Как найти работу силы тяги двигателя

Что такое сила тяги

Сила тяги — сила, прикладываемая к телу для поддержания его в постоянном движении.

Действие силы тяги

Множество сил, действующих на движущийся объект, для упрощения вычислений делят на две группы: силу тяги и силы сопротивления.

Её прекращение

Когда действие силы тяги прекращается, движущееся тело замедляется и постепенно останавливается, так как на него воздействуют силы, мешающие продолжать двигаться, например, трение.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

1 закон Ньютона о действии

Согласно этому закону в формулировке самого Ньютона, любое тело остается в покое или равномерно движется по прямой, пока на него не воздействуют силы, заставляющие его изменить это состояние.

В современной физике в формулировку внесены уточнения:

  • закон применим только в системах отсчета, называемых инерциальными;
  • тело может вращаться на месте, не находясь под воздействием внешних сил, поэтому вместо термина «тело» следует использовать термин «материальная точка».

Чтобы переместить неподвижный предмет, на него должна воздействовать некая сила. Чтобы изменить скорость движения предмета, также необходимо воздействие силы, замедляющей его или ускоряющей. Так как предметы обладают разной массой и соответственно разной инертностью, силы, достаточные для эффективного воздействия, тоже будут различаться.

Состояние ускорения после воздействия силы тяги

Когда движение равномерное, сила тяги и сила трения совершают одинаковую работу, уравновешивая друг друга. Воздействие силы на тело в направлении движения придает ему ускорение. Если направить ту же силу в противоположном направлении, она замедлит движение тела, что можно назвать отрицательным ускорением.

Формулы для определения силы тяги

Согласно второму закону Ньютона, сумма сил, воздействующих на движущееся тело, равна массе (m), умноженной на ускорение (a). Универсальной формулы, подходящей для любого сочетания сил, не существует. Чаще всего силу тяги находят с помощью общей формулы( F_т-;F_{с}=m;times;a), где (F_т) — сила тяги, (F_{с}) — силы сопротивления.
При решении конкретной задачи силы, воздействующие на тело, схематически изображают в виде векторов. На схеме:

  • сила тяжести mg;
  • сила реакции опоры (N);
  • сила трения( F_{тр});
  • сила тяги (F)

Сила тяги

 

При нахождении тела на горизонтальной поверхности сила тяжести и сила реакции опоры уравновесят друг друга. Но если транспортное средство движется в гору или под гору, придется учесть влияние уклона. Тогда формула может выглядеть так: (F_т-;F_с-;mg;times;sinalpha=m;times;a.)

Работа A, которую должна совершить сила тяги, сдвигая тело, связана с ней соотношением (A;=;F;times;s). (s) здесь — расстояние, на которое тело переместилось.

Какое условие должно соблюдаться

Сила тяги всегда должна быть больше противодействующих ей сил.

Формула через мощность

Полезную механическую мощность (N) можно вычислить по формуле (N=F_т;times;v), где (v) — скорость. Для определения силы тяги нужно разделить мощность на скорость: (F_т;=;frac N v.)

Измерение и обозначение силы тяги

Силу тяги обозначают (F_т) или (F). Единица измерения — ньютон ((Н)).
Для решения задач недостаточно измерить усилие, приложенное к объекту, и выразить его конкретным числом, так как сила обладает еще и направлением. Чтобы подчеркнуть, что сила — векторная величина, к буквенному обозначению добавляют стрелку.

Как определить силу тяги двигателя. Примеры решения задач

Задача 1

Автомобиль может разгоняться до 216 км/ч. Максимальная мощность двигателя равна 96 кВт. Определите максимальную силу тяги двигателя.

Решение

Переведем киловатты в ватты, а километры в час — в метры в секунду:

(96;times;1000=96000;Вт)

(frac{216times1000}{3600}=60frac мс)

(F_т;=;frac N v = frac{96000}{60} = 1600 Н)

Задача 2

Троллейбус весом 12 тонн за 5 секунд проезжает по горизонтальной дороге 10 метров. Сила трения равна 2,4 кН. Определите силу тяги, которую развивает двигатель.

