Как найти работу тока квт ч

Вы уже знаете, что работа электрического тока измеряется в джоулях. Но на практике часто используются другие величины, о которых вы и узнаете на данном уроке.

Почему неудобно выражать работу тока в джоулях на практике?

Начнем с того, что в паспортах электроприборов обычно указывают мощность тока в них. Как можно выразить работу тока через мощность и время?

Зная мощность потребителя электроэнергии, можно рассчитать и работу тока, совершенную за определенное время: $A = Pt$.

Рассмотрим единицы измерения величин в этой формуле. Мощность у нас измеряется в ваттах, время — в секундах, а работа — в джоулях.

$1 space Вт = 1 frac{Дж}{с}$,
$1 space Дж = 1 space Вт cdot с$.

Обратите внимание на то, что время выражается в секундах. Но обычно в потребителе электроэнергии ток совершает работу более продолжительное время.

Некоторые приборы мы используем часами, а некоторые — круглосуточно. Например, тот же холодильник. Расчет же электроэнергии по счетчику производится раз в месяц.

Логично, что очень неудобно переводить такие большие промежутки времени в секунды каждый раз при расчете работы электрического тока. Поэтому и используются другие единицы измерения.

Внесистемные единицы измерения работы электрического тока

По вышеуказанным причинам при расчете работы электрического тока время намного удобнее выражать в часах. Сама же работа часто выражается в следующих единицах: $ватт cdot час$ ($Вт cdot ч$), $гектоватт cdot час$ ($гВт cdot ч$), $киловатт cdot час$ ($кВт cdot ч$).

$1 space Вт cdot ч = 3600 space Дж$,
$1 space гВт cdot ч = 100 space Вт cdot ч = 360 space 000 space Дж$,
$1 space кВт cdot ч = 1000 space Вт cdot ч = 3 space 600 space 000 space Дж$.

Снятие показаний счетчика и расчет потребляемой энергии

Каждый месяц люди платят за «электричество». То есть за использованную электроэнергию в течение месяца, которая определяется совершенной работой электрического тока.

Сумма платежа рассчитывается исходя из показаний счетчика и действующего тарифа на электроэнергию.

В начале нового месяца фиксируются показания счетчика (рисунок 1, а). В конце месяца эти показания фиксируются еще раз (рисунок 1, б). Обратите внимание, что обычно последнее число, показанное на счетчике, — это десятые доли $кВт cdot ч$. Эта последняя цифра может быть выделена цветной рамкой, или перед ней будет стоять точка.

Рисунок 1. Показания счетчика в начале и в конце месяца

Разница между этими показаниями — это и есть израсходованная за месяц электроэнергия. Она же эквивалентна работе электрического тока, совершенной во всех электроприборах за месяц. Рассчитаем ее:
$A = 11706.6 space кВт cdot ч space — space 10982.6 space кВт cdot ч = 724 space кВт cdot ч$.

Действующий тариф (стоимость $1 space кВт cdot ч$) указывается в квитанциях на оплату. Он может различаться в зависимости от страны или ее региона.

Возьмем тариф, равный $3 frac{р.}{кВт cdot ч}$ (3 рубля за $1 space кВт cdot ч$).

Чтобы рассчитать стоимость потребленной энергии, нужно тариф умножить на количество (численное значение) этой энергии:
$Стоимость = Тариф cdot A$.

В нашем случае получается:
$Стоимость = 3 frac{р.}{кВт cdot ч} cdot 724 space кВт cdot ч = 2172 space р.$

Пример задачи

Электрическая лампа рассчитана на ток мощностью $100 space Вт$. Ежедневно лампа горит в течение $6 space ч$. Найдите работу тока за один месяц (30 дней) и стоимость израсходованной энергии, считая, что тариф составляет 300 копеек за $1 space кВт cdot ч$.

Дано:
$P = 100 space Вт$
$t = 6 space ч cdot 30 = 180 space ч$
$Тариф = 300 frac{к.}{кВт cdot ч}$

$A — ?$
$Стоимость — ?$

Решение:

Работу электрического тока рассчитаем по формуле: $A = Pt$.
$A = 100 space Вт cdot 180 space ч = 18 space 000 Вт cdot ч = 18 space кВт cdot ч$.

Рассчитаем стоимость. Для этого умножим тариф на работу, совершаемую электрическим током:
$Стоимость = 300 frac{к.}{кВт cdot ч} cdot 18 space кВт cdot ч = 540 space к. = 54 space р.$

Ответ: $A = 18 space кВт cdot ч$, $стоимость = 54 space рубля$.

Упражнения

Упражнение №1

Мощность электрического утюга равна $0.6 space кВт$. Вычислите работу тока в нем за $1.5 space ч$. Сколько при этом расходуется энергии?

Дано:
$P = 0.6 space кВт$
$t = 1.5 space ч$

$A — ?$

Показать решение и ответ

Скрыть

Решение:

Работа электрического тока рассчитывается по формуле: $A = Pt$.
$A = 0.6 space кВт cdot 1.5 space ч = 0.9 space кВт cdot ч$.

Электрическое поле обладает некоторой энергией. Именно за счет нее совершается работа. Значит, количество израсходованной энергии при совершении работы эквивалентно величине самой работы, выраженной в джоулях (энергия так же выражается именно в джоулях).

