Как найти радиус цилиндра если известна высота

В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.

  • Формулы вычисления радиуса цилиндра

    • 1. Через объем и высоту

    • 2. Через площадь боковой поверхности

    • 3. Через полную площадь поверхности

  • Примеры задач

Формулы вычисления радиуса цилиндра

Радиус цилиндра

1. Через объем и высоту

Радиус цилиндра рассчитывается по формуле:

Формула радиуса цилиндра через объем и высоту

V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.

V = πR2h

  • R – радиус основания цилиндра, т.е. окружности;
  • π – число, округленное значение которого равняется 3,14.

2. Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Формула радиуса цилиндра через площадь боковой поверхности

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2πR), являющейся основанием фигуры, на его высоту:

S = 2πRh

3. Через полную площадь поверхности

Радиус цилиндра равен:

Формула радиуса цилиндра через полную площадь поверхности

Данная формула получена следующим образом:

S – полная площадь поверхности фигуры, равная:

S = 2πRh + 2πR2 или S = 2πR(h + R)

Возьмем первое выражение. Если перенести S в правую часть, получим:

2πR2 + 2πRh – S = 0

Можно заметить, что это квадратное уравнение вида ax+ bx + c = 0, где:

  • a = 2π
  • b = 2πh
  • c = -S

R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:

Формула радиуса цилиндра через полную площадь поверхности

* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см3. Вычислите его радиус.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:
Вычисление радиуса цилиндра через объем и высоту

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см2, а высота составляет 7 см.

Решение:
Применим формулу, в которой задействованы заданные величины:
Вычисление радиуса цилиндра через площадь боковой поверхности

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см2, а высота – 10 см.

Решение:
Используем третью формулу для нахождения неизвестной величины:
Расчет радиуса цилиндра через полную площадь поверхности

Круг (окружность) — геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).

Формулы для вычисления радиуса круга

Через объем и высоту $R=sqrt{frac{V}{pi h}}$, где:

V — объем цилиндра

h — высота цилиндра

Через площадь боковой поверхности и высоту $R=frac{S_{b}}{2 pi h}$, где:

S — площадь боковой поверхности

h — высота цилиндра

Через площадь полной поверхности и высоту $R=frac{sqrt{(2 pi h)^{2}+8 pi S}-2 pi h}{2 pi}$, где:

S — площадь полной поверхности

h — высота цилиндра

Радиус цилиндра

Радиус

При вращении прямоугольника вокруг своей стороны получается геометрическое тело, называемое цилиндром. Данная геометрическая фигура ограничена цилиндрической поверхностью и двумя пересекающими ее параллельными плоскостями — основаниями цилиндра. Радиусом считается отрезок, соединяющий на плоскости основания точку центральной оси цилиндра с точкой его поверхности.

— Если известен объем и высота цилиндра, можно найти его радиус, как корень квадратный из объема деленного на произведение числа пи на высоту цилиндра:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2=πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

r = S (б.п.) / 2πh

Площадь двух оснований равна удвоенному произведению пи на радиус в квадрате:

2S (осн.) = πr2

— Если известна площадь основания и высота, радиус находим как корень квадратный из площади одного основания деленного на пи:

r = √S (осн.) / π

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr2

где S (п.п.) — полная площадь поверхности цилиндра; r — радиус; h — высота.

r = (√(8πS + √(2πh)) — 2πh) / 2π

Рассчитать радиус цилиндра через площадь и высоту

Нахождение радиуса цилиндра: формула и примеры

В данной публикации мы рассмотрим, как можно вычислить радиус цилиндра и разберем примеры решения задач для закрепления материала.

Формулы вычисления радиуса цилиндра

1. Через объем и высоту

Радиус цилиндра рассчитывается по формуле:

V – объем цилиндра; считается как произведение числа π на высоту фигуры на квадрат радиуса круга, являющего ее основанием.

V = π R 2 h

  • R – радиус основания цилиндра, т.е. окружности;
  • π – число, округленное значение которого равняется 3,14.

2. Через площадь боковой поверхности

Радиус цилиндра считается таким образом:

Sбок. – площадь боковой поверхности цилиндра; равна произведению длины окружности (2 π R), являющейся основанием фигуры, на его высоту:

S = 2 π Rh

3. Через полную площадь поверхности

Радиус цилиндра равен:

Данная формула получена следующим образом:

S – полная площадь поверхности фигуры, равная:

S = 2 π Rh + 2 π R 2 или S = 2 π R(h + R)

Возьмем первое выражение. Если перенести S в правую часть, получим:

2 π R 2 + 2 π Rh – S = 0

Можно заметить, что это квадратное уравнение вида ax 2 + bx + c = 0, где:

R является корнем данного уравнения (x). Подставив в стандартную формулу для расчета корней наши значения a, b и с получаем*:

* в нашем случае – только один положительный корень, т.к. радиус не может быть отрицательным.