Решение

Переведем тонны в килограммы, а килоньютоны в ньютоны:

(12;times;1000=12000;кг)

(2,4;times;1000=2400;Н)

(F_т-;F_{тр}=m;times;a), следовательно, (F_т=mtimes a;+;F_{тр})

Чтобы определить ускорение а, воспользуемся формулой (s;=;frac{at^2}2)

Подставив численные значения величин, получаем:

(a;=;frac{2s}{t^2}^{}=frac{20}{25};=;0,8)

(F_т=;12000times0,8;+;2400;=;12000;Н;=;12;кН)

Задача 3

Транспорт, весящий 4 тонны, едет в гору. Уклон — 1 метр на каждые 25 метров пути. (mu) — 0,1 от силы тяжести, (а = 0). Определите силу тяги.

Решение

Начертим схему:

Сила тяги векторы уклон

 

(mtimes g;+;N;+;F_{тр;}+;F_т;=;mtimes a)

Сделаем проекции на координатные оси:

(OX: -;mg;times;sinalpha;-;F_{тр;}+;F_т;=;0)

(OY: N;-;mg;times;cosalpha;=;0 => N;=;mg;times;cosalpha;)

(F_{тр};=;mu N;=;mu mg;times;cosalpha)

Подставим значение (F_{тр}) в уравнение (OX) и определим (F_т):

(-mg;times;sinalpha;-;mu)

(mg;times;cosalpha;+;F_т;=;0)

(=> F;=;mg;left(sinalpha;+;mu;times;cosalpharight))

Найдем синус и косинус (alpha), подставим их в общую формулу:

(sinalpha;=;frac hl;=;frac1{25})

(cosalpha;=;frac{sqrt{l^{2;}-;h^2}}l;)

(F;=;frac{4;times;10^{3;};times;9,8;timesleft(1;+;0,1;sqrt{l^{2;}-;h^2}right)}{25};=;5,5;times;10^3;Н;=;5,5;кН)

В сегодняшней статье кратко расскажем про работу и мощность в механике, а также приведем примеры задач для тех, кто учится их решать.

Больше полезной информации для студентов всех специальностей — на нашем телеграм-канале. Подписывайтесь!

Задачи на механическую работу и мощность с решениями

Задача №1. Нахождение механической работы

Условие

Грузчик равномерно толкает ящик с осциллографами по горизонтальному полу. Сила трения равна 450 Н. Найдите работу, совершенную грузчиком, если ящик передвинули на 20 метров.

Решение

Так как ящик двигался равномерно, то сила тяги грузчика равна силе трения.

Задача №1. Нахождение механической работы

Ответ: 9кДж

Задача №2. Расчет работы силы тяжести

Условие

Гантель массой 1 кг падает с высоты 10 метров. Какую работу совершает сила тяжести?

Решение

Задача №2. Расчет работы силы тяжести

Ответ: 100 Дж.

mgh — выражение для потенциальной энергии камня в наивысшей точке.

Задача №3. Расчет механической мощности и работы

Условие

Деревенский житель поднимает ведро из колодца за 20 секунд, действуя с постоянной силой 80 Н. Глубина колодца равна h=10 м. Какую мощность развивает человек?

Решение

Сначала найдем работу, совершаемую при подъеме ведра, а затем вычислим мощность:

Задача №3. Расчет механической мощности и работы

Ответ: 40 Вт.

Задача №4. Нахождение мощности. Связь мощности, силы и скорости

Условие

Мотороллер движется со скоростью 60 км/ч. Сила тяги двигателя равна 245 Н. Какую мощность развивает двигатель?

Решение

Переведем значение скорости в систему СИ и применим формулу, связывающую мощность, силу и скорость:Задача №4. Нахождение мощности. Связь мощности, силы и скорости

Ответ: 4092 Вт.