Выразим полученное значение работы тока в джоулях.
$1 space Вт cdot ч = 3600 space Дж$,
$A = 0.9 space кВт cdot ч = 3600 space Дж cdot 0.9 = 3240 space Дж = 3.24 space кДж$.

Ответ: $A = 0.9 space кВт cdot ч$, израсходовано $3.24 space кДж$ энергии. 

Упражнение №2

В квартире имеется две электролампы по $60 space Вт$ и две по $40 space Вт$. Каждую из них включают на $3 space ч$ в сутки. Определите стоимость энергии, израсходованной лампами за один месяц (30 дней). Тариф за $1 space кВт cdot ч$ составляет 3.3 рубля за $1 space кВт cdot ч$.

Дано:
$P_1 = P_2 = 60 space Вт$
$P_3 = P_4 = 40 space Вт$
$t = 3 space ч cdot 30 = 90 space ч$
$Тариф = 3.3 frac{р.}{кВт cdot ч}$

$Стоимость — ?$

Показать решение и ответ

Скрыть

Решение:

Для того, чтобы рассчитать стоимость потраченной электроэнергии, нам нужно рассчитать работу электрического тока.

Работа тока, совершенная в первой лампе:
$A_1 = P_1 t$,
$A_1 = 60 space Вт cdot 90 space ч = 5400 space Вт cdot ч = 5.4 space кВт cdot ч$.

Вторая лампа идентична первой. Поэтому:
$A_2 = A_1 = 5.4 space кВт cdot ч$.

Таким же образом рассчитаем работу третьей и четвертой ламп:
$A_3 = P_3 t$,
$A_3 = 40 space Вт cdot 90 space ч = 3600 space Вт cdot ч = 3.6 space кВт cdot ч$,
$A_4 = A_3 = 3.6 space кВт cdot ч$.

Вычислим общую работу тока во всех лампах:
$A = A_1 + A_2 + A_3 + A_4$,
$A = 5.4 space кВт cdot ч + 5.4 space кВт cdot ч + 3.6 space кВт cdot ч + 3.6 space кВт cdot ч = 18 space кВт cdot ч$.

Теперь мы можем рассчитать стоимость электроэнергии:
$Стоимость = Тариф cdot A$,
$Стоимость = 3.3 frac{р.}{кВт cdot ч} cdot 18 space кВт cdot ч = 59.4 space р. = 59 space рублей space 40 space копеек$.

Ответ: $Стоимость = 59 space рублей space 40 space копеек$.

Упражнение №3

Рассмотрите рисунок 2. Подсчитайте электроэнергию, расходуемую за 1 месяц (30 дней) всеми показанными на схеме приборами, если известно, что напряжение в сети (между точками A и B) равно $220 space В$, лампы имеют мощность по $40 space Вт$ каждая и включаются на $4 space ч$ в день, электронагревательные приборы имеют мощность $800 space Вт$ и $1000 space Вт$ и включаются на $1 space ч$ и $0.5 space ч$ в день соответственно, электродвигатель пылесоса имеет мощность $600 space Вт$ и включается на $0.5 space ч$ один раз в неделю. Вычислите стоимость расходуемой за месяц  энергии. Тариф за $1 space кВт cdot ч$ составляет 3.3 рубля за $1 space кВт cdot ч$.

Рисунок 2. Параллельное подключение в цепь различных потребителей электроэнергии

Дано:
$U = 220 space В$
$P_1 = P_2 = P_3 = 40 space Вт$
$t_1 = t_2 = t_3 = 4 space ч cdot 30 = 120 space ч$
$P_4 = 800 space Вт$
$t_4 = 1 space ч cdot 30 = 30 space ч$
$P_5 = 1000 space Вт$
$t_5 = 0.5 space ч cdot 30 = 15 space ч$
$P_6 = 600 space Вт$
$t_6 = 0.5 space ч cdot 4 = 2 space ч$
$Тариф = 3.3 frac{р.}{кВт cdot ч}$

$Стоимость — ?$

Показать решение и ответ

Скрыть

Решение:

Рассчитаем работу тока, совершенную за месяц в каждом потребителе электроэнергии.

Работа тока, совершенная в первой лампе:
$A_1 = P_1 t_1$,
$A_1 = 40 space Вт cdot 120 space ч = 4800 space Вт cdot ч = 4.8 space кВт cdot ч$.
Такая же работа совершена в двух других лампах, потому что они имеют одинаковую мощность и включаются на то же самое время:
$A_2 = A_3 = A_1 = 4.8 space кВт cdot ч$.

Теперь рассчитаем работу тока в первом электронагревательном приборе:
$A_4 = P_4 t_4$,
$A_4 = 800 space Вт cdot 30 space ч = 24 space 000 space Вт cdot ч = 24 space кВт cdot ч$.

Работа тока, совершенная за месяц во втором электронагревательном приборе:
$A_5 = P_5 t_5$,
$A_5 = 1000 space Вт cdot 15 space ч = 15 space 000 space Вт cdot ч = 15 space кВт cdot ч$.