Примеры задач

Задание 1
Высота цилиндра равняется 5 см, а объем – 141,3 см 3 . Вычислите его радиус.

Решение:
Воспользуемся соответствующей формулой, подставив в нее известные по условиям задачи значения:

Задание 2
Найдите радиус цилиндра, если площадь его боковой поверхности равна 175,84 см 2 , а высота составляет 7 см.

Решение:
Применим формулу, в которой задействованы заданные величины:

Задание 3
Рассчитайте радиус цилиндра, если полная площадь его поверхности – 602,88 см 2 , а высота – 10 см.

Решение:
Используем третью формулу для нахождения неизвестной величины:

Рассчитайте радиус цилиндра

Круг (окружность) — геометрическая фигура на плоскости, все точки которой равноудалены от данной точки (центр круга).

Формулы для вычисления радиуса круга

Через объем и высоту $R=sqrt<frac<pi h>>$, где:

V — объем цилиндра

h — высота цилиндра

Через площадь боковой поверхности и высоту $R=frac><2 pi h>$, где:

S — площадь боковой поверхности

h — высота цилиндра

Через площадь полной поверхности и высоту $R=frac<sqrt<(2 pi h)^<2>+8 pi S>-2 pi h><2 pi>$, где:

Радиус цилиндра

При вращении прямоугольника вокруг своей стороны получается геометрическое тело, называемое цилиндром. Данная геометрическая фигура ограничена цилиндрической поверхностью и двумя пересекающими ее параллельными плоскостями — основаниями цилиндра. Радиусом считается отрезок, соединяющий на плоскости основания точку центральной оси цилиндра с точкой его поверхности.

— Если известен объем и высота цилиндра, можно найти его радиус, как корень квадратный из объема деленного на произведение числа пи на высоту цилиндра:

R = √V / πh

где V — объем цилиндра, h — высота.
Полная площадь поверхности цилиндра складывается из сумм площадей его боковой поверхности и двух оснований:

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2 =πr (2h+r)

Площадь боковой поверхности равняется длине окружности основания умноженной на высоту:

S (б.п.) = hP = 2πrh

— Если известна площадь бок. поверхности S (б.п.) и высота h цилиндра, радиус будет равен частному от деления S (б.п.) на произведение 2пи на высоту:

r = S (б.п.) / 2πh

Площадь двух оснований равна удвоенному произведению пи на радиус в квадрате:

2S (осн.) = πr 2

— Если известна площадь основания и высота, радиус находим как корень квадратный из площади одного основания деленного на пи:

r = √S (осн.) / π

S (п.п.) = S (б.п.) + 2S (осн.) = 2πrh + πr 2

где S (п.п.) — полная площадь поверхности цилиндра; r — радиус; h — высота.

источники:

http://www.webmath.ru/web/radius-cilindra.php

Радиус цилиндра

A cylinder is a three-dimensional object that looks like a rod with circular ends. If you know the volume of a cylinder and its height, you can determine its radius using the same formula used to calculate its volume when you do know the radius. Keep in mind that the radius is one half of the cylinder’s diameter, or the distance from the center of either end to its edge.

1. Know the Formula for the Volume of a Cylinder

The formula for the volume of a cylinder contains three elements: the radius of the cylinder (r), the height (h) of the cylinder, and the ratio of the circumference of a circle to its diameter pi. To find the volume of a cylinder, you multiply pi by the cylinder’s height and the square of its radius. Pi is approximately 3.14159 and can be rounded down to 3.14 if your calculator doesn’t have a pi key. Here is the formula in mathematical terms:

V = pi x h x r^2

2. Solve for the Radius (r)

Since you want to find the radius of the cylinder, you need to rearrange the formula to solve for the term r, which is the radius. First, divide both sides by pi and h. These terms will cancel on the right side of the equation, leaving only r^2. Now take the square root of both sides to get rid of the square on the radius. This leaves us with the following:

r = square root of (V / (pi x h))

3. Calculate the Radius

Now just plug your numbers into the equation and compute the radius. For example, if your cylinder has a height of 10 centimeters and a volume of 30 cubic centimeters, the calculation would look like the following:

r = square root of (30 cm^3 / (3.14 x 10 cm)) = 0.98 cm

Понравилась статья? Поделить с друзьями:
  • Как найти клиентов на резку
  • Как найти половину четырехугольника
  • Как найти пропавший файл на флешке
  • Как найти объем тетраэдра по координатам вершин
  • Если пересолили горбушу как исправить