Задача №5. Нахождение механической работы.

Условие

Мощность двигателя трамвая равна 86 кВт. Какую работу может совершить трамвай за 2 часа непрерывной езды?

Решение

Работу можно вычислить из определения мощности:

Задача №5. Нахождение механической работы.

Ответ: 619200 кДж

Вопросы на механическую мощность и работу

Вопрос 1. Сила тяжести действует на автомобиль, едущий по прямой и горизонтальной дороге. Совершает ли эта сила работу?

Ответ. Не совершает. Работу в данном случае совершает сила тяги двигателя автомобиля.

Вопрос 2. Приведите примеры механической работы.

Ответ. Примеры в которых совершается механическая работа:

  • лошадь тянет телегу (работу совершает сила тяги лошади);
  • бурлаки на Волге тянут баржу (работу совершает мускульная сила рук бурлаков);
  • спортсмен поднимает штангу (работу совершает мускульная сила рук спортсмена).

Вопрос 3. Камень падает с неба. Совершает ли сила тяжести работу?

Ответ. Да, совершает. Это работа так называемых потенциальных, или диссипативных, сил.

Вопрос 4. Какие есть внесистемные единицы измерения мощности?

Ответ. Самая распространенная внесистемная единица измерения мощности — лошадиная сила.

1 лошадиная сила равна примерно 745 Ваттам.

Вопрос 5. Какая еще величина выражается в Джоулях?

Ответ. Джоуль — единица измерения не только работы, но и энергии.

Работа и мощность в механике

Работа в механике

Для работы существует множество определений. Нас в данном случае интересует лишь одно:

Механическая работа — скалярная физическая величина, равная произведению силы, действующей на тело, на модуль перемещения, которое совершает тело под действием этой силы.

Работа в механике

Если направления векторов силы и перемещения не совпадают, в определение добавляется третий множитель: косинус угла альфа между векторами.

Единица измерения работы: Джоуль

Мощность в механике

Мощность показывает, какая работа совершается за единицу времени.

Механическая мощность — скалярная физическая величина, равная отношению работы ко времени, за которое она совершалась.

Мощность в механике

Мощность измеряется в Ваттах.

Нужна помощь в решении задач и других заданий? Обращайтесь в профессиональный студенческий сервис.

Иван

Иван Колобков, известный также как Джони. Маркетолог, аналитик и копирайтер компании Zaochnik. Подающий надежды молодой писатель. Питает любовь к физике, раритетным вещам и творчеству Ч. Буковски.

Работа, совершённая двигателем автомобиля, равна

(1)

Мощность

Для
нахождения этих величин необходимо
найти силу тяги Fт.

По
II
закону Ньютона

Выбирая направление осей X
и Y
и проецируя на них векторное уравнение
II
закона Ньютона для тела, получаем

Fтр
– mg
sin

+ F
т
= m
а;

N
– mg
cos

=
0,

тогда
N
= mg
cos
;

Fт
= m a + mg
sin

+ F
тр.

По закону трения

Fтр
=

N
=

mg
cos
;

Fт
= ma + mg
sin

+

mg
cos
.

Ускорение,
с которым движется автомобиль, найдём
из формулы пути равноускоренного
движения. Так как

= 0, то

и

.

После
подстановки в формулу (1), получим:


.

Подставим числовые значения,


Дж


кВт.

Ответ:

Дж;

кВт.

Задача
2.
Найти,
какую мощность развивает двигатель
автомобиля массой 1000 кг, если известно,
что автомобиль едет с постоянной
скоростью 36 км/ч: 1) по горизонтальной
дороге; 2) в гору с уклоном 5 м на каждые
100 м пути; 3) под гору с уклоном 5 м на
каждые 100 м пути. Коэффициент трения
равен 0,07.

Р

ешение.