Осталось рассчитать работу тока в электродвигателе пылесоса:
$A_6 = P_6 t_6$,
$A_6 = 600 space Вт cdot 2 space ч = 1200 space Вт cdot ч = 1.2 space кВт cdot ч$.

Теперь просуммируем все рассчитанные значения работы тока в потребителях электроэнергии:
$A = A_1 + A_2 + A_3 + A_4 + A_5 + A_6$,
$A = 4.8 space кВт cdot ч + 4.8 space кВт cdot ч + 4.8 space кВт cdot ч + 24 space кВт cdot ч + 15 space кВт cdot ч + 1.2 space кВт cdot ч = 54.6 space кВт cdot ч$.

Рассчитаем стоимость электроэнергии, затраченной на совершение этой работы:
$Стоимость = Тариф cdot A$,
$Стоимость = 3.3 frac{р.}{кВт cdot ч} cdot 54.6 space кВт cdot ч = 180.18 space р. = 180 space рублей space 18 space копеек$.

Ответ: $Стоимость = 180 space рублей space 18 space копеек$.

1Расчет стоимости работы и мощности бытовых приборов.ppt

1Расчет стоимости работы и мощности бытовых приборов

1Расчет стоимости работы и мощности бытовых приборов

Электроэнергия механическая световая тепловая электромагнитная

Электроэнергия механическая световая тепловая электромагнитная

Электроэнергия

механическая

световая

тепловая

электромагнитная

Работа и мощность электрического тока

Работа и мощность электрического тока

Работа и мощность электрического тока

Цель урока: 10.3.2.4 — производить практические расчеты стоимости работы и мощности бытовых приборов

Цель урока: 10.3.2.4 - производить практические расчеты стоимости работы и мощности бытовых приборов

Цель урока:

10.3.2.4 — производить практические расчеты стоимости работы и мощности бытовых приборов

Работа электрического тока Работа тока — работа электрического поля по перемещению заряда

Работа электрического тока Работа тока - работа электрического поля по перемещению заряда

Работа электрического тока

Работа тока — работа электрического поля по перемещению заряда. Обозначается: А

Работа электрического тока

Работа электрического тока

Работа электрического тока

Мощность электрического тока Мощность электрического тока –работа, которую совершает ток за единицу времени

Мощность электрического тока Мощность электрического тока –работа, которую совершает ток за единицу времени

Мощность электрического тока

Мощность электрического тока –работа, которую совершает ток за единицу времени. Обозначается: Р

Мощность электрического тока

Мощность электрического тока

Мощность электрического тока

Измерение работы тока амперметр вольтметр часы

Измерение работы тока амперметр вольтметр часы

Измерение работы тока

амперметр
вольтметр
часы

На практике работу электрического тока измеряют счетчиками

Счетчики — приборы для измерения работы электрического тока

Счетчики - приборы для измерения работы электрического тока

Счетчики — приборы для измерения
работы электрического тока

Ваттметр – прибор для измерения мощности

Ваттметр – прибор для измерения мощности

Ваттметр – прибор для измерения мощности

1Расчет стоимости работы и мощности бытовых приборов

1Расчет стоимости работы и мощности бытовых приборов

Дж = 1 Вт∙с 1 Вт•ч = 3600Дж 1 кВт•ч=1000

Дж = 1 Вт∙с 1 Вт•ч = 3600Дж 1 кВт•ч=1000

1 Дж = 1 Вт∙с


1 Вт•ч = 3600Дж

1 кВт•ч=1000 Вт•ч=3 600 000 Дж

Единицы работы, применяемые на практике

Расчет стоимости потребленной электроэнергии

Расчет стоимости потребленной электроэнергии

Расчет стоимости потребленной электроэнергии

По данному способу определяется расход и стоимость электрической энергии (без счётчика)

Нужно знать мощность электроприборов всех и время работы.
Чтобы определить расход и стоимость электроэнергии (без счётчика)
достаточно воспользоваться формулой:

А = P·t , где P –мощность электроприбора (электроприборов) в кВт·ч;
Мощность электроприбора записывается в паспорте электроприбора или на корпусе
t – время работы электроприбора в часах;
А- количество потреблённой электроэнергии , далее
С = А·тариф — стоимость электроэнергии
Или
С= P ·t·тариф (тенге/кВт·ч)

1Расчет стоимости работы и мощности бытовых приборов

1Расчет стоимости работы и мощности бытовых приборов

Имеется электрическая лампа, рассчитанная на ток мощностью 100

Имеется электрическая лампа, рассчитанная на ток мощностью 100

Имеется электрическая лампа, рассчитанная на ток мощностью 100 Вт. Ежедневно лампа горит в течение 6 часов. Найти работу тока за один месяц (30 дней) и стоимость израсходованной энергии при тарифе 8,43 тенге/кВт·ч.

Дано:
Р = 100 Вт
t = 6 ч · 30 дней = 180 ч
Тариф = 8,43тенге / кВт·ч

А — ?
С — ?

