле остаются неизменными.

Когда заряженная частица движется одновременно в магнитном и электрическом полях, на него будет действовать сила:

Где Е – напряженность электрического поля.

Рассмотрим небольшой пример:

Электрон, прошедший ускоряющую разность потенциалов 3,52∙103 В, попадает в однородное магнитное поле перпендикулярно линиям индукции. Радиус траектории r = 2 см, индукция поля 0,01 Т. Определить удельный заряд электрона.

Решение:

Удельный заряд – это величина, равная отношению заряда к массе, то есть e/m.

В магнитном поле с индукцией В на заряд, движущийся со скоростью V перпендикулярно линиям индукции, действует сила Лоренца FЛ = BeV. Под ее действием заряженная частица будет перемещаться по дуге окружности. Так как при этом сила Лоренца вызовет центростремительное ускорение, то согласно 2-му закону Ньютона можно записать:

Кинетическую энергию, которая будет равна mV2/2, электрон приобретает за счет работы А сил электрического поля (А = eU), подставив в уравнение получим:

Преобразовав эти соотношения и исключив из них скорость, получим формулу для определения удельного заряда электрона:

Подставив исходные данные, выраженные в СИ, получим:

Проверяем размерность:

И кому интересно — видео о движении заряженных частиц:

Похожие материалы:

  • Сила тока. Электродвижущая сила. Разность потенциалов
  • Основные законы для электрических зарядов
  • Поле намагниченного вещества. Микроскопические…
  • Как контроллер микрошагов обеспечивает более плавное…
  • USB Type C заставил ЕС начать движение к единому…

Видео

Автор: Павел Чайка, главный редактор журнала Познавайка

При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту [email protected] или в Фейсбук, с уважением автор.

Страница про автора

Понравилась статья? Поделить с друзьями:
  • Как найти как выглядела страница
  • После ботокс опущенное веко как исправить
  • Как найти внешний угол выпуклого многоугольника
  • Как найти официальный сайт детского сада
  • Как найти сумму модулей всех отклонений