1).
Мощность определим по формуле:

,
где сила равна силе трения. Тогда получим:


Н


Вт
= 6,86 кВт.

2).Мощность
автомобиля найдём по формуле:


,
где силу тяги определим составив
уравнение движения тела. Из рисунка
видно, что:


,

где

Подставляя
числовые значения, определим силу тяги
и мощность:


Н.


Вт
= 11,69 кВт.

3).Мощность
автомобиля найдём по формуле:
,
где силу тяги определим составив
уравнение движения тела. Из рисунка
видно, что:



,

где

Подставляя
числовые значения, определим силу тяги
и мощность:


Н.


Вт
= 1,89 кВт.

Ответ:
1)

= 6,86 кВт; 2)

= 11,69 кВт; 3)

= 1,89 кВт.

Задача
3.
Тело,
брошенное вертикально вниз с высоты 75
м со скоростью 10 м/с, в момент удара о
землю имело кинетическую энергию в 1600
Дж. Найти: а) массу тела; б) потенциальную
и кинетическую энергию через 2 с после
начала движения.

Р
ешение.

а)
Исходя из условия, кинетическая энергия
в момент удара о Землю является полной
механической энергией. Тогда согласно
закона сохранения энергии можно записать:

.
Выразим и найдём из этого выражения
массу тела:


кг.

б)
Из уравнения скорости при равноускоренном
движении под действием силы тяжести,
найдём скорость тела через две секунды
движения:

м/с.
Тогда кинетическая энергия тела в этот
момент времени:
Дж.
Для определения потенциальной энергии
снова воспользуемся законом сохранения
энергии:

Дж.

Ответ:

кг;
:
Дж;

Дж.

Задача
4.
Подъёмный
кран за 7 часов поднимает 3000 тонн
строительных материалов на высоту 10м.
Какова мощность двигателя крана, если
КПД крана 0,6 ?

Р
ешение.

Мощность
двигателя крана определим как:

,
где затраченную работу найдём из
определения коэффициента полезного
действия:

.
Полезная работа по подъёму груза:
.
Тогда после подстановки находим величину
мощности:
кВт.

Ответ:

кВт.

Задача
5.
Небольшое
тело массы m
поднимается без начальной скорости с
поверхности Земли под действием двух
сил: силы F,
меняющейся с высотой подъёма у
по закону

,
где а
– положительная постоянная, и силы
тяжести mg.
Найти работу силы F
на первой половине пути подъёма и
соответствующее приращение потенциальной
энергии в поле тяжести Земли. (Поле
тяжести предполагается однородным).

Р
ешение.

Сначала
найдём весь путь подъёма. В начале и
конце пути скорость тела равна нулю,
поэтому равно нулю и приращение
кинетической энергии тела. Изменение
же потенциальной энергии равно
алгебраической сумме работ силы F
и силы тяжести. А так как

,
то и работа

.
Учитывая, что положительное направление
оси у
взято вверх, запишем


.

Работа
силы

на первой половине пути подъёма


.

Соответствующее
приращение потенциальной энергии


.

Ответ:

;

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Разберёмся в вопросе, что такое сила тяги. Как следует из самого названия – это сила, которую необходимо прикладывать к телу, чтобы оно находилось в состоянии постоянного движения.

Сила тяги

Если её убрать, то тело, будь то автомобиль, электровоз, космическая ракета или санки, со временем остановится. Это произойдёт потому, что на тело всегда действуют силы, которые заставляют его стремиться к состоянию покоя:

  • силы трения (покоя, качения, скольжения),
  • сопротивления воздуха (газа),
  • сопротивления воды и др.

Содержание:

  • Первый и второй законы Ньютона
  • Примеры из жизни
    • Насколько вы сильны?
    • Насколько силён ваш автомобиль?