Решение
А = Р · t
А = 100 Вт·180 ч = 18 000 Вт·ч = 18 кВт·ч.
С = А · Тариф
С = 8,43 тенге /(кВт·ч) ·18 кВт·ч = 151,74 тенге
Ответ: А = 18 кВт·ч, С = 151,74 тенге

По данному способу определяется расход и стоимость электрической энергии (без счётчика)

Пример

Обозначим расход энергии через

Обозначим расход энергии через

Обозначим расход энергии через R, [R] = [кВт/ч]

— показания электросчетчика в начале периода (например, в начале месяца)

— показания электросчетчика в конце периода (например, в конце месяца)

Расход энергии посчитаем по формуле

Расчет стоимости потребленной электроэнергии с помощью счетчика

Стоимость потребленной энергии найдем, умножив тариф на расход:

C = Тариф · R

Данный способ мы применяем, используя квитанции на оплату электроэнергии

Пример П1= 07787 кВт/ч в начале месяца

Пример П1= 07787 кВт/ч в начале месяца

Пример

П1= 07787 кВт/ч в начале месяца
П2 =07953 кВт/ч в конце месяца
Р=07953-07787=166 кВт/ч расход энергии за месяц.
С = 13,64 тенге/кВт/ч · 166 кВт/ч.

Решение задач Задача 1. Имеется электрическая лампа, рассчитанная на ток мощностью 100

Решение задач Задача 1. Имеется электрическая лампа, рассчитанная на ток мощностью 100

Решение задач

Задача 1. Имеется электрическая лампа, рассчитанная на ток мощностью 100 Вт. Ежедневно лампа горит в течение 6 часов. В кабинете 30 ламп. Найти работу тока за один месяц (30 дней) и стоимость израсходованной энергии при тарифе 8,43 тенге за 1 кВт·ч.
Задача 2. Имеется электрическая лампа, рассчитанная на ток мощностью 100 Вт. Ежедневно лампа горит в течение 6 часов. В кабинете 30 ламп. В школе 50 кабинетов. Найти работу тока за один месяц (30 дней) и стоимость израсходованной энергии при тарифе 13,64 тенге за 1 кВт·ч.
Задача 3. Имеется электрическая плита, рассчитанная на ток мощностью 10000 Вт. Ежедневно работает в течение 10 часов. В столовой 4 плиты. Найти работу тока за один месяц (30 дней) и стоимость израсходованной энергии при тарифе 13,64 тенге за 1 кВт·ч.
Задача 4. В кабинете информатики 15 компьютеров мощностью 800 Вт, которые работают в течение 5,5 час в день. Чему равна потребляемая мощность за 24 рабочих дня? Стоимость электроэнергии за данный период при стоимости 13,64 тенге/кВт·ч.

Задача 5. Мощность утюга 1200

Задача 5. Мощность утюга 1200

Задача 5. Мощность утюга 1200 Вт. Рассчитайте работу тока за 15 минут работы. Полученное значение переведите в кВт· ч. Рассчитайте сколько вы заплатите за использование этого утюга в течение 15 мин непрерывной работы при тарифе 11 тенге 53 тиын.
Задача 6. В бытовой электроплитке, рассчитанной на напряжение 220 В, имеются две спирали, сопротивление каждой из которых в рабочем режиме равно 80,7 Ом. С помощью переключателя в сеть можно включить одну спираль, две спирали последовательно или две спирали параллельно. Найти мощность в каждом случае.
Задача 7. Объясните, почему при последовательном включении двух ламп мощностью 40 и 100 Вт первая горит значительно ярче второй.

Решение задач

Лампочку какой мощности вы купите для использования в ночнике – 40

Лампочку какой мощности вы купите для использования в ночнике – 40

1. Лампочку какой мощности вы купите для использования в ночнике – 40 Вт или 100 Вт? Почему?

Подумай и ответь

2. На нагревательном элементе чайника скопилась накипь. Как это влияет на время закипания воды? Почему?

3. Зачем на утюгах, фенах, эл. плитах устанавливают регулятор температурного режима?

Зачем нужно экономить электроэнергию?

Зачем нужно экономить электроэнергию?

1. Зачем нужно экономить электроэнергию?

Подумай и ответь

4. Какие пути экономии электроэнергии вы можете предложить?

3. Надо ли нам с вами рационально и бережно относиться к электроэнергии?

2. Зависит ли расход электроэнергии от времени года?

Включайте свет в том случае, если вы в нем нуждаетесь;

Включайте свет в том случае, если вы в нем нуждаетесь;

Включайте свет в том случае, если вы в нем нуждаетесь;

При использовании освещения в доме:

Чаще протирайте лампочки и плафоны (при их загрязнении освещенность в квартире может снизиться на 10-15%).

Отдайте предпочтение покупке энергосберегающих лампочек;

При покраске помещений используйте светлые тона красок (светлая стена отражает почти 85% падающего света);

Используйте лампочки различной мощности в зависимости от потребности;