Первый и второй законы Ньютона

Обратимся к законам Ньютона, которые хорошо описывают механическое движение тел. Из школьной программы мы знаем, что есть первый закон Ньютона, который описывает закон инерции. Он гласит, что любое тело, если на него не действуют силы, или если их равнодействующая равна нулю, движется прямолинейно и равномерно, или же находится в состоянии покоя. Это означает, что тело, пока на него ничто не действует, будет двигаться с постоянной скоростью v=const или пребывать в состоянии покоя сколько угодно долго, пока какое-то внешнее воздействие не выведет тело из этого состояния. Это и есть движение по инерции.

Надо сказать, что этот закон справедлив лишь в так называемых инерциальных системах отсчёта. В неинерциальных системах отсчёта этот закон не действует и нужно использовать второй закон Ньютона. В таких системах отсчёта тело тоже будет двигаться по инерции, но оно будет двигаться с ускорением, стремясь сохранять своё движение, т.е. на него также не будут действовать никакие внешние силы, кроме силы инерции, стремящейся двигать тело в том направлении, в каком оно двигалось до воздействия. Тут мы приходим к рассмотрению второго закона Ньютона, который также справедлив в инерциальных системах отсчёта, т. е. в таких системах отсчёта, в которых тело движется с постоянной скоростью либо находится в покое.

Этот закон утверждает, что для того, чтобы вывести тело из состояния покоя или равномерного движения, к нему необходимо приложить силу, равную F=m•a, где m — это масса тела, a — ускорение, сообщаемое телу. Зная эти законы, можно рассчитать силу тяги (двигателя автомобиля, ракетного двигателя или, например, лошади, тянущей нагруженную повозку).

Законы Ньютона

Примеры из жизни

Насколько вы сильны?

Рассмотрим простейший пример. Ваш ребёнок сел на санки и просит вас его покатать. С какой силой вам нужно тянуть эти санки, чтобы ребёнок остался доволен быстрой ездой ? Пока санки с ребёнком остаются в состоянии покоя, все силы, действующие на них, уравновешены. Состояние покоя — это частный случай инерции. Здесь на санки действуют две силы: тяжести Fт = m•g, направленная вертикально вниз, и нормального давления N, направленная вертикально вверх. Поскольку санки не движутся, то N – m•g = 0. Тогда из этого равенства следует, что N = m•g.

Когда вы решили покатать своего ребёнка, вы прикладываете силу тяги (Fтяги) к санкам с ребёнком. Когда вы начинаете тянуть санки, возникает сопротивление движению, вызванное силой трения (Fтр.), направленной в противоположную сторону. Это так называемая сила трения покоя. Когда тело не движется, она равна нулю. Стоит потянуть за санки — и появляется сила трения покоя, которая меняется от нуля до некоторого максимального значения (Fтр. max). Как только Fтяги превысит Fтр.max, санки с ребёнком придут в движение.

Чтобы найти Fтяги, применим второй закон Ньютона: Fтяги – Fтр.max = m•a, где a – ускорение, с которым вы тянете санки, m – масса санок с ребёнком. Допустим, вы разогнали санки до определённой скорости, которая не изменяется. Тогда a = 0 и вышеприведённое уравнение запишется в виде: Fтяги – Fтр. max = 0, или Fтяги = Fтр.max. Есть известный закон из физики, который устанавливает определённую зависимость для Fтр.max и N. Эта зависимость имеет вид: Fтр.max = fmax • N, где fmax – максимальный коэффициент трения покоя.

Если в эту формулу подставить выражение для N, то мы получим Fтр.max = fmax•m•g. Тогда формула искомой силы тяги примет вид: Fтяги = fmax•m•g = fск•m•g, где fск = fmax – коэффициент трения скольжения, g – ускорение свободного падения. Допустим, fск = 0,7, m = 30 кг, g = 9,81 м/с², тогда Fтяги = 0,7 • 30 кг • 9,81 м/с² = 206,01 Н (Ньютона).

Насколько силён ваш автомобиль?

Рассмотрим ещё пример. У вас есть автомобиль, мощность двигателя которого N. вы едете со скоростью v. Как в этом случае узнать силу тяги двигателя вашего автомобиля ? Поскольку скорость автомобиля не меняется, то Fтяги уравновешена силами трения качения, лобового сопротивления, трения в подшипниках и т. д. (первый закон Ньютона). По второму закону Ньютона она будет равна Fтяги = m•a. Чтобы её вычислить, достаточно знать массу автомобиля m и ускорение a.

Допустим, вы разогнали свой автомобиль до скорости v за какое-то время t, проехав расстояние s. Тогда Fтяги будет легко рассчитана по формуле: Fтяги = m•v/t. Как и в примере с санками, справедлива также такая формула: Fтяги = f•m•g, где f – коэффициент трения качения, который зависит от скорости автомобиля (чем больше скорость, тем меньше этот коэффициент).

Но что делать, если масса автомобиля m, коэффициент трения качения f и время разгона t неизвестны ? Тогда можно поступить по-другому. Двигатель вашего автомобиля при разгоне совершил работу A = Fтяги • s. Поскольку формула расстояния имеет вид s = v•t, то выражение для работы будет таким: A = Fтяги • v • t. Разделив обе части этого равенства на t, получим A/t = Fтяги • v. Но A/t = N – это мощность двигателя вашего автомобиля, поэтому N = Fтяги • v. Отсюда уже получим искомую формулу: Fтяги =N/v.

Допустим, вы разогнали свой автомобиль до скорости v = 180 км/ч, а мощность его двигателя N = 200 л. с. (лошадиных сил). Чтобы вычислить Fтяги двигателя, необходимо прежде перевести указанные единицы измерения в единицы СИ, т. е. международной системы измерения. Здесь 1 л. с. = 735,499 Вт, поэтому мощность двигателя составит N = 200 л. с. • 735,499 Вт/л. с. = 147099,8 Вт. Скорость в системе СИ будет равна v = 180 км/ч = 180 • 1000 м/3600 с = 50 м/с. Тогда искомое значение будет равно Fтяги = 147099,8 Вт/50 (м/с) = 2941,996 Н ~ 2,94 кН (килоньютона).

Около 3 килоньютонов. Много это или мало ? Допустим, вы жмёте 100 килограммовую штангу. Чтобы её поднять, вам нужно преодолеть её вес, равный P = m•g = 100 кг • 9,81 м/с² = 981 Н (ньютон)~0,98 кН. Полученное для автомобиля значение Fтяги больше веса штанги в 2,94/0,98 = 3 раза. Это равносильно тому, что вы будете поднимать штангу массой в 300 кг. Такова сила тяги двигателя вашего автомобиля (на скорости 180 км/ч).

Сила трения

Таким образом, зная школьный курс физики, мы можем с лёгкостью вычислить силу тяги:

  • человека,
  • лошади,
  • паровоза,
  • автомобиля,
  • космической ракеты и всех прочих видов техники.

Видео

В нашем видео вы найдете интересные опыты, поясняющие, что такое сила тяги и сила сопростивления.

Содержание:

  • Определение и формула силы тяги
  • Единицы измерения силы тяги
  • Примеры решения задач

В том случае, если тело при перемещении имеет ускорение, то на него кроме всех прочих обязательно действует некоторая сила, которая является
силой тяги в рассматриваемый момент времени. В действительности, если тело движется прямолинейно и с постоянной скоростью, то сила тяги также
действует, так как тело должно преодолевать силы сопротивления. Обычно силу тяги находят, рассматривая силы, действующие на тело, находя
равнодействующую и применяя второй закон Ньютона. Жестко определенной формулы для силы тяги не существует.