Виды ламп Лампа накаливания Люминесцентная лампа

Виды ламп Лампа накаливания Люминесцентная лампа

Виды ламп

Лампа накаливания Люминесцентная лампа Светодиодная лампа

Особенности ламп Название Срок службы

Особенности ламп Название Срок службы

Особенности ламп

Название

Срок службы

Затраты на электроэнергию

Объем затрат

Лампа накаливания (95 Вт), цена 75 тенге

1000 часов
1000/6=166 дней
Примерно 0,5 года

95 Вт = 0,095 кВт
0,095·12000 = 1140 кВт·ч

1140 кВт·ч·11,87 тенге = 13532 тенге

Люминесцентная лампа (20 Вт), цена 350 тенге

12000 часов
12000/6=2000 дней
Примерно 5,5 года

20 Вт = 0,02 кВт
0,02·12000 = 240 кВт·ч

240 кВт·ч·11,87 тенге = 2849 тенге

Светодиодная лампа (12 Вт), цена 2500 тенге

50000 часов
50000/6=8333 дней
Примерно 20 лет

12 Вт = 0,012 кВт
0,012·12000 = 144 кВт·ч

144 кВт·ч·11,87 тенге = 1710 тенге

Групповая работа

Групповая работа

Групповая работа

Материалы на данной страницы взяты из открытых истончиков либо размещены пользователем в соответствии с договором-офертой сайта. Вы можете сообщить о нарушении.

Введите ваш emailВаш email

Какую работу совершает электрический ток, проходя по тому или иному участку цепи? Чтобы определить это, вспомним, что такое напряжение. Согласно формуле (11.1) U = A/q. Отсюда следует, что

A = qU,     (18.1)

где A — работа тока; q — электрический заряд, прошедший за данное время через рассматриваемый участок цепи. Подставляя в последнее равенство выражение q = It, получаем

A = IUt.     (18.2)

Итак, чтобы найти работу тока на участке цепи, надо напряжение на концах этого участка U умножить на силу тока I и на время t, в течение которого совершалась работа.

Действие тока характеризуют не только работой A, но и мощностью P. Мощность тока показывает, какую работу совершает ток за единицу времени. Если за время t была совершена работа A, то мощность тока P = A/t. Подставляя в это равенство выражение (18.2), получаем

P = IU.      (18.3)

Итак, чтобы найти мощность электрического тока P, надо силу тока I умножить на напряжение U.

В Международной системе единиц (СИ) работу выражают в джоулях (Дж), мощность — в ваттах (Вт), а время — в секундах (с). При этом

1 Вт = 1 Дж/с, 1 Дж = 1 Вт · с.

Мощности некоторых электроустройств, выраженные в киловаттах (1 кВт = 1000 Вт), приведены в таблице 5.

Мощность электрических устройств

Рассчитаем наибольшую допустимую мощность потребителей электроэнергии, которые могут одновременно работать в квартире. Так как в жилых зданиях сила тока в проводке не должна превышать I = 10 А, то при напряжении U = 220 В соответствующая электрическая мощность оказывается равной:

P = 10 A · 220 В = 2200 Вт = 2,2 кВт.

Одновременное включение в сеть приборов с большей суммарной мощностью приведет к увеличению силы тока и потому недопустимо.

В быту работу тока (или израсходованную на совершение этой работы электроэнергию) измеряют с помощью специального прибора, называемого электрическим счетчиком (счетчиком электроэнергии). При прохождении тока через этот счетчик внутри его начинает вращаться легкий алюминиевый диск. Скорость его вращения оказывается пропорциональной силе тока и напряжению. Поэтому по числу оборотов, сделанных им за данное время, можно судить о работе, совершенной током за это время. Работа тока при этом выражается обычно в киловатт-часах (кВт·ч).

1 кВт·ч — это работа, совершаемая электрическим током мощностью 1 кВт в течение 1 ч. Так как 1 кВт = 1000 Вт, а 1 ч = 3600 с, то

1 кВт·ч = 1000 Вт · 3600 с = 3 600 000 Дж.

??? 1. Как находится работа электрического тока? 2. По какой формуле находится мощность тока? 3. С помощью какого прибора измеряют работу тока? Какая единица работы при этом используется? 4. Сложите мощности всех имеющихся у вас дома электрических устройств. Допустимо ли их одновременное включение в сеть? Почему?

Экспериментальное задание. Рассмотрите у себя дома счетчик электроэнергии. Выясните, как снимаются с него показания. Измерьте с его помощью электроэнергию, израсходованную задень. В течение следующего дня старайтесь экономить энергию — не оставляйте включенным свет, если это не нужно; выключайте электроприборы, которыми в данный момент не пользуетесь; не смотрите все подряд по телевизору. После этого определите с помощью счетчика, сколько электроэнергии вам удалось сэкономить. Вычислите стоимость этой энергии. Сколько денег вам удастся сберечь при подобной экономии энергии за месяц?

Господа, так уж сложилось на этом свете, такова эгоистичная человеческая натура, что если кто-то или что-то не может сделать для тебя какую-то полезность, как-то поработать, оказать какую-то услугу, чем-то помочь, то обычно это кто-то или что-то являются нафиг никому не нужными. Это грустно, наверное, должно быть не совсем так, но опыт указывает именно на такое положение дел…

Что же касается электрического тока – то с ним все отлично. Он с удовольствием рад поработать и вообще всячески готов помогать людям, поэтому он никогда не сталкивается с тем, что он кому-то не нужен. Вы встречали людей, которые бы говорили, что им не нужно электричество? Лично я нет.

Это все замечательно, но мы здесь собрались отнюдь не для праздных философских бесед. Наша задача выяснить, чем именно ток может быть полезен и как количественно оценить его пользу. Давайте вспомним статью про напряжение. Что мы там говорили? Кажется, то, что напряжение по сути своей это отношение работы, которую надо совершить по переносу заряда с одной клеммы на другую к этому самому заряду. А давайте-ка выразим работу! Что в итоге получится?