Не следует считать, что сила тяги, например, транспортного средства действует со стороны двигателя, так как внутренние силы не могут менять
скорость системы как единого целого, что входило бы в противоречие с законом сохранения импульса. Однако следует отметить, что для получения у
силы трения покоя необходимого направления, мотор вращает колеса, колеса «цепляются за дорогу» и порождается сила тяги. Теоретически было бы
возможно не использовать понятие «сила тяги», а говорить о силе трения покоя или силе реакции воздуха. Но удобнее внешние силы, которые действуют
на транспорт делить на две части, при этом одни силы называть силами тяги
$(/bar{F}_T)$, а другие — силами сопротивления
$bar{F}_S$ . Это делается для того,
чтобы уравнения движения не потеряли свой универсальный вид и полезная механическая мощность (P) имела простое выражение:

$$P=bar{F}_{T} bar{v}(1)$$

Определение и формула силы тяги

Определение

Исходя из формулы (1) силу тяги можно определить через полезную мощность, и скорость транспортного средства (v):

$$F_{T}=frac{P}{v}(2)$$

Для автомобиля, поднимающегося в горку, которая имеет уклон
, масса автомобиля m сила тяги (FT) войдет в уравнение:

$$F_{T}-F_{s}-m g sin alpha=m a(3)$$

где a – ускорение, с которым движется автомобиль.

Единицы измерения силы тяги

Основной единицей измерения силы в системе СИ является: [FT]=Н

В СГС: [FT]=дин

Примеры решения задач

Пример

Задание. На автомобиль имеющий массу 1 т при его движении по горизонтальной поверхности, действует сила трения,
которая равна $mu$=0,1 от силы тяжести.
Какой будет сила тяги, если автомобиль движется с ускорением 2 м/с?

Решение. Сделаем рисунок.

В качестве основы для решения задачи используем второй закон Ньютона:

$$bar{N}+m bar{g}+bar{F}_{t r}+bar{F}_{T}=m bar{a}(1.1)$$

Спроектируем уравнение (1.1) на оси X и Y:

$$
begin{array}{c}
X: F_{T}-F_{t r}=m a(1.2) \
Y: m g=N(1.3)
end{array}
$$

По условию задачи:

$$
F_{t r}=mu cdot m g (1.4)
$$

Подставим правую часть выражения (1.4) вместо силы трения в (1.2), получим:

$$F_{T}=m a+mu cdot m g$$

Переведем массу в систему СИ m=1т=103 кг, проведем вычисления:

$$F_{T}=10^{3}(2+0,1 cdot 9,8)=2,98 cdot 10^{3}(H)$$

Ответ. FT=2,98 кН

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. На гладкой горизонтальной поверхности лежит доска массой M. На доске находится тело массы m.
Коэффициент трения тела о доску равен $mu$ . К доске
приложена сила горизонтальная сила тяги, которая зависит от времени как: F=At (где A=const). В какой момент
времени доска начнет выскальзывать из-под тела?

Решение. Сделаем рисунок.

Для решения задачи нам потребуются проекции сил на осиX и Y, которые отличны от нуля. Для тела массы m:

$$
begin{array}{c}
X: m a_{1}=F_{t r}(2.1) \
Y: m g=N(2.2) \
F_{t r}=mu N=mu m g rightarrow m a_{1}=mu m g rightarrow a_{1}=mu g(2.3)
end{array}
$$

Для тела массы M:

$$M a_{2}=F-F_{t r} rightarrow M a_{2}=A t-F_{t r} rightarrow a_{2}=frac{A t-F_{t r}}{M}(2.2)$$

Обозначим момент времени, в который доска начнет выскальзывать из-под тела t0, тогда

$$mu g=frac{A t_{0}-mu m g}{M} rightarrow t_{0}=frac{m+M}{A} mu g$$

Ответ. $t_{0}=frac{m+M}{A} mu g$

Читать дальше: Формула силы упругости.

Понравилась статья? Поделить с друзьями:
  • Как найти спонсоров в краснодаре
  • Как интегратору найти клиентов
  • You need to have the following volume to continue extraction как исправить
  • Как травка нашла молодого антипыча
  • Ошибка при синтетическом анализе пакета как исправить на андроид