То есть, если у нас на концах проводника напряжение U и через проводник протек заряд Δq, то, очевидно, поле совершило работу А, равную произведению этого заряда на напряжение. Обращаю внимание, господа, мы пока что ничего не выводили! Это все исключительно из определения напряжения. При создании напряжения надо поработать и запасти энергию, зато потом она может высвободиться и поработать уже сама.

Отлично, скажет читатель! Опять мне предлагают считать какой-то  В статье про силу тока предлагали, теперь здесь! И как я его посчитаю?! Залезу что ли в проводник и ручками переберу заряды?!

Господа, спокойно! Не зря вспомнилась статья про силу тока. Чему, кстати, она равна? Как вы, надеюсь, еще не забыли, она равна

А раз пошло такое дело, давайте выразим отсюда Δq  и подставим это в выражении для работы. Что получим?

Видите, как все отлично вышло! Заряды ушли и мы можем легко посчитать работу тока: мы же помним, что для  Δt есть секундомер в нашем айфоне!

То есть что у нас получается? Мы совершенно спокойно можем взять вольтметр, амперметр и айфон с секундомером. Далее, включить это все (кроме айфона, конечно laughing) в цепь с нагрузкой. Померить напряжение, ток и засечь время. И мы сможем точно узнать, какую ток совершил работу. 

Допустим, мы намерили, что в цепи протекает ток I=2 А при напряжении на нагрузке U=12 В. Как найти работу тока в течении 1 минуты?  Считаем

Но на этом преобразования не закончены. Я надеюсь, вы не забыли закон Ома? Так вот, нам никто не мешает выразить из него напряжение через ток и сопротивление:

Теперь подставляем это в формулку для работы. Получаем

Таким образом у нас появилась еще одна формула, с помощью которой можно высчитать работу, совершаемую током. То есть, оказывается, достаточно замерить в цепи ток и, если мы знаем сопротивление, то мы найдем и работу тока. В принципе, это логично. Ведь ток, напряжение и сопротивление как раз-таки сязаны между собой через уже известный вам закон Ома. Поэтому абсолютно аналогично можно выразить из закона Ома силу тока и вставить и подставить ее в выражение для работы. Получим

То есть, зная напряжение источника и сопротивление нагрузк, можно высчитать работу тока. Замечу, что все эти соотношения получились всего-навсего из определений что такое ток, что такое напряжение и из закона Ома.

Господа, еще с курса механики вам было известно, что часто интерес представляет даже не работа, а мощность – количество работы в единицу времени. Ну, то есть что бы найти мощность, надо работу разделить на время. Получаем в итоге

Господа, обратите свое пристальное внимание на эти формулки и запомните их очень хорошо. Они правда очень нужны и используются весьма часто, так же, как и закон Ома. Мощность вещь нужная. И ее не так сложно измерить. Например это можно сделать, воспользовавшись схемой, изображенной на рисунке 1.

Измерение мощности

Рисунок 1 – Измерение мощности

Теперь коснемся чуть подробнее вопросов размерности. В чем там мощность в механике измерялась? Кажется, в ваттах? Так и тут. Размерности сохранились. Мощность электрического тока измеряется все в тех же ваттах. Один ватт здесь – это когда сила тока равна 1 амперу при напряжении 1 вольт.

Еще кроме ватта есть такая интересная величина, как лошадиная сила. На первый взгляд может показаться странным, что это величина мощности, а не… хотя бы уж силы. Я тоже в детстве недоумевал, что это такое и при чем тут лошади? Оказалось, они были непосредственно в этом замешаны. Как гласит легенда, Джеймс Уатт, который является изобретателем паровой машины, хотел наглядно показать, насколько его машины круты. Понятное дело, что если бы он просто написал там что-то про килоуатты киловатты его никто бы в то время не понял. Нужен был наглядный пример, доступный для понимания людям без высшего образования. И вот, если его паровая машина могла совершать ту же самую работу за то же самое время, что и лошадь, то, выходит, что она развивала мощность в одну лошадиную силу. Это было всем более-менее наглядно понятно. Конечно, способ очень неточный. Конечно, один молодой жеребец разовьет гораздо большую мощность, чем старая кобыла. Но термин устоялся и даже численно связан с ваттами:

 В наше время этот термин, как ни странно, все также используется в автомобильной индустрии для показания мощности двигателя. Если вы кому-то скажете, что ваш двигатель имеет мощность в 72 кВт вас вряд ли поймут, зато если скажете, что он в 98 л.с., всем все сразу станет ясно. Вот такие вот отпечатки накладывает история.

А как с энергией или работой? Помнится, они в джоулях в механике измерялась? Здесь все чуть по-другому. Нет-нет, джоули все так же имеют право на жизнь. Просто исторически сложилось (по крайней мере на практике), что работу электричества измеряют в кВт⋅ч. Именно эти цифры вы можете видеть на своем электрическом счетчике в квартире. Именно за них вы платите деньги каждый месяц. Заметьте, господа, именно кВт умножить на час. Накаких кВт/ч. Киловатты на часы мы не делим, ни в коем случае! Как же связаны между собой  и джоуль? Это легко вывести:

Как видим, одному киловатту соответствует весьма не мало джоулей!

Теперь давайте рассмотрим, а как мы можем использовать эту энергию электричества? Самыми разными способами! Она может вращать двигатели. Она может трансформироваться в свет. Она может способствовать протеканию химических реакций. Способов куча! Но пока что мы рассмотрим один из них – нагрев, то есть трансформация электрической энергии в тепловую.

Если у нас в цепи с постоянным током нет моторчиков, нет светодиодов и лампочек, нет ванночек с химическими реактивами, а есть только обычный резистор (проводник с некоторым сопротивлением) – ток будет просто нагревать его. Полагаю, понимание физики процесса нагрева проводника не должно вызвать вопросов. Тут все просто. Под действием электрического поля электроны в проводнике ускоряются. Они начинают чаще и сильнее соударяться с узлами кристаллической решетки проводника и вообще с неоднородностями внутри него. При ударах они будут отдавать часть своей энергии узлам решетки, из-за чего те начнут колебаться чуточку быстрее. А как мы все знаем – чем быстрее колеблются элементы структуры вещества, тем больше его температура. То есть происходит нагрев проводника. Вы спросите – а как посчитать это количество теплоты? Как ни странно, формулу мы уже писали сегодня:

Почему это так должно быть очевидно. Если работа тока расходуется только на нагрев проводника, то вся эта энергия и пойдет в тепло по закону сохранения энергии. Но есть один тонкий момент, связанный с терминологией. Если вы запишите это выражение вот так

то это будет называться законом Джоуля-Ленца в честь двух весьма уважаемых господ.

Да, другие формулы ничуть от этой не отличаются и по ним все так же можно считать количество теплоты, но именно вот эта формула получила такое название.

А теперь, господа, для закрепления пройденного материала, я бы хотел рассмотреть одну задачку, которая может реально иметь место в жизни. Звучит она так.

Определите, на сколько градусов перегреется проволока из нихрома, имеющая площадь поперечного сечения 1 квадратный миллиметр и длиной в 30 метров, при протекании через нее кратковременного тока силой в 50 А и длительностью 1 секунда.

Такая задача вполне может иметь место на практике. Байку про то, как мне пришлось решать нечто подобное для мегамощной установки я рассказывал в статье про сопротивление. Кто не читал, можете ознакомиться.

Давайте порассуждаем, как нам решать эту задачу. У нас есть все габариты нашей проволоки и мы знаем материал. Значит, мы можем найти ее сопротивление.

Далее, мы знаем сопротивление, силу тока и время – по закону Джоуля-Ленца мы легко считаем энергию.

Теперь остается вспомнить формулу, которая была в каком-то там курсе, связанном с тепловыми процессами. Ну, она связывала между собой энергию, теплоемкость, массу и перегрев. Помните?

Теплоемкость нихрома нагуглим. Массу можно найти, зная плотность нихрома и объем проволоки. И остается одна величина – перегрев ΔT. Его и высчитываем. План ясен – теперь вперед, погнали считать!

По формуле из статьи про сопротивление находим сопротивление нихромовой проволоки:

 где l – длина проволоки, ро – плотность нихрома, S – площадь поперечного сечения проволоки.

Теперь воспользуемся нашим законом Джоуля-Ленца. Получаем, что на нашей бедной нихромовой проволоке рассеется вот столько энергии:

 где I – заданный в задаче ток, R – посчитанное в предыдущем пункте сопротивление, дельта t  – заданное в задаче время протекания тока.

Идем дальше, найдем объем проволоки. Проволока имеет форму цилиндра. Как известно из геометрии, для нахождения объема цилиндра надо умножить площадь его основания на высоту. Имеем

Ну и теперь, зная объем проволоки и ее плотность, которую мы легко нагуглим, мы находим массу нашей нихромовой проволоки

Теперь осталось только выразить из формулы, написанной в начале задачи перегрев и собрать все величины воедино. Получаем

Такой общий вид формулы для расчета перегрева проволоки, если нам известен ее материал, площадь сечения, сила тока и длительность его протекания. Обратите внимание, господа, что у нас сократилась длина проволоки. Получается, перегрев от нее не зависит.

Проанализируем эту формулу чуть глубже. Мы видим, что перегрев прямо пропорционален времени протекания тока. То есть, если подходить формально, получается, что даже при самых маленьких токах при очень большом времени протекания будет бесконечно большой перегрев. Разумеется, мы знаем из практики, что это не так. Проволока будет отдавать тепло в окружающее пространство и охлаждаться таким образом. Будут идти два процесса: первый подводит к проволоке энергию (протекающий ток) и второй отводит ее от проволоки (теплообмен с окружающей средой). В итоге наступит некоторое термодинамическое равновесие и проволока приобретет некоторую постоянную температуру. Какую именно – это весьма сложный вопрос и так просто на него не ответить, потому что это зависит от множества факторов. Когда же верна наша формула? И можно ли ей вообще пользоваться? Пользоваться можно, но осторожно smile. Следует понимать, что этот перегрев считался без обмена температурой с окружающей средой. То есть по этой формуле можно считать для случая весьма коротких импульсов тока для весьма грубой оценки пикового перегрева материала, когда процесс термодинамического равновесия не успевает наступить. Тем не менее с импользованием этой формулы можно давать оценку, выживет ли наш материал при таких коротких импульсах тока или лучше взять что-то понадежнее. Ну и в заключение, имея в виду все вышенаписанное, подставим конкретные цифры и посчитаем перегрев. Само собой, подставлять все будем в кошерной системе СИ. Вообще рекомендую всегда все расчеты вести только в ней, путаницы будет в разы меньше. Получим:

Таким образом, наша проволока перегреется на 803 градуса. Температура плавления нихрома составляет порядка 1300 градусов, то есть наша проволока выдержит. На деле температура будет скорее всего гораздо меньше из-за неизбежного процесса теплообмена с окружающей средой. То есть данную проволоку можно смело использовать для такой нагрузки.

Итак, господа, статья получилась не маленькая и включала в себя довольно много изученного ранее материала. Математики тут тоже получилось порядком. Надеюсь, кому-то эти сведения будут полезными smile. За сим прощаюсь, всем удачи и до новых встреч!

Вступайте в нашу группу Вконтакте

Вопросы и предложения админу: This email address is being protected from spambots. You need JavaScript enabled to view it.

При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.

При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.

Для выражения любой из этих величин можно использовать приведённый ниже рисунок.

зависимость.svg

Рис. (1). Зависимость между работой, напряжением и зарядом

Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда:

q=I⋅t

.

Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку:

A=U⋅q

.

Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи:

A=U⋅I⋅t

.

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

3.png

Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда

Единицы измерения величин:

работа электрического тока ([A]=1) Дж;

напряжение на участке цепи ([U]=1) В;

сила тока, проходящего по участку ([I]=1) А;

время прохождения заряда (тока) ([t]=1) с.

Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

в_пример.svgpower-8191WKS.jpg

Рис. (3). Схема и часы для измерения

Например:

I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж 

Обрати внимание!

Работа чаще всего выражается в килоджоулях или мегаджоулях.

(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.

Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.

soe_52_60_11_sh.jpg

Рис. (4). Электросчетчик

Механическая мощность численно равна работе, совершённой телом в единицу времени:

N = Аt

.  Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока,

A=U⋅I⋅t

, разделить на время.

Мощность электрического тока обозначают буквой (Р):

P=At=U⋅I⋅tt=U⋅I

. Таким образом:

Мощность электрического тока равна произведению напряжения на силу тока:

P=U⋅I

.

Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.

зависимость1.svg

Рис. (5). Зависимость между мощностью, напряжением и силой тока

За единицу мощности принят ватт: (1) Вт = (1) Дж/с.

Из формулы

P=U⋅I

следует, что

(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.

Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.

Пример:

Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.

в_пример.svg

Рис. (6). Схема

Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:

I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт

.

Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.

В зависимости от сферы применения у них различаются пределы измерения.

Аналоговый ваттметр

Аналоговый ваттметр

Аналоговый ваттметр

Цифровой ваттметр

0007-004-Vattmetr-pribor-dlja-izmerenija-moschnosti.jpg

791838.jpeg

c301 (1).jpg

0987.jpg

Рис. (7). Приборы для измерения

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

1.png Jauda1.png

Рис. (8). Лампы различной мощности в цепи

Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит: 

Обрати внимание!

Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.

2_1.png Jauda2.png 

Рис. (8). Лампа, подключенная к источнику тока с различным напряжением

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

Обрати внимание!

Мощность зависит от напряжения.

Рассчитаем мощность лампочки в каждом случае:

I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт.

Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

Рис. (9). Маркировка

В таблице дана мощность, потребляемая различными приборами и устройствами:

Таблица (1). Мощность различных приборов

Название

Рисунок

Мощность

 Калькулятор

441.jpg

(0,001) Вт

 Лампы дневного света

lampy-dnevnogo-sveta-potolochnye1.jpg

(15 — 80) Вт

 Лампы накаливания

l1.png

(25 — 5000) Вт

 Компьютер

apple-1834328_640.jpg

(200 — 450) Вт

 Электрический чайник

skolko-elektroe-nergii-potreblyaet-chajnik-nowbest.ru_.jpg

(650 — 3100) Вт

 Пылесос

6a.jpg

(1500 — 3000) Вт

 Стиральная машина

atlant.jpeg

(2000 — 4000) Вт

 Трамвай

64216.jpg

(150 000 — 240000) Вт

Источники:

Рис. 1. Зависимость между работой, напряжением и зарядом. © ЯКласс.
Рис. 3. Схема и часы для измерения. © ЯКласс.
Рис. 5. Зависимость между мощностью, напряжением и силой тока. © ЯКласс.
Рис. 6. Схема. © ЯКласс.
Таблица 1.  Мощность различных приборов. Компьютер. Указание авторства не требуется, 2021-08-14, Pixabay License, https://pixabay.com/ru/photos/яблоко-стул-компьютер-1834328/.

Понравилась статья? Поделить с друзьями:
  • Как найти баню рядом
  • Как составить электронно точечную формулу
  • Как найти наркотики в москве
  • Как найти моего брата номер
  • Как найти друзей в